Advertisement

Biochemistry (Moscow)

, Volume 82, Issue 12, pp 1430–1434 | Cite as

Externally regulated programmed aging and effects of population stress on mammal lifespan

  • T. C. GoldsmithEmail author
Review

Abstract

Programmed (adaptive) aging refers to the idea that mammals, including humans and other complex organisms, have evolved mechanisms that purposely cause or allow senescence or otherwise internally limit their lifespans in order to obtain an evolutionary advantage. Until recently, programmed aging had been thought to be theoretically impossible because of the mechanics of the evolution process. However, there is now substantial theoretical and empirical support for the existence of programmed aging in mammals. Therefore, a comprehensive approach to medical research on aging and age-related diseases must consider programmed aging mechanisms and the detailed nature of such mechanisms is of major importance. Theories of externally regulated programmed aging suggest that in mammals and other complex organisms, genetically specified senescence mechanisms detect local or temporary external conditions that affect the optimal lifespan for a species population and can adjust the lifespans of individual members in response. This article describes why lifespan regulation in response to external conditions adds to the evolutionary advantage produced by programmed aging and why a specific externally regulated programmed aging mechanism provides the best match to empirical evidence on mammal senescence.

Keywords

senescence evolution gerontology health policy medical research evolvability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Weismann, A. (1882) Uber die Dauer des Lebens, Fischer, Jena.Google Scholar
  2. 2.
    Goldsmith, T. (2014) The Evolution of Aging, 3rd Edn., Azinet, Annapolis.Google Scholar
  3. 3.
    Libertini, G. (1988) An adaptive theory of increasing mortality with increasing chronological age in populations in the wild, J. Theor. Biol., 132, 145–162.CrossRefPubMedGoogle Scholar
  4. 4.
    Skulachev, V. (1997) Aging is a specific biological function rather than the result of a disorder in complex living systems: biochemical evidence in support of Weismann’s hypothesis, Biochemistry (Moscow), 62, 1191.Google Scholar
  5. 5.
    Mitteldorf, J. (2006) Chaotic population dynamics and the evolution of ageing, Evol. Ecol. Res., 8, 561–574.Google Scholar
  6. 6.
    Goldsmith, T. (2017) Evolvability, population benefit, and the evolution of programmed aging in mammals, Biochemistry (Moscow), 12, 1423–1429.Google Scholar
  7. 7.
    Medawar, P. (1952) An Unsolved Problem of Biology, H. K. Lewis & Co., London.Google Scholar
  8. 8.
    Wayne-Edwards, V. (1962) Animal Dispersion in Relation to Social Behaviour, Oliver & Boyd, Edinburgh.Google Scholar
  9. 9.
    Hamilton, W. (1963) The evolution of altruistic behavior, Am. Naturalist, 97, 354–356.CrossRefGoogle Scholar
  10. 10.
    Travis, J. (2004) The evolution of programmed death in a spatially structured population, J. Gerontol. A Biol. Sci. Med. Sci., 59, 301–305.CrossRefPubMedGoogle Scholar
  11. 11.
    Wagner, G., and Altenberg, L. (1996) Perspective: complex adaptations and the evolution of evolvability, Evolution, 50, 267–276.CrossRefGoogle Scholar
  12. 12.
    Eriksson, M., Brown, W. T., Gordon, L. B., Glynn, M. W., Singer, J., Scott, L., Erdos, M. R., Robbins, C. M., Moses, T. Y., Berglund, P., Dutra, A., Pak, E., Durkin, S., Csoka, A. B., Boehnke, M., Glover, T. W., and Collins, F. S. (2003) Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome, Nature, 423, 293–298.CrossRefPubMedGoogle Scholar
  13. 13.
    Bennett, J., Boehlert, G. W., and Turekian, K. K. (1982) Confirmation on longevity in Sebastes diploproa (Pisces: Scorpaenidae) from 210Pb/226Ra measurements in otoliths, Maritime Biol., 71, 209–215.CrossRefGoogle Scholar
  14. 14.
    Wodinsky, J. (1977) Hormonal inhibition of feeding and death in octopus: control by optic gland secretion, Science, 198, 948–951.CrossRefPubMedGoogle Scholar
  15. 15.
    Robinson, M., Dasari, S., Konopka, A. R., Johnson, M. L., Manjunatha, S., Esponda, R. R., Carter, R. E., Lanza, I. R., and Nair, K. S. (2017) Enhanced protein translation underlies improved metabolic and physical adaptations to different exercise training modes in young and old humans, Cell Metab., 25, 581–592.CrossRefPubMedGoogle Scholar
  16. 16.
    Spindler, S., Dasari, S., Konopka, A. R., Johnson, M. L., Manjunatha, S., Esponda, R. R., Carter, R. E., Lanza, I. R., and Nair, K. S. (2005) Rapid and reversible induction of the longevity, anticancer and genomic effects of caloric restriction, Mech. Ageing Dev., 126, 960–966.CrossRefPubMedGoogle Scholar
  17. 17.
    Conboy, I., Conboy, M. J., Wagers, A. J., Girma, E. R., Weissman, I. L., and Rando, T. A. (2005) Rejuvenation of aged progenitor cells by exposure to a young systemic environment, Nature, 433, 760–764.CrossRefPubMedGoogle Scholar
  18. 18.
    Katcher, H. (2013) Studies that shed new light on aging, Biochemistry (Moscow), 78,9.CrossRefGoogle Scholar
  19. 19.
    Ambrosia LLC (2016) Clinical Trial: Young Donor Plasma Transfusion and Age-Related Biomarkers, NIH identifier: NCT02803554.Google Scholar
  20. 20.
    Apfeld, J., and Kenyon, C. (1999) Regulation of lifespan by sensory perception in Caenorhabditis elegans, Nature, 402, 804–809.CrossRefPubMedGoogle Scholar
  21. 21.
    Skaznik-Wikiel, M. E., Traub, M. L., and Santoro, N. (2016) Menopause, in Endocrinology: Adult and Pediatric (Jameson, J. L., and De Groot, L. J., eds.) 7th Edn., Chap. 135, Elsevier Saunders, Philadelphia, PA, pp. 2310–2322.CrossRefGoogle Scholar
  22. 22.
    Lobo, R. (2016) Hormone-replacement therapy: current thinking, Nat. Rev. Endocrinol., 13, 220–231.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Azinet LLCCrownsvilleUSA

Personalised recommendations