Biochemistry (Moscow)

, Volume 82, Issue 12, pp 1521–1528 | Cite as

Y-box-binding protein 1 stimulates abasic site cleavage

  • E. E. Alemasova
  • K. N. Naumenko
  • N. A. Moor
  • O. I. LavrikEmail author
Regular Article


Apurinic/apyrimidinic (AP) sites are among the most frequent DNA lesions. The first step in the AP site repair involves the magnesium-dependent enzyme AP endonuclease 1 (APE1) that catalyzes hydrolytic cleavage of the DNA phosphodiester bond at the 5′ side of the AP site, thereby generating a single-strand DNA break flanked by the 3′-OH and 5′-deoxyribose phosphate (dRP) groups. Increased APE1 activity in cancer cells might correlate with tumor chemoresistance to DNA-damaging treatment. It has been previously shown that the multifunctional oncoprotein Y-box-binding protein 1 (YB-1) interacts with APE1 and inhibits APE1-catalyzed hydrolysis of AP sites in single-stranded DNAs. In this work, we demonstrated that YB-1 stabilizes the APE1 complex with double-stranded DNAs containing the AP sites and stimulates cleavage of these AP sites at low magnesium concentrations.


Y-box-binding protein 1 AP endonuclease 1 base excision repair apurinic/apyrimidinic site 



AP endonuclease 1

AP site

apurinic/apyrimidinic site


Y-box-binding protein 1


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Khodyreva, S. N., and Lavrik, O. I. (2011) New players in recognition of intact and cleaved AP sites: implication in DNA repair in mammalian cells, DNA Repair, 14, 305–330.Google Scholar
  2. 2.
    Tell, G., Quadrifoglio, F., Tiribelli, C., and Kelley, M. R. (2009) The many functions of APE1/Ref-1: not only a DNA repair enzyme, Antioxid. Redox Signal., 11, 601–620.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Fantini, D., Vascotto, C., Marasco, D., D’Ambrosio, C., Romanello, M., Vitagliano, L., Pedone, C., Poletto, M., Cesaratto, L., Quadrifoglio, F., Scaloni, A., Radicella, J. P., and Tell, G. (2010) Critical lysine residues within the over-looked N-terminal domain of human APE1 regulate its biological functions, Nucleic Acids Res., 38, 8239–8256.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Vidal, A. E., Boiteux, S., Hickson, I. D., and Radicella, J. P. (2001) XRCC1 coordinates the initial and late stages of DNA abasic site repair through protein–protein interactions, EMBO J., 20, 6530–6539.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Wong, H. K., Muftuoglu, M., Beck, G., Imam, S. Z., Bohr, V. A., and Wilson, D. M., 3rd. (2007) Cockayne syndrome B protein stimulates apurinic endonuclease 1 activity and protects against agents that introduce base excision repair intermediates, Nucleic Acids Res., 35, 4103–4113.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Vascotto, C., Fantini, D., Romanello, M., Cesaratto, L., Deganuto, M., Leonardi, A., Radicella, J. P., Kelley, M. R., D’Ambrosio, C., Scaloni, A., Quadrifoglio, F., and Tell, G. (2009) APE1/Ref-1 interacts with NPM1 within nucleoli and plays a role in the rRNA quality control process, Mol. Cell. Biol., 29, 1834–1854.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Sengupta, S., Mantha, A. K., Mitra, S., and Bhakat, K. K. (2011) Human AP endonuclease (APE1/Ref-1) and its acetylation regulate YB-1-p300 recruitment and RNA polymerase II loading in the drug-induced activation of multidrug resistance gene MDR1, Oncogene, 30, 482–493.CrossRefPubMedGoogle Scholar
  8. 8.
    Alemasova, E. E., Moor, N. A., Naumenko, K. N., Kutuzov, M. M., Sukhanova, M. V., Pestryakov, P. E., and Lavrik, O. I. (2016) Y-box-binding protein 1 as a noncanonical factor of base excision repair, Biochim. Biophys. Acta, 1864, 1631–1640.CrossRefPubMedGoogle Scholar
  9. 9.
    Lirussi, L., Antoniali, G., Vascotto, C., D’Ambrosio, C., Poletto, M., Romanello, M., Marasco, D., Leone, M., Quadrifoglio, F., Bhakat, K. K., Scaloni, A., and Tell, G. (2012) Nucleolar accumulation of APE1 depends on charged lysine residues that undergo acetylation upon genotoxic stress and modulate its BER activity in cells, Mol. Biol. Cell, 23, 4079–4096.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lasham, A., Moloney, S., Hale, T., Homer, C., Zhang, Y. F., Murison, J. G., Braithwaite, A. W., and Watson, J. (2003) The Y-box-binding protein, YB1, is a potential negative regulator of the p53 tumor suppressor, J. Biol. Chem., 278, 35516–35523.PubMedGoogle Scholar
  11. 11.
    En-Nia, A., Yilmaz, E., Klinge, U., Lovett, D. H., Stefanidis, I., and Mertens, P. R. (2005) Transcription factor YB-1 mediates DNA polymerase alpha gene expression, J. Biol. Chem., 280, 7702–7711.CrossRefPubMedGoogle Scholar
  12. 12.
    Sorokin, A. V., Selyutina, A. A., Skabkin, M. A., Guryanov, S. G., Nazimov, I. V., Richard, C., Th’ng, J., Yau, J., Sorensen, P. H., Ovchinnikov, L. P., and Evdokimova, V. (2005) Proteasome-mediated cleavage of the Y-box-binding protein 1 is linked to DNA-damage stress response, EMBO J., 24, 3602–3612.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Fomina, E. E., Pestryakov, P. E., Kretov, D. A., Zharkov, D. O., Ovchinnikov, L. P., Curmi, P. A., and Lavrik, O. I. (2015) Inhibition of abasic site cleavage in bubble DNA by multifunctional protein YB-1, J. Mol. Recognit., 28, 117–123.CrossRefPubMedGoogle Scholar
  14. 14.
    Evdokimova, V. M., Sitikov, A. S., Simonenko, P. N., Lazarev, O. A., Vasilenko, K. S., Ustinov, V. A., Wei, C. L., Hershey, J. W. B., and Ovchinnikov, L. P. (1995) The major protein of messenger ribonucleoprotein particles in somatic cells is a member of the Y-box binding transcription factor family, J. Biol. Chem., 270, 3186–3192.CrossRefPubMedGoogle Scholar
  15. 15.
    Strauss, P. R., Beard, W. A., Patterson, T. A., and Wilson, S. H. (1997) Substrate binding by human apurinic/apyrimidinic endonuclease indicates a Briggs–Haldane mechanism, J. Biol. Chem., 272, 1302–1307.CrossRefPubMedGoogle Scholar
  16. 16.
    Daviet, S., Couve-Privat, S., Gros, L., Shinozuka, K., Ide, H., Saparbaev, M., and Ishchenko, A. A. (2007) Major oxidative products of cytosine are substrates for the nucleotide incision repair pathway, DNA Rep. (Amst.), 6, 8–18.CrossRefGoogle Scholar
  17. 17.
    Yamshchikov, V. F. (1990) in Methods of Molecular Genetics and Genetic Engineering (Salganik, R. I., ed.) [in Russian], Nauka, Moscow.Google Scholar
  18. 18.
    Miroshnikova, A. D., Kuznetsova, A. A., Vorobjev, Y. N., Kuznetsov, N. A., and Fedorova, O. S. (2016) Effects of mono- and divalent metal ions on DNA binding and catalysis of human apurinic/apyrimidinic endonuclease 1, Mol. Biosyst., 12, 1527–1539.CrossRefPubMedGoogle Scholar
  19. 19.
    Barzilay, G., Mol, C. D., Robson, C. N., Walker, L. J., Cunningham, R. P., Tainer, J. A., and Hickson, I. D. (1995) Identification of critical active-site residues in the multifunctional human DNA repair enzyme HAP1, Nat. Struct. Biol., 2, 561–568.CrossRefPubMedGoogle Scholar
  20. 20.
    Mol, C. D., Izumi, T., Mitra, S., and Tainer, J. A. (2000) DNA-bound structures and mutants reveal abasic DNA binding by APE1 and DNA repair coordination, Nature, 403, 451–456.CrossRefPubMedGoogle Scholar
  21. 21.
    Beernink, P. T., Segelke, B. W., Hadi, M. Z., Erzberger, J. P., Wilson, D. M., 3rd, and Rupp, B. (2001) Two divalent metal ions in the active site of a new crystal form of human apurinic/apyrimidinic endonuclease, Ape1: implications for the catalytic mechanism, J. Mol. Biol., 307, 1023–1034.PubMedGoogle Scholar
  22. 22.
    Tanabe, Y., Nagatoishi, S., and Tsumoto, K. (2015) Thermodynamic characterization of the interaction between the human Y-box binding protein YB-1 and nucleic acids, Mol. Biosyst., 11, 2441–2448.CrossRefPubMedGoogle Scholar
  23. 23.
    Gallivan, J. P., and Dougherty, D. A. (2000) A computational study of cation–p interactions vs salt bridges in aqueous media: implications for protein engineering, J. Am. Chem. Soc., 122, 870–874.CrossRefGoogle Scholar
  24. 24.
    Borozan, S. Z., Dimitrijevic, B. P., and Stojanovic, S. D. (2013) Cation–p interactions in high-resolution protein–RNA complex crystal structures, Comput. Biol. Chem., 47, 105–112.CrossRefPubMedGoogle Scholar
  25. 25.
    Stewart, M., Dunlap, T., Dourlain, E., Grant, B., and McFail-Isom, L. (2013) Cations form sequence selective motifs within DNA grooves via a combination of cation–pi and ion-dipole/hydrogen bond interactions, PLoS One, 8, e71420.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Chattopadhyay, R., Wiederhold, L., Szczesny, B., Boldogh, I., Hazra, T. K., Izumi, T., and Mitra, S. (2006) Identification and characterization of mitochondrial abasic (AP)-endonuclease in mammalian cells, Nucleic Acids Res., 34, 2067–2076.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Wen, X., Lu, R., Xie, S., Zheng, H., Wang, H., Wang, Y., Sun, J., Gao, X., and Guo, L. (2016) APE1 overexpression promotes the progression of ovarian cancer and serves as a potential therapeutic target, Cancer Biomark., 17, 313–322.CrossRefPubMedGoogle Scholar
  28. 28.
    Al-Attar, A., Gossage, L., Fareed, K. R., Shehata, M., Mohammed, M., Zaitoun, A. M., Soomro, I., Lobo, D. N., Abbotts, R., Chan, S., and Madhusudan, S. (2010) Human apurinic/apyrimidinic endonuclease (APE1) is a prognostic factor in ovarian, gastro-esophageal and pancreatico-biliary cancers, Br. J. Cancer, 102, 704–709.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • E. E. Alemasova
    • 1
  • K. N. Naumenko
    • 1
    • 2
  • N. A. Moor
    • 1
  • O. I. Lavrik
    • 1
    • 2
    Email author
  1. 1.Institute of Chemical Biology and Fundamental MedicineSiberian Branch of the Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations