Biochemistry (Moscow)

, Volume 82, Issue 12, pp 1513–1520 | Cite as

Effects of mitochondrial antioxidant SkQ1 on biochemical and behavioral parameters in a Parkinsonism model in mice

  • V. V. PavshintsevEmail author
  • L. S. Podshivalova
  • O. Y. Frolova
  • M. V. Belopolskaya
  • O. A. Averina
  • E. A. Kushnir
  • N. V. Marmiy
  • M. L. Lovat


According to one hypothesis, Parkinson’s disease pathogenesis is largely caused by dopamine catabolism that is catalyzed on mitochondrial membranes by monoamine oxidase. Reactive oxygen species are formed as a byproduct of these reactions, which can lead to mitochondrial damage followed by cell degeneration and death. In this study, we investigated the effects of administration of the mitochondrial antioxidant SkQ1 on biochemical, immunohistochemical, and behavioral parameters in a Parkinson-like condition caused by protoxin MPTP injections in C57BL/6 mice. SkQ1 administration increased dopamine quantity and decreased signs of sensory-motor deficiency as well as destruction of dopaminergic neurons in the substantia nigra and ventral tegmental area in mice with the Parkinson-like condition.


Parkinson’s disease MPTP mitochondrial antioxidants SkQ1 sensorimotor deficiency dopaminergic neurons 



“Beam walking” test


central nervous system






3,4-dihydroxyphenylacetic acid


“Elevated plus maze” test


hematoencephalic barrier


high performance liquid chromatography


monoamine oxidase-B








“Open field” test


Parkinson’s disease


“Porsolt forced swim” test


reactive oxygen species


sensorimotor deficiency




tyrosine hydroxylase (marker of dopaminergic neurons)


“T-maze” test


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Delaville, C., Deurwaerdere, P., and Benazzouz, A. (2011) Noradrenaline and Parkinson’s disease, Front. Syst. Neurosci., doi: 10.3389/fnsys.2011.00031.Google Scholar
  2. 2.
    Richardson, J. R., Ananya, R., Shalat, S. L., Buckley, B., Winnik, B., Gearing, M., Levey, A. I., O’Suilleabhain, P., and German, D. C. (2011) Hexachlorocyclohexane levels in serum and risk of Parkinson’s disease, Neurotoxicology, 32.Google Scholar
  3. 3.
    Langston, J. W. (2002) Parkinson’s disease: current and future challenges, Neurotoxicology, 23, 443–450.CrossRefPubMedGoogle Scholar
  4. 4.
    Edmondson, D. E., Binda, C., and Mattevi, A. (2007) Structural insights into the mechanism of amine oxidation by monoamine oxidases A and B, Arch. Biochem. Biophys., 464, 269–276.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Przedborski, S., Naini Ali, B., and Akram, M. (2001) The Parkinson toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydopyridine (MPTP): a technical review of its utility and safety, J. Neurochem., 76, 1265–1274.CrossRefPubMedGoogle Scholar
  6. 6.
    Dorszewska, J., Florczak, J., Rozycka, A., Kempisty, B., Jaroszewska-Kolecka, J., Chojnacka, K., Trzeciak, W. H., and Kozubski, W. (2007) Oxidative DNA damage and level of thiols as related to polymorphisms of MTHFR, MTR, MTHFD1 in Alzheimer’s and Parkinson’s diseases, Acta Neurobiol. Exp., 67, 113–129.Google Scholar
  7. 7.
    Garrido, A., Aldecoa, I., Gelpi, E., and Tolosa, E. (2017) Aggregation of a-synuclein in the gonadal tissue of 2 patients with Parkinson disease, JAMA Neurol., 74, 606–607.CrossRefPubMedGoogle Scholar
  8. 8.
    Cassarino, D. S., Parks, J. K., Parker, W. D., and Bennett, J. P. (1999) The parkinsonian neurotoxin MPP+ opens the mitochondrial permeability transition pore and releases cytochrome c in isolated mitochondria via an oxidative mechanism, Biochim. Biophys. Acta, 1453, 49–62.CrossRefPubMedGoogle Scholar
  9. 9.
    Ukraintseva, Y. S., Shchegolevskii, N. V., Korshunov, V. A., Kucheryanu, V. G., Ugryumov, M. V., and Bazya, A. S. (2010) Modeling of the presymptomatic stage of parkinsonism in mice: analysis of dopamine release in the striatum, Neurochem. J., 4, 142–147.CrossRefGoogle Scholar
  10. 10.
    Cohen-Kerem, R., and Koren, G. (2003) Antioxidants and fetal protection against ethanol teratogenicity. Review of the experimental data and implications to humans, Neurotoxicol. Teratol., 25, 1–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Skulachev, V. P., Bogachev, A. V., and Kasparinskiy, F. O. (2010) Membrane Bioenergetics [in Russian], MSU, Moscow, pp. 269–321.Google Scholar
  12. 12.
    Skulachev, V. P. (2012) Mitochondria-targeted antioxidants as promising drugs for treatment of age-related brain diseases, Alzheimer’s Dis., 28, 283–289.Google Scholar
  13. 13.
    Ghosh, A., Chandran, K., Kalivendi, S. V., Joseph, J., Antholine, W. E., Hillard, C. J., Kanthasamy, A., Kanthasamy, A., and Kalyanaraman, B. (2010) Neuroprotection by a mitochondria-targeted drug in a Parkinson’s disease model, Free Radic. Biol. Med., 49, 1674–1684.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Snow, B. J., Rolfe, F. L., Lockhart, M. M., Frampton, C. M., O’Sullivan, J. D., Fung, V., Smith, R. A., Murphy, M. P., and Taylor, K. M. (2010) A double-blind, placebo-controlled study to assess the mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson’s disease, Mov. Disord., 25, 1670–1674.PubMedGoogle Scholar
  15. 15.
    Skulachev, V. P. (2009) An attempt to prevent senescence: a mitochondrial approach, Biochim. Biophys. Acta, 1787, 437–461.CrossRefPubMedGoogle Scholar
  16. 16.
    Lukashev, A. N., Skulachev, M. V., Ostapenko, V., Savchenko, A. Y., Pavshintsev, V. V., and Skulachev, V. P. (2014) Advances in development of rechargeable mitochondrial antioxidants, Prog. Mol. Biol. Transl. Sci., 127, 251–265.CrossRefPubMedGoogle Scholar
  17. 17.
    Deacon, M. J., and Rawlins, P. N. (2006) T-maze alternation in the rodent, Nat. Protocols, 1, 7–12.CrossRefPubMedGoogle Scholar
  18. 18.
    Pellow, S., Chopin, P., File, S. E., and Briley, M. (1985) Validation of open: closed arm entries in an elevated plusmaze as a measure of anxiety in the rat, J. Neurosci. Methods, 14, 149–167.CrossRefPubMedGoogle Scholar
  19. 19.
    File, S. E., and Wardill, G. (1975) The reliability of the hole-board apparatus, Psychopharmacologia, 44, 47–51.CrossRefPubMedGoogle Scholar
  20. 20.
    Schallert, T., Cenci, M. A., and Whishaw, I. Q. (2002) Animal models of neurological deficits: how relevant is the rat? Nat. Rev. Neurosci., 3, 574–579.CrossRefPubMedGoogle Scholar
  21. 21.
    Jackson-Lewis, V., and Przedborski, S. (2007) Protocol for the MPTP mouse model of Parkinson’s disease, Nat. Protocols, 2, 141–151.CrossRefPubMedGoogle Scholar
  22. 22.
    Feng, G., Zhang, Z., Bao, Q., Zhang, Z., Zhou, L., Jiang, J., and Li, S. (2014) Protective effect of chinonin in MPTP-induced C57BL/6 mouse model of Parkinson’s disease, Biol. Pharm. Bull., 37, 1301–1307.CrossRefPubMedGoogle Scholar
  23. 23.
    Nagarajan, S., Chellappan, D. R., Chinnaswamy, P., and Thulasingam, S. (2015) Ferulic acid pretreatment mitigates MPTP-induced motor impairment and histopathological alterations in C57BL/6 mice, Pharm. Biol., 53, 1591–1601.CrossRefPubMedGoogle Scholar
  24. 24.
    Zhu, Y., Zhang, J., and Zeng, Y. (2012) Overview of tyrosine hydroxylase in Parkinson’s disease, CNS Neurol. Disord. Drug Targets, 11, 350–358.CrossRefPubMedGoogle Scholar
  25. 25.
    Yang, W., Chen, Y. H., Liu, H., and Qu, H. D. (2015) Neuroprotective effects of piperine on the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease mouse model, Int. J. Mol. Med., 36, 1369–1376.CrossRefPubMedGoogle Scholar
  26. 26.
    Sagi, Y., Mandel, S., Amit, T., and Youdim, M. B. (2007) Activation of tyrosine kinase receptor signaling pathway by rasagiline facilitates neurorescue and restoration of nigrostriatal dopamine neurons in post-MPTP-induced parkinsonism, Neurobiol. Dis., 25, 35–44.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. V. Pavshintsev
    • 1
    • 2
    Email author
  • L. S. Podshivalova
    • 2
  • O. Y. Frolova
    • 1
  • M. V. Belopolskaya
    • 1
  • O. A. Averina
    • 2
  • E. A. Kushnir
    • 1
  • N. V. Marmiy
    • 1
  • M. L. Lovat
    • 1
    • 2
  1. 1.Institute of MitoengineeringLomonosov Moscow State UniversityMoscowRussia
  2. 2.Lomonosov Moscow State UniversityFaculty of BiologyMoscowRussia

Personalised recommendations