Biochemistry (Moscow)

, Volume 82, Issue 12, pp 1480–1492 | Cite as

Coefficient of variation of lifespan across the tree of life: Is it a signature of programmed aging?

  • G. A. Shilovsky
  • T. S. Putyatina
  • V. V. Ashapkin
  • O. S. Luchkina
  • A. V. Markov


Measurements of variation are of great importance for studying the stability of pathological phenomena and processes. For the biology of aging, it is very important not only to determine average mortality, but also to study its stability in time and the size of fluctuations that are indicated by the variation coefficient of lifespan (CVLS). It is believed that a relatively small (∼20%) value of CVLS in humans, comparable to the coefficients of variation of other events programmed in ontogenesis (for example, menarche and menopause), indicates a relatively rigid determinism (N. S. Gavrilova et al. (2012) Biochemistry (Moscow), 77, 754-760). To assess the prevalence of this phenomenon, we studied the magnitude of CVLS, as well as the coefficients of skewness and kurtosis in diverse representatives of the animal kingdom using data provided by the Institute for Demographic Research (O. R. Jones et al. (2014) Nature, 505, 169-173). We found that, unlike humans and laboratory animals, in most examined species the values of CVLS are rather high, indicating heterogeneity of the lifespan in the cohorts studied. This is probably due to the large influence of background mortality, as well as the non-monotonicity of total mortality in the wild, especially at the earliest ages. One way to account for this influence is to “truncate” the data (removing the earliest and latest ages from consideration). To reveal the effect of this procedure, we proposed a new indicator, the stability coefficient of mortality dynamics, which indicates how quickly CVLS is reduced to values that characterize a relatively homogeneous population (33%) when the data are “truncated”. Such indicators facilitate the use of the parameters of survival curves for analysis of the effects of geroprotectors, lifestyle, and other factors on lifespan, and for the quantification of relative contributions of genetic and environmental factors to the dynamics of aging in human and animal populations, including those living in the wild.


aging lifespan mortality rate survival curves skewness coefficient of variation 



coefficient of variation




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gavrilova, N. S., Gavrilov, L. A., Severin, F. F., and Skulachev, V. P. (2012) Testing predictions of the programmed and stochastic theories of aging: comparison of variation in age at death, menopause, and sexual maturation, Biochemistry (Moscow), 77, 754–760.CrossRefGoogle Scholar
  2. 2.
    Jones, O. R., Scheuerlein, A., Salguero-Gomez, R., Camarda, C. G., Schaible, R., Casper, B. B., Dahlgren, J. P., Ehrlen, J., Garcia, M. B., Menges, E. S., Quintana-Ascencio, P. F., Caswell, H., Baudisch, A., and Vaupel, J. W. (2014) Diversity of ageing across the tree of life, Nature, 505, 169–173.CrossRefPubMedGoogle Scholar
  3. 3.
    Vaupel, J. W., Carey, J. R., Christensen, K., Johnson, T. E., Yashin, A. I., Holm, N. V., Iachine, I. A., Kannisto, V., Khazaeli, A. A., Liedo, P., Longo, V. D., Zeng, Y., Manton, K. G., and Curtsinger, J. W. (1998) Biodemographic trajectories of longevity, Science, 280, 855–860.CrossRefPubMedGoogle Scholar
  4. 4.
    Baudisch, A. (2008) Inevitable Aging? Contributions to Evolutionary-Demographic Theory, Springer-Verlag, Berlin-Heidelberg.Google Scholar
  5. 5.
    Skulachev, M. V., and Skulachev, V. P. (2014) New data on programmed aging–slow phenoptosis, Biochemistry (Moscow), 79, 977–993.CrossRefGoogle Scholar
  6. 6.
    Markov, A. V. (2012) Can kin selection facilitate the evolution of the genetic program of senescence? Biochemistry (Moscow), 77, 733–741.CrossRefGoogle Scholar
  7. 7.
    Hyams, Y., Paz, G., Rabinowitz, C., and Rinkevich, B. (2017) Insights into the unique torpor of Botrylloides leachii, a colonial urochordate, Dev. Biol., 428, 101–117.PubMedGoogle Scholar
  8. 8.
    Fisher, R. A. (1930) The Genetical Theory of Natural Selection, Clarendon Press, Oxford.CrossRefGoogle Scholar
  9. 9.
    Medawar, P. B. (1952) An Unsolved Problem of Biology, H. K. Lewis, London.Google Scholar
  10. 10.
    Hamilton, W. D. (1966) The moulding of senescence by natural selection, J. Theor. Biol., 12, 12–45.CrossRefPubMedGoogle Scholar
  11. 11.
    Nusbaum, N. J. (1996) What good is it to get old? Med. Hypotheses, 47, 77–79.CrossRefPubMedGoogle Scholar
  12. 12.
    Brent, L. J., Franks, D. W., Foster, E. A., Balcomb, K. C., Cant, M. A., and Croft, D. P. (2015) Ecological knowledge, leadership, and the evolution of menopause in killer whales, Curr. Biol., 25, 746–750.PubMedGoogle Scholar
  13. 13.
    Kirkwood, T. B. L. (2010) Systems biology of ageing and longevity, Phil. Trans. R. Soc. B., 366, 64–70.CrossRefGoogle Scholar
  14. 14.
    Williams, G. C. (1957) Pleiotropy, natural selection and the evolution of senescence, Evolution, 11, 398–411.Google Scholar
  15. 15.
    Vijg, J., and Suh, Y. (2005) Genetics of longevity and aging, Annu. Rev. Med., 56, 193–212.CrossRefPubMedGoogle Scholar
  16. 16.
    Campisi, J. (2005) Aging, tumor suppression and cancer: high wire-act! Mech. Ageing Dev., 126, 51–58.PubMedGoogle Scholar
  17. 17.
    Liu, J. J., Prescott, J., Giovannucci, E., Hankinson, S. E., Rosner, B., Han, J., and De Vivo, I. (2013) Plasma vitamin D biomarkers and leukocyte telomere length, Am. J. Epidemiol., 177, 1411–1417.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Zhu, Y., Tchkonia, T., Pirtskhalava, T., Gower, A. C., Ding, H., Giorgadze, N., Palmer, A. K., Ikeno, Y., Hubbard, G. B., Lenburg, M., O’Hara, S. P., LaRusso, N. F., Miller, J. D., Roos, C. M., Verzosa, G. C., LeBrasseur, N. K., Wren, J. D., Farr, J. N., Khosla, S., Stout, M. B., McGowan, S. J., Fuhrmann-Stroissnigg, H., Gurkar, A. U., Zhao, J., Colangelo, D., Dorronsoro, A., Ling, Y. Y., Barghouthy, A. S., Navarro, D. C., Sano, T., Robbins, P. D., Niedernhofer, L. J., and Kirkland, J. L. (2015) The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs, Aging Cell, 14, 644–658.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Skulachev, V. P. (1997) Aging is a specific biological function rather than the result of a disorder in complex living systems: biochemical evidence in support of Weismann’s hypothesis, Biochemistry (Moscow), 62, 1191–1195.Google Scholar
  20. 20.
    Skulachev, V. P. (1999) Phenoptosis: programmed death of an organism? Biochemistry (Moscow), 64, 1418–1426.Google Scholar
  21. 21.
    Weismann, A. (1889) Essays upon Heredity and Kindred Biological Problems, Oxford, Clarendon Press.CrossRefGoogle Scholar
  22. 22.
    Guarente, L., and Kenyon, C. (2000) Genetic pathways that regulate ageing in model organisms, Nature, 408, 255–262.CrossRefPubMedGoogle Scholar
  23. 23.
    Longo, V. D., Mitteldorf, J., and Skulachev, V. P. (2005) Programmed and altruistic ageing, Nature Rev. Genet., 6, 866–872.CrossRefPubMedGoogle Scholar
  24. 24.
    Fushan, A. A., Turanov, A. A., Lee, S. G., Kim, E. B., Lobanov, A. V., Yim, S. H., Buffenstein, R., Lee, S. R., Chang, K. T., Rhee, H., Kim, J. S., Yang, K. S., and Gladyshev, V. N. (2015) Gene expression defines natural changes in mammalian lifespan, Aging Cell, 14, 352–365.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ma, S., and Gladyshev, V. N. (2017) Molecular signatures of longevity: insights from cross-species comparative studies, Semin. Cell. Dev. Biol., pii: S1084–9521.Google Scholar
  26. 26.
    Ashapkin, V. V., Kutueva, L. I., and Vanyushin, B. F. (2015) Aging epigenetics: accumulation of errors or realization of a specific program? Biochemistry (Moscow), 80, 1406–1417.CrossRefGoogle Scholar
  27. 27.
    Stegeman, R., and Weake, V. M. (2017) Transcriptional signatures of aging, J. Mol. Biol., 429, 2427–2437.CrossRefPubMedGoogle Scholar
  28. 28.
    Austad, S. N. (1993) Retarded senescence in an insular population of opossums, J. Zool. (Lond.), 229, 695–708.CrossRefGoogle Scholar
  29. 29.
    Skulachev, M. V., Severin, F. F., and Skulachev, V. P. (2015) Aging as an evolvability-increasing program which can be switched off by organism to mobilize additional resources for survival, Curr. Aging Sci., 8, 95–109.CrossRefPubMedGoogle Scholar
  30. 30.
    Hughes, B. G., and Hekimi, S. (2017) Many possible maximum lifespan trajectories, Nature, 546, 8–9.CrossRefGoogle Scholar
  31. 31.
    Gompertz, B. (1825) On the nature of the function expressive of the law of human mortality and on a new mode of determining life contingencies, Philos. Trans. R. Soc. L. A., 115, 513–585.CrossRefGoogle Scholar
  32. 32.
    Deevey, E. S. (1947) Life tables for natural populations of animals, Q. Rev. Biol., 22, 283–314.CrossRefPubMedGoogle Scholar
  33. 33.
    Finch, C. E. (1990) Longevity, Senescence and the Genome, University Chicago Press, Chicago.Google Scholar
  34. 34.
    Gavrilov, L. A., and Gavrilova, N. S. (1991) The Biology of Life Span: A Quantitative Approach, Harwood Academic Publisher, N. Y.Google Scholar
  35. 35.
    Khalyavkin, A. V. (2001) Influence of environment on the mortality pattern of potentially non-senescent organisms. General approach and comparison with real populations, Adv. Gerontol., 7, 46–49.Google Scholar
  36. 36.
    Ricklefs, R. E. (2010) Life-history connections to rates of aging in terrestrial vertebrates, Proc. Natl. Acad. Sci. USA, 107, 10314–10319.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Stroustrup, N., Anthony, W. E., Nash, Z. M., Gowda, V., Gomez, A., Lopez-Moyado, I. F., Apfeld, J., and Fontana, W. (2016) The temporal scaling of Caenorhabditis elegans ageing, Nature, 530, 103–107.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Warner, D. A., Miller, D. A., Bronikowski, A. M., and Janzen, F. J. (2016) Decades of field data reveal that turtles senesce in the wild, Proc. Natl. Acad. Sci. USA, 113, 6502–6507.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Mitnitski, A., Howlett, S. E., and Rockwood, K. (2017) Heterogeneity of human aging and its assessment, J. Gerontol. A Biol. Sci. Med. Sci., 72, 877–884.PubMedGoogle Scholar
  40. 40.
    Baudisch, A., and Vaupel, J. (2010) Senescence vs. sustenance: evolutionary-demographic models of aging, Demogr. Res., 23, 655–668.CrossRefGoogle Scholar
  41. 41.
    Mitnitski, A., Song, X., and Rockwood, K. (2013) Assessing biological aging: the origin of deficit accumulation, Biogerontology, 14, 709–717.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Shilovsky, G. A., Putyatina, T. S., Markov, A. V., and Skulachev, V. P. (2015) Contribution of quantitative methods of estimating mortality dynamics to explaining mechanisms of aging, Biochemistry (Moscow), 80, 1547–1559.CrossRefGoogle Scholar
  43. 43.
    Akif’ev, A. P., and Potapenko, A. I. (2001) Nuclear genetic material as an initial substrate of aging in animals, Russ. J. Genet., 37, 1213–1223.CrossRefGoogle Scholar
  44. 44.
    Blagosklonny, M. V. (2007) Program-like aging and mitochondria: instead of random damage by free radicals, J. Cell. Biochem., 102, 1389–1399.CrossRefPubMedGoogle Scholar
  45. 45.
    Goldsmith, T. C. (2008) Aging, evolvability, and the individual benefit requirement; medical implications of aging theory controversies, J. Theor. Biol., 252, 764–768.PubMedGoogle Scholar
  46. 46.
    Libertini, G. (2012) Phenoptosis, another specialized neologism, or the mark of a widespread revolution? Biochemistry (Moscow), 77, 795–798.Google Scholar
  47. 47.
    Khokhlov, A. N. (2010) Does aging need an own program or the existing development program is more than enough, Russ. J. Gen. Chem., 80, 1507–1513.CrossRefGoogle Scholar
  48. 48.
    Shilovsky, G. A., Khokhlov, A. N., and Shram, S. I. (2013) The protein poly(ADP-ribosyl)ation system: its role in genome stability and lifespan determination, Biochemistry (Moscow), 78, 433–444.CrossRefGoogle Scholar
  49. 49.
    Khalyavkin, A. V. (2013) Phenoptosis as genetically determined aging influenced by signals from the environment, Biochemistry (Moscow), 78, 1001–1005.CrossRefGoogle Scholar
  50. 50.
    Skulachev, V. P., Holtze, S., Vyssokikh, M. Y., Bakeeva, L. E., Skulachev, M. V., Markov, A. V., Hildebrandt, T. B., and Sadovnichii, V. A. (2017) Neoteny, prolongation of youth: from naked mole rats to “naked apes” (humans), Physiol. Rev., 97, 699–720.PubMedGoogle Scholar
  51. 51.
    Timofeeff-Ressovsky, N. W. (1927) Studies on the phenotype manifestation of hereditary factors. I. On the phenotypic manifestation of the genovariation radius incompletus in Drosophila funebris, Genetics, 12, 128–198.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Comfort, A. (1979) The Biology of Senescence, Churchill Livingstone, Edinburgh-London.Google Scholar
  53. 53.
    Carey, J. R., and Judge, D. S. (2001) Odense Monographs on Population Aging, Ser. 8, Odense University Press, Odense, Denmark.Google Scholar
  54. 54.
    Bowles, J. T. (1998) The evolution of aging: a new approach to an old problem of biology, Med. Hypotheses, 51, 179–221.CrossRefPubMedGoogle Scholar
  55. 55.
    Terres, J. (1980) The Audubon Society Encyclopedia of North American Birds, Knopf, New York.Google Scholar
  56. 56.
    Murphy, R., Berry, K., Edwards, T., Leviton, A., Lathrop, A., and Riedle, J. (2011) The dazed and confused identity of Agassiz’s land tortoise, Gopherus agassizii (Testudines: Testudinidae) with the description of a new species and its consequences for conservation, ZooKeys, 113, 39–71.Google Scholar
  57. 57.
    Miller, J. K. (2001) Escaping senescence: demographic data from the three-toed box turtle (Terrapene carolina triunguis), Exp. Gerontol., 36, 829–832.CrossRefPubMedGoogle Scholar
  58. 58.
    Congdon, J. D., Nagle, R. D., Kinney, O. M., van Loben Sels, R. C., Quinter, T., and Tinkle, D. W. (2003) Testing hypotheses of aging in long-lived painted turtles (Chrysemys picta), Exp. Gerontol., 38, 765–772.CrossRefPubMedGoogle Scholar
  59. 59.
    Shilovsky, G. A., Putyatina, T. S., Lysenkov, S. N., Ashapkin, V. V., Luchkina, O. S., Markov, A. V., and Skulachev, V. P. (2016) Is it possible to prove the existence of an aging program by quantitative analysis of mortality dynamics? Biochemistry (Moscow), 81, 1461–1476.CrossRefGoogle Scholar
  60. 60.
    Finch, C. E., and Tanzi, R. E. (1997) Genetics of aging, Science, 278, 407–411.CrossRefPubMedGoogle Scholar
  61. 61.
    Cohen, A. A. (2017) Aging across the tree of life: the importance of a comparative perspective for the use of animal models in aging, Biochim. Biophys. Acta, pii: S0925–4439.Google Scholar
  62. 62.
    Buffenstein, R. (2005) The naked mole-rat: a new long-living model for human aging research, J. Gerontol. A Biol. Sci. Med. Sci., 60, 1369–1377.CrossRefPubMedGoogle Scholar
  63. 63.
    Buffenstein, R. (2008) Negligible senescence in the longest living rodent, the naked mole-rat: insights from a successfully aging species, J. Comp. Physiol. B, 178, 439–445.PubMedGoogle Scholar
  64. 64.
    Gavrilov, L. A., Gavrilova, N. S., and Yaguzhinsky, L. S. (1978) The main directions of the aging and death of animals from the point of view of reliability theory, J. Gen. Biol., 39, 734–742.Google Scholar
  65. 65.
    Tarkhov, A. E., Menshikov, L. I., and Fedichev, P. O. (2017) Strehler–Mildvan correlation is a degenerate manifold of Gompertz fit, J. Theor. Biol., 416, 180–189.CrossRefPubMedGoogle Scholar
  66. 66.
    Jones, O. R., Gaillard, J. M., Tuljapurkar, S., Alho, J. S., Armitage, K. B., Becker, P. H., Bize, P., Brommer, J., Charmantier, A., Charpentier, M., Clutton-Brock, T., Dobson, F. S., Festa-Bianchet, M., Gustafsson, L., Jensen, H., Jones, C. G., Lillandt, B. G., McCleery, R., Merilä, J., Neuhaus, P., Nicoll, M. A., Norris, K., Oli, M. K., Pemberton, J., Pietiäinen, H., Ringsby, T. H., Roulin, A., Saether, B. E., Setchell, J. M., Sheldon, B. C., Thompson, P. M., Weimerskirch, H., Jean Wickings, E., and Coulson, T. (2008) Senescence rates are determined by ranking on the fast-slow life-history continuum, Ecol. Lett., 11, 664–673.CrossRefPubMedGoogle Scholar
  67. 67.
    Baudisch, A. (2011) The pace and shape of ageing, Methods Ecol. Evol., 2, 375–382.CrossRefGoogle Scholar
  68. 68.
    Markov, A. V., Naimark, E. B., and Yakovleva, E. U. (2016) Temporal scaling of age-dependent mortality: dynamics of aging in Caenorhabditis elegans is easy to speed up or slow down, but its overall trajectory is stable, Biochemistry (Moscow), 81, 906–911.Google Scholar
  69. 69.
    Nussey, D. H., Froy, H., Lemaitre, J. F., Gaillard, J. M., and Austad, S. N. (2013) Senescence in natural populations of animals: widespread evidence and its implications for bio-gerontology, Ageing Res. Rev., 12, 214–225.CrossRefPubMedGoogle Scholar
  70. 70.
    Lamb, M. J. (1977) Biology of Aging, John Wiley and Sons, New York.Google Scholar
  71. 71.
    Voituron, Y., De Fraipont, M., Issartel, J., Guillaume, O., and Clobert, J. (2011) Extreme lifespan of the human fish (Proteus anguinus): a challenge for ageing mechanisms, Biol. Lett., 7, 105–107.CrossRefPubMedGoogle Scholar
  72. 72.
    Anisimov, V. N. (2008) Molecular and Physiological Mechanisms of Aging [in Russian], Nauka, St. Petersburg.Google Scholar
  73. 73.
    Myl’nikov, S. V. (2011) Towards the estimation of survival curves parameters and geroprotectors classification, Adv. Gerontol., 24, 563–569.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • G. A. Shilovsky
    • 1
    • 2
  • T. S. Putyatina
    • 2
  • V. V. Ashapkin
    • 1
  • O. S. Luchkina
    • 3
  • A. V. Markov
    • 2
  1. 1.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Lomonosov Moscow State UniversityFaculty of BiologyMoscowRussia
  3. 3.Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesMoscowRussia

Personalised recommendations