Biochemistry (Moscow)

, Volume 82, Issue 12, pp 1493–1503 | Cite as

Mitochondria-targeted antioxidant SkQ1 (10-(6′-plastoquinonyl)decyltriphenylphosphonium bromide) inhibits mast cell degranulation in vivo and in vitro

  • M. A. ChelombitkoEmail author
  • O. A. Averina
  • T. V. Vasilyeva
  • O. Yu. Pletiushkina
  • E. N. Popova
  • A. V. Fedorov
  • B. V. Chernyak
  • V. S. Shishkina
  • O. P. Ilinskaya


The therapeutic effect of mitochondria-targeted antioxidant 10-(6′-plastoquinonyl)decyltriphenylphosphonium bromide (SkQ1) in experimental models of acute inflammation and wound repair has been shown earlier. It was suggested that the antiinflammatory activity of SkQ1 is related to its ability to suppress inflammatory activation of the vascular endothelium and neutrophil migration into tissues. Here, we demonstrated that SkQ1 inhibits activation of mast cells (MCs) followed by their degranulation and histamine release in vivo and in vitro. Intraperitoneal injections of SkQ1 in the mouse air-pouch model reduced the number of leukocytes in the air-pouch cavity and significantly decreased the histamine content in it, as well as suppressing MC degranulation in the air-pouch tissue. The direct effect of SkQ1 on MCs was studied in vitro in the rat basophilic leukemia RBL-2H3 cell line. SkQ1 inhibited induced degranulation of RBL-2H3 cells. These results suggest that mitochondrial reactive oxygen species are involved in the activation of MCs. It is known that MCs play a crucial role in regulation of vascular permeability by secreting histamine. Suppression of MC degranulation by SkQ1 might be a significant factor in the antiinflammatory activity of this mitochondria-targeted antioxidant.


inflammation mast cell degranulation histamine mitochondria-targeted antioxidant 


anti-DNP IgE

mouse monoclonal IgE antibodies against dinitrophenol


DNP-conjugated bovine serum albumin; MC, mast cell


mitochondrial ROS


phorbol myristate acetate (phorbol ester)


rat basophilic leukemia cell line


reactive oxygen species


10-(6′-plastoquinonyl)decyltriphenylphosphonium bromide


transforming growth factor β1


tumor necrosis factor


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Omelyanenko, N. P., and Slutskiy, L. I. (2009) Connective Tissue (Histology and Biochemistry) [in Russian], Vol. 1, Izvestiya, Moscow.Google Scholar
  2. 2.
    Yarilin, A. A. (2010) Immunology [in Russian], GEOTAR-Media, Moscow.Google Scholar
  3. 3.
    Da Silva, E., Jamur, M., and Oliver, C. (2014) Mast cell function: a new vision of an old cell, J. Histochem. Cytochem., 62, 698–738.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Stankiewicz, E., Wypasek, E., and Plytycz, B. (2001) Short communication opposite effects of mast cell degranulation by compound 48/80 on peritoneal inflammation in Swiss and CBA mice, J. Pharmacol., 53, 149–155.CrossRefGoogle Scholar
  5. 5.
    Kolaczkowska, E., Arnold, B., and Plytycz, B. (2008) Mast cell involvement in zymosan-induced peritonitis in C57Bl/6 mice, Centr. Eur. J. Immunol., 33, 91–97.Google Scholar
  6. 6.
    Theoharides, T. C., Alysandratos, K. D., Angelidou, A., Delivanis, D. A., Sismanopoulos, N., Zhang, B., and Kalogeromitros, D. (2012) Mast cells and inflammation, Biochim. Biophys. Acta, 1822, 21–33.CrossRefPubMedGoogle Scholar
  7. 7.
    Sly, L. M., Kalesnikoff, J., Lam, V., Wong, D., Song, C., Omeis, S., Chan, K., Lee, C. W., Siraganian, R. P., Rivera, J., and Krystal, G. (2008) IgE-induced mast cell survival requires the prolonged generation of reactive oxygen species, J. Immunol., 181, 3850–3860.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Shin, J., Pan, H., and Zhong, X. P. (2012) Regulation of mast cell survival and function by tuberous sclerosis complex, Blood, 119, 3306–3314.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Zhou, Y., Tung, H. Y., Tsai, Y. M., Hsu, S. C., Chang, H. W., Kawasaki, H., Tseng, H. C., Plunkett, B., Gao, P., Hung, C. H., Vonakis, B. M., and Huang, S. K. (2013) Aryl hydrocarbon receptor controls murine mast cell homeostasis, Blood, 121, 3195–3204.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Chelombitko, M. A., Fedorov, A. V., Ilyinskaya, O. P., Zinovkin, R. A., and Chernyak, B. V. (2016) The role of reactive oxygen in mast cell degranulation, Biochemistry (Moscow), 81, 1564–1577.CrossRefGoogle Scholar
  11. 11.
    Inoue, T., Suzuki, Y., Yoshimaru, T., and Ra, C. (2008) Reactive oxygen species produced up-or downstream of calcium influx regulate proinflammatory mediator release from mast cells: role of NADPH oxidase and mitochondria, Biochim. Biophys. Acta, 1783, 789–802.CrossRefPubMedGoogle Scholar
  12. 12.
    Antonenko, Y. N., Avetisyan, A. V., Bakeeva, L. E., Chernyak, B. V., Chertkov, V. A., Domnina, L. V., Ivanova, O. Y., Izyumov, D. S., Khailova, L. S., Klishin, S. S., Korshunova, G. A., Lyamzaev, K. G., Muntyan, M. S., Nepryakhina, O. K., Pashkovskaya, A. A., Pletjushkina, O. Y., Pustovidko, A. V., Roginsky, V. A., Rokitskaya, T. I., Ruuge, E. K., Saprunova, V. B., Severina, I. I., Simonyan, R. A., Skulachev, I. V., Skulachev, M. V., Sumbatyan, N. V., Sviryaeva, I. V., Tashlitsky, V. N., Vassiliev, J. M., Vyssokikh, M. Y., Yaguzhinsky, L. S., Zamyatnin, A. A., and Skulachev, V. P. (2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 1. Cationic plastoquinone derivatives: synthesis and in vitro studies, Biochemistry (Moscow), 73, 1273–1287.CrossRefGoogle Scholar
  13. 13.
    Popova, E. N., Pletjushkina, O. Y., Dugina, V. B., Domnina, L. V., Ivanova, O. Y., Izyumov, D. S., Skulachev, V. P., and Chernyak, B. V. (2010) Scavenging of reactive oxygen species in mitochondria induces myofibroblast differentiation, Antioxid. Redox Signal., 13, 1297–1307.CrossRefPubMedGoogle Scholar
  14. 14.
    Demianenko, I. A., Vasilieva, T. V., Domnina, L. V., Dugina, V. B., Egorov, M. V., Ivanova, O. Y., Ilinskaya, O. P., Pletjushkina, O. Y., Popova, E. N., Sakharov, I. Y., Fedorov, A. V., and Chernyak, B. V. (2010) Novel mitochondria-targeted antioxidants, “Skulachev-ion” derivatives, accelerate dermal wound healing in animals, Biochemistry (Moscow), 75, 274–280.Google Scholar
  15. 15.
    Plotnikov, E. Y., Morosanova, M. A., Pevzner, I. B., Zorova, L. D., Manskikh, V. N., Pulkova, N. V., Galkina, S. I., Skulachev, V. P., and Zorov, D. B. (2013) Protective effect of mitochondria-targeted antioxidants in an acute bacterial infection, Proc. Natl. Acad. Sci. USA, 110, 3100–3108.CrossRefGoogle Scholar
  16. 16.
    Demyanenko, I. A., Popova, E. N., Zakharova, V. V., Ilyinskaya, O. P., Vasilieva, T. V., Romashchenko, V. P., Fedorov, A. V., Manskikh, V. N., Skulachev, M. V., Zinovkin, R. A., Pletjushkina, O. Yu., Skulachev, V. P., and Chernyak, B. V. (2015) Mitochondria-targeted antioxidant SkQ1 improves impaired dermal wound healing in old mice, Aging (Albany, NY), 7, 475–485.CrossRefGoogle Scholar
  17. 17.
    Shipounova, I. N., Svinareva, D. A., Petrova, T. V., Lyamzaev, K. G., Chernyak, B. V., Drize, N. I., and Skulachev, V. P. (2010) Reactive oxygen species produced in mitochondria are involved in age-dependent changes of hematopoietic and mesenchymal progenitor cells in mice. A study with the novel mitochondria-targeted antioxidant SkQ1, Mech. Ageing Dev., 131, 415–421.CrossRefPubMedGoogle Scholar
  18. 18.
    Manskikh, V. N., Gancharova, O. S., Nikiforova, A. I., Krasilshchikova, M. S., Shabalina, I. G., Egorov, M. V., Karger, E. M., Milanovsky, G. E., Galkin, I. I., Skulachev, V. P., and Zinovkin, R. A. (2015) Age-associated murine cardiac lesions are attenuated by the mitochondria-targeted antioxidant SkQ1, Histol. Histopathol., 30, 353–360.PubMedGoogle Scholar
  19. 19.
    Demyanenko, I. A., Zakharova, V. V., Ilyinskaya, O. P., Vasilieva, T. V., Fedorov, A. V., Manskikh, V. N., Zinovkin, R. A., Pletjushkina, O. Y., Chernyak, B. V., Skulachev, V. P., and Popova, E. N. (2017) Mitochondria-targeted antioxidant SkQ1 improves dermal wound healing in genetically diabetic mice, Oxid. Med. Cell. Longev., 2017, 1–10.CrossRefGoogle Scholar
  20. 20.
    Zinovkin, R. A., Romaschenko, V. P., Galkin, I. I., Zakharova, V. V., Pletjushkina, O. Y., Chernyak, B. V., and Popova, E. N. (2014) Role of mitochondrial reactive oxygen species in age-related inflammatory activation of endothelium, Aging (Albany, NY), 6, 661–674.CrossRefGoogle Scholar
  21. 21.
    Chelombitko, M. A., Averina, O. A., Vasilieva, T. V., Dvorianinova, E. E., Egorov, M. V., Pletjushkina, O. Yu., Popova, E. N., Fedorov, A. V., Romashchenko, V. P., and Ilyinskaya, O. P. (2017) Comparative effects of mitochondria-targeted antioxidant 10-(6'-plastoquinonyl) decyltriphenylphosphonium bromide and a fragment of its molecule dodecyltriphenylphosphonium on the carrageenaninduced acute inflammation using an air pouch model in mice, Bull. Exp. Biol. Med., 162, 730–733.CrossRefPubMedGoogle Scholar
  22. 22.
    Zakharova, V. V., Pletjushkina, O. Yu., Galkin, I. I., Zinovkin, R. A., Chernyak, B. V., Krysko, D. V., Bachert, C., Krysko, O., Skulachev, V. P., and Popova, E. N. (2017) Low concentration of uncouplers of oxidative phosphorylation decreases the TNF induced endothelial permeability and lethality in mice, Biochim. Biophys. Acta, 1863, 968–977.CrossRefPubMedGoogle Scholar
  23. 23.
    Zakharova, V. V., Pletjushkina, O. Y., Zinovkin, R. A., Popova, E. N., and Chernyak, B. V. (2017) Mitochondriatargeted antioxidants and uncouplers of oxidative phosphorylation in treatment of the systemic inflammatory response syndrome (SIRS), J. Cell. Physiol., 232, 904–912.CrossRefPubMedGoogle Scholar
  24. 24.
    Silachev, D. N., Plotnikov, E. Y., Zorova, L. D., Pevzner, I. B., Sumbatyan, N. V., Korshunova, G. A., Gulyaev, M. V., Pirogov, Y. A., Skulachev, V. P., and Zorov, D. B. (2015) Neuroprotective effects of mitochondria-targeted plastoquinone and thymoquinone in a rat model of brain ischemia/reperfusion injury, Molecules, 20, 14487–14503.CrossRefPubMedGoogle Scholar
  25. 25.
    Jankauskas, S. S., Andrianova, N. V., Alieva, I. B., Prusov, A. N., Matsievsky, D. D., Zorova, L. D., Pevzner, I. B., Savchenko, E. S., Pirogov, Y. A., Silachev, D. N., Plotnikov, E. Y., and Zorov, D. B. (2016) Dysfunction of kidney endothelium after ischemia/reperfusion and its prevention by mitochondria-targeted antioxidant, Biochemistry (Moscow), 82, 1538–1548.CrossRefGoogle Scholar
  26. 26.
    Galkin, I. I., Pletjushkina, O. Yu., Zinovkin, R. A., Zakharova, V. V., Chernyak, B. V., and Popova, E. N. (2016) Mitochondria-targeted antioxidant SkQR1 reduces TNF-induced endothelial permeability in vitro, Biochemistry (Moscow), 81, 1188–1197.CrossRefGoogle Scholar
  27. 27.
    Galkin, I. I., Pletjushkina, O. Yu., Zinovkin, R. A., Zakharova, V. V., Birjukov, I. S., Chernyak, B. V., and Popova, E. N. (2014) Mitochondria-targeted antioxidants prevent TNFa-induced endothelial cell damage, Biochemistry (Moscow), 79, 124–130.CrossRefGoogle Scholar
  28. 28.
    Vorobjeva, N., Prikhodko, A., Galkin, I., Pletjushkina, O., Zinovkin, R., Sud’ina, G., Chernyak, B., and Pinegin, B. (2017) Mitochondrial reactive oxygen species are involved in chemoattractant-induced oxidative burst and degranulation of human neutrophils in vitro, Eur. J. Cell. Biol., 96, 254–265.CrossRefPubMedGoogle Scholar
  29. 29.
    Garcia-Ramallo, E., Marques, T., Prats, N., Beleta, J., Kunkel, S. L., and Godessar, N. (2002) Resident cell chemokine expression serves as the major mechanism for leukocyte recruitment during local inflammation, J. Immunol., 169, 6467–6473.CrossRefPubMedGoogle Scholar
  30. 30.
    Sin, Y. M., Sedgwick, A. D., Chea, E. P., and Willoughby, D. A. (1986) Mast cells in newly formed lining tissue during acute inflammation: a six day air pouch model in the mouse, Ann. Rheum. Dis., 45, 873–877.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Romano, M., Faggioni, R., Sironi, M., Sacco, S., Echtenacher, B., Di Santo, E., Salmona, M., and Ghezzi, P. (1997) Carrageenan-induced acute inflammation in the mouse air pouch synovial model. Role of tumour necrosis factor, Mediators Inflamm., 6, 32–38.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Duarte, D. B., Vasko, M. R., and Fehrenbacher, J. C. (2016) Models of inflammation: carrageenan air pouch, Curr. Protoc. Pharmacol., 72, 1–9.Google Scholar
  33. 33.
    Shore, P. A., Burkhalter, A., and Cohn, V. H. (1959) A method for the fluorometric assay of histamine in tissues, J. Pharmacol. Exp. Ther., 127, 182–186.PubMedGoogle Scholar
  34. 34.
    Barsumian, E. L., Isersky, C., Petrino, M. G., and Siraganian, R. P. (1981) IgE-induced histamine release from rat basophilic leukemia cell lines: isolation of releasing and nonreleasing clones, Eur. J. Immunol., 11, 317–323.CrossRefPubMedGoogle Scholar
  35. 35.
    McShane, M. P., Friedrichson, T., Giner, A., Meyenhofer, F., Barsacchi, R., Bickle, M., and Zerial, M. (2015) A combination of screening and computational approaches for the identification of novel compounds that decrease mast cell degranulation, J. Biomol. Screen., 20, 720–728.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Radinger, M., Jensen, B. M., Swindle, E., and Gilfillan, A. M. (2015) Assay of mast cell mediators, Methods Mol. Biol., 1220, 307–323.CrossRefPubMedGoogle Scholar
  37. 37.
    Oliani, S. M., Lim, L. H. K., Christian, H. C., Pell, K., Das, A. M., and Perretti, M. (2001) Morphological alteration of peritoneal mast cells and macrophages in the mouse peritoneal cavity during the early phases of an allergic inflammatory reaction, Cell. Biol. Int., 25, 795–803.CrossRefPubMedGoogle Scholar
  38. 38.
    Benly, P. (2015) Role of histamine in acute inflammation, J. Pharm. Sci. Res., 7, 373–376.Google Scholar
  39. 39.
    Hartveit, F., and Thunold, S. (1966) Peritoneal fluid volume and the estrus cycle in mice, Nature, 210, 1123–1125.CrossRefPubMedGoogle Scholar
  40. 40.
    Cassado, A. A., D’Imperio, L. M. R., and Bortoluci, K. R. (2015) Revisiting mouse peritoneal macrophages: heterogeneity, development, and function, Front. Immunol., 6, 1–9.Google Scholar
  41. 41.
    Rashid, A., Sadroddiny, E., Ye, H. T., Vratimos, A., Sabban, S., Carey, E., and Helm, B. (2012) Review: diagnostic and therapeutic applications of rat basophilic leukemia cells, Mol. Immunol., 52, 224–228.CrossRefPubMedGoogle Scholar
  42. 42.
    Kolaczkowska, E., Seljelid, R., and Plytycz, B. (2001) Role of mast cells in zymosan-induced peritoneal inflammation in Balb/c and mast cell-deficient WBB6F1 mice, J. Leukoc. Biol., 69, 33–42.PubMedGoogle Scholar
  43. 43.
    Ajuebor, M. N., Das, A. M., Virag, L., Flower, R. J., Szabo, C., and Perretti, M. (1999) Role of resident peritoneal macrophages and mast cells in chemokine production and neutrophil migration in acute inflammation: evidence for an inhibitory loop involving endogenous IL-10, J. Immunol., 162, 1685–1691.PubMedGoogle Scholar
  44. 44.
    Dahdah, A., Gautier, G., Attout, T., Fiore, F., Lebourdais, E., Msallam, R., Daeron, M., Monteiro, R. C., Benhamou, M., Charles, N., Davoust, J., Blank, U., Malissen, B., and Launay, P. (2014) Mast cells aggravate sepsis by inhibiting peritoneal macrophage phagocytosis, J. Clin. Invest., 24, 4577–4589.CrossRefGoogle Scholar
  45. 45.
    Norozian, F., Kashyap, M., Ramirez, C. D., Patel, N., Kepley, C. L., Barnstein, B. O., and Ryan, J. J. (2006) TGFbeta1 induces mast cell apoptosis, Exp. Hematol., 34, 579–587.CrossRefPubMedGoogle Scholar
  46. 46.
    Melendez, G. C., Voloshenyuk, T. G., McLarty, G. L., Levick, S. P., and Brower, G. L. (2010) Oxidative stressmediated cardiac mast cell degranulation, Toxicol. Environ. Chem., 92, 1293–1301.CrossRefGoogle Scholar
  47. 47.
    Jamur, M. C., Moreno, A. N., Mello, L. F. C., Junior, D. A. S., Campos, M. R. C., Pastor, M. V. D., Grodzki, A. C. G., De Silva, C., and Oliver, C. (2010) Mast cell repopulation of the peritoneal cavity: contribution of mast cell progenitors versus bone marrow derived committed mast cell precursors, BMC Immunol., 11, 1–12.CrossRefGoogle Scholar
  48. 48.
    Swindle, E. J., and Metcalfe, D. D. (2007) The role of reactive oxygen species and nitric oxide in mast cell dependent inflammatory processes, Immunol. Rev., 217, 186–205.CrossRefPubMedGoogle Scholar
  49. 49.
    Chen, S., Gong, J., Liu, F., and Mohammed, U. (2000) Naturally occurring polyphenolic antioxidants modulate IgEmediated mast cell activation, Immunology, 100, 471–480.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Suzuki, Y., Yoshimaru, T., Matsui, T., Inoue, T., Niide, O., Nunomura, S., and Ra, C. (2003) FceRI signaling of mast cells activates intracellular production of hydrogen peroxide: role in the regulation of calcium signals, J. Immunol., 171, 6119–6127.CrossRefPubMedGoogle Scholar
  51. 51.
    Matsui, T., Suzuki, Y., Yamashita, K., Yoshimaru, T., Suzuki-Karasaki, M., Hayakawa, S., Yamaki, M., and Shimizu, K. (2000) Diphenyleneiodonium prevents reactive oxygen species generation, tyrosine phosphorylation, and histamine release in RBL-2H3 mast cells, Biochem. Biophys. Res. Commun., 276, 742–748.PubMedGoogle Scholar
  52. 52.
    Masinia, E., Banib, D., Vannaccia, A., Pierpaolia, S., Mannaionia, P. F., Comhairc, S. A. A., Xuc, W., Muscolid, C., Erzurumc, S. C., and Salveminie, D. (2005) Reduction of antigen induced respiratory abnormalities and airway inflammation in sensitized guinea pigs by a superoxide dismutase mimetic, Free Radic. Biol. Med., 39, 520–531.CrossRefGoogle Scholar
  53. 53.
    Han, S. Y., Bae, J. Y., Park, S. H., Kim, Y. H., Park, J. H. Y., and Kang, Y. H. (2013) Resveratrol inhibits IgE-mediated basophilic mast cell degranulation and passive cutaneous anaphylaxis in mice, J. Nutr., 143, 632–639.CrossRefPubMedGoogle Scholar
  54. 54.
    Tagen, M., Elorza, A., Kempuraj, D., Boucher, W., Kepley, C. L., Shirihai, O. S., and Theoharides, T. C. (2009) Mitochondrial uncoupling protein 2 inhibits mast cell activation and reduces histamine content, J. Immunol., 183, 6313–6319.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Zhang, B., Alysandratos, K. D., Angelidou, A., Asadi, S., Sismanopoulos, N., Delivanis, D. A., Weng, Z., Miniati, A., Vasiadi, M., Katsarou-Katsari, A., Miao, B., Leeman, S. E., Kalogeromitros, D., and Theoharides, T. C. (2011) Human mast cell degranulation and preformed TNF secretion require mitochondrial translocation to exocytosis sites: relevance to atopic dermatitis, J. Allergy Clin. Immunol., 127, 1522–1531.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Pletjushkina, O. Y., Lyamzaev, K. G., Popova, E. N., Nepryakhina, O. K., Ivanova, O. Y., Domnina, L. V., Chernyak, B. V., and Skulachev, V. P. (2006) Effect of oxidative stress on dynamics of mitochondrial reticulum, Biochim. Biophys. Acta, 1757, 518–524.CrossRefPubMedGoogle Scholar
  57. 57.
    Wu, S., Zhou, F., Zhang, Z., and Xing, D. (2011) Mitochondrial oxidative stress causes mitochondrial fragmentation via differential modulation of mitochondrial fission-fusion proteins, FEBS J., 278, 941–954.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • M. A. Chelombitko
    • 1
    Email author
  • O. A. Averina
    • 2
  • T. V. Vasilyeva
    • 1
  • O. Yu. Pletiushkina
    • 3
  • E. N. Popova
    • 3
  • A. V. Fedorov
    • 1
  • B. V. Chernyak
    • 3
  • V. S. Shishkina
    • 1
  • O. P. Ilinskaya
    • 1
  1. 1.Lomonosov Moscow State UniversityFaculty of BiologyMoscowRussia
  2. 2.Lomonosov Moscow State UniversityInstitute of MitoengineeringMoscowRussia
  3. 3.Lomonosov Moscow State UniversityBelozersky Institute of Physico-Chemical BiologyMoscowRussia

Personalised recommendations