Advertisement

Biochemistry (Moscow)

, Volume 82, Issue 12, pp 1403–1422 | Cite as

Programmed aging of mammals: Proof of concept and prospects of biochemical approaches for anti-aging therapy

  • M. V. SkulachevEmail author
  • V. P. Skulachev
Review

Abstract

(i) In 2015-2017 we compared possible reasons for longevity of two mammalian highly social species, i.e. naked mole rats and humans. We proposed that in both cases longevity is a result of neoteny, prolongation of youth by deceleration of late ontogeny (Skulachev, V. P. (2015) Abst. 11th Conf. on Mitochondrial Physiology (MiP2015), Lucni Bouda, Czech Republic, pp. 64-66; Skulachev, V. P., Holtze, S., Vyssokikh, M. Y., Bakeeva, L. E., Skulachev, M. V., Markov, A. V., Hildebrandt, T. B., and Sadovnichii, V. A. (2017) Physiol. Rev., 97, 699-720). Both naked mole rats and humans strongly decreased the pressure of natural selection, although in two different manners. Naked mole rats preferred an “aristocratic” pathway when reproduction (and, hence, involvement in evolution) is monopolized by the queen and her several husbands. Huge number of subordinates who have no right to take part in reproduction and hence in evolution serves the small queen’s family. Humans used an alternative, “democratic” pathway, namely technical progress facilitating adaptation to the changing environmental conditions. This pathway is open to all humankind. (ii) As a result, aging as a mechanism increasing evolvability by means of facilitation of natural selection became unnecessary for naked mole rats and humans due to strong attenuation of this selection. This is apparently why aging became a counterproductive atavism for these two species and was strongly shifted to late ages. This shift is direct evidence of the hypothesis that aging is programmed, being the last step of late ontogeny. (iii) Further deceleration of aging for humans by means of neoteny is unrealistic since the development of neoteny probably takes million years. (iv) However, if biological aging is a program, an alternative and much simpler way to avoid it seems possible. We mean inhibition of an essential step of this program. (v) At present, the most probable scheme of the aging program assumes that it is a mechanism of slow poisoning of an organism by reactive oxygen species produced by mitochondria. If this is the case, a mitochondria-targeted antioxidant might be an inhibitor of the aging program. During the last 12 years, such an antioxidant, namely SkQ1, was synthesized and studied in detail in our group. It consists of plastoquinone and decyltriphenylphosphonium (a penetrating cation responsible for electrophoretic accumulation of SkQ1 in mitochondria). It was shown that long-term treatment with SkQ1 increased the lifespan of plants, fungi, invertebrates, fish, and mammals. Moreover, SkQ1 is effective in the therapy of various age-related diseases. It was also shown that a single SkQ1 injection could save life in certain models of sudden death of animals. (vi) A tentative scheme is proposed considering aging as a process of chronic phenoptosis, which eventually results in initiation of acute phenoptosis and death. This scheme also suggests that under certain conditions chronic phenoptosis can be neutralized by an anti-aging program that is activated by food restriction regarded by an organism as a signal of starvation. As for acute phenoptosis, it is apparently controlled by receptors responsible for measuring key parameters of homeostasis. The first experimental indications have been already obtained indicating that both chronic and acute phenoptosis are suppressed by SkQ1.

Keywords

phenoptosis aging program mitochondria evolution Heterocephalus glaber 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kerr, J. F., Wyllie, A. H., and Currie, A. R. (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics, Br. J. Cancer, 26, 239–257.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Darwin, C. (1871) The Descent of Man, and Selection in Relation to Sex, J. Murray, London.Google Scholar
  3. 3.
    Weismann, A. (1889) Essays upon Heredity and Kindred Biological Problems, 2nd Edn., Clarendon Press, Oxford.Google Scholar
  4. 4.
    Kirkwood, T. B., and Melov, S. (2011) On the programmed/non-programmed nature of ageing within the life history, Curr. Biol., 21, 701–707.Google Scholar
  5. 5.
    Williams, G. C. (1957) Pleiotropy, natural selection, and the evolution of senescence, Evolution, 11, 398–411.Google Scholar
  6. 6.
    Blagosklonny, M. V. (2013) Aging is not programmed: genetic pseudo-program is a shadow of developmental growth, Cell Cycle, 12, 3736–3742.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Walker, R. F. (2017) On the cause and mechanism of phenoptosis, Biochemistry (Moscow), 82, 1462–1479.Google Scholar
  8. 8.
    George, J. C., Bada, J., Zeh, J., Scott, L., Brown, S. E., O’Hara, T., and Suydam, R. (1999) Age and growth estimates of bowhead whales (Balaena mysticetus) via aspartic acid racemization, Can. J. Zool., 77, 571–580.Google Scholar
  9. 9.
    Guiamet, J. J., John, I., Pichersky, E., and Nooden, L. D. (1997) Expression of a soybean thiol protease during leaf senescence and nitrogen starvation, Plant Physiol., 114, 1220–1220.Google Scholar
  10. 10.
    Skulachev, V. P. (1997) Aging is a specific biological function rather than the result of a disorder in complex living systems: biochemical evidence in support of Weismann’s hypothesis, Biochemistry (Moscow), 62, 1191–1195.Google Scholar
  11. 11.
    Skulachev, V. P., Skulachev, M. V., and Feniuk, B. A. (2013) Life without Aging [in Russian], EKSMO, Moscow.Google Scholar
  12. 12.
    Libertini, G. (2012) Classification of phenoptotic phenomena, Biochemistry (Moscow), 77, 707–715.Google Scholar
  13. 13.
    Libertini, G. (2012) Phenoptosis, another specialized neologism, or the mark of a widespread revolution? Biochemistry (Moscow), 77, 795–798.Google Scholar
  14. 14.
    Lewis, K. (2000) Programmed death in bacteria, Microbiol. Mol. Biol. Rev., 64, 503–514.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Woods, R. J., Barrick, J. E., Cooper, T. F., Shrestha, U., Kauth, M. R., and Lenski, R. E. (2011) Second-order selection for evolvability in a large Escherichia coli population, Science, 331, 1433–1436.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Nooden, L. D., and Murray, B. J. (1982) Transmission of the monocarpic senescence signal via the xylem in soybean, Plant Physiol., 69, 754–756.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Lens, F., Smets, E., and Melzer, S. (2012) Stem anatomy supports Arabidopsis thaliana as a model for insular woodiness, New Phytol., 193, 12–17.PubMedGoogle Scholar
  18. 18.
    Melzer, S., Lens, F., Gennen, J., Vanneste, S., Rohde, A., and Beeckman, T. (2008) Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana, Nat. Genet., 40, 1489–1492.PubMedGoogle Scholar
  19. 19.
    Wodinsky, J. (1977) Hormonal inhibition of feeding and death in octopus–control by optic gland secretion, Science, 198, 948–951.PubMedGoogle Scholar
  20. 20.
    Skulachev, V. P., Skulachev, M. V., and Feniuk, B. A. (2018) Life without Aging [in Russian], MSU, Moscow, in press.Google Scholar
  21. 21.
    Severtsev, A., and Shubkina, A. (2014) Predator as a universal breeder, Nauka v Rossii, 5, 11–19.Google Scholar
  22. 22.
    Mitteldorf, J., and Sagan, D. (2017) Suicide Genes, MacMillan Press, in press.Google Scholar
  23. 23.
    Carr-Saunders, A. M. (1922) The Population Problem; A Study in Human Evolution, Clarendon Press, Oxford.Google Scholar
  24. 24.
    Gilpin, M. E. (1975) Group Selection in Predator–Prey Communities, Princeton University Press, Princeton, N. J.Google Scholar
  25. 25.
    Skulachev, V. P. (2003) Aging and the programmed death phenomena, in Topics of Current Genetics, Model Systems in Aging (Nystrom, T., and Osiewacz, H. D., eds.) Springer-Verlag, Berlin-Heidelberg, pp. 192–237.Google Scholar
  26. 26.
    Fenton, M. J., and Golenbock, D. T. (1998) LPS-binding proteins and receptors, J. Leukoc. Biol., 64, 25–32.PubMedGoogle Scholar
  27. 27.
    Klosterhalfen, B., and Bhardwaj, R. S. (1998) Septic shock, Gen. Pharmacol., 31, 25–32.PubMedGoogle Scholar
  28. 28.
    Skulachev, V. P. (2002) Programmed death phenomena: from organelle to organism, Ann. N. Y. Acad. Sci., 959, 214–237.PubMedGoogle Scholar
  29. 29.
    Bradley, A. J., Mcdonald, I. R., and Lee, A. K. (1980) Stress and mortality in a small marsupial (Antechinus stuartii, Macleay), Gen. Comp. Endocr., 40, 188–200.PubMedGoogle Scholar
  30. 30.
    Lecomte, V. J., Sorci, G., Cornet, S., Jaeger, A., Faivre, B., Arnoux, E., Gaillard, M., Trouve, C., Besson, D., Chastel, O., and Weimerskirch, H. (2010) Patterns of aging in the long-lived wandering albatross, Proc. Natl. Acad. Sci. USA, 107, 6370–6375.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Zahavi, A. (1975) Mate selection–a selection for a handicap, J. Theor. Biol., 53, 205–214.PubMedGoogle Scholar
  32. 32.
    Hopkin, K. (2003) Dietary drawbacks, Sci. Aging Knowledge Environ., 2003, NS4.PubMedGoogle Scholar
  33. 33.
    Skulachev, V. P., Holtze, S., Vyssokikh, M. Y., Bakeeva, L. E., Skulachev, M. V., Markov, A. V., Hildebrandt, T. B., and Sadovnichii, V. A. (2017) Neoteny, prolongation of youth: from naked mole rats to “naked apes” (humans), Biokhimiya, 82, 1389–1416.Google Scholar
  34. 34.
    Skulachev, V. P., Holtze, S., Vyssokikh, M. Y., Bakeeva, L. E., Skulachev, M. V., Markov, A. V., Hildebrandt, T. B., and Sadovnichii, V. A. (2017) Neoteny, prolongation of youth: from naked mole rats to “naked apes” (humans), Physiol. Rev., 97, 699–720.PubMedGoogle Scholar
  35. 35.
    Kollman, J. (1905) Neue gedanken uber das alter problem von der abstammung des menschen, Bl. Dtsch. Ges. Anthropol. Ethnol. Urges, pp. 9–20.Google Scholar
  36. 36.
    Bufill, E., Agusti, J., and Blesa, R. (2011) Human neoteny revisited: the case of synaptic plasticity, Am. J. Hum. Biol., 23, 729–739.PubMedGoogle Scholar
  37. 37.
    Rosenkilde, P., and Ussing, A. P. (1996) What mechanisms control neoteny and regulate induced metamorphosis in urodeles? Int. J. Dev. Biol., 40, 665–673.PubMedGoogle Scholar
  38. 38.
    Safi, R., Bertrand, S., Marchand, O., Duffraisse, M., de Luze, A., Vanacker, J. M., Maraninchi, M., Margotat, A., Demeneix, B., and Laudet, V. (2004) The axolotl (Ambystoma mexicanum), a neotenic amphibian, expresses functional thyroid hormone receptors, Endocrinology, 145, 760–772.PubMedGoogle Scholar
  39. 39.
    Snider, A. T., and Bowler, J. K. (1992) Longevity of Reptiles and Amphibians in North American Collections, 2nd Edn., Society for the Study of Amphibians and Reptiles, Oxford, Ohio.Google Scholar
  40. 40.
    Voituron, Y., De Fraipont, M., Issartel, J., Guillaume, O., and Clobert, J. (2011) Extreme lifespan of the human fish (Proteus anguinus): a challenge for ageing mechanisms, Biol. Lett., 7, 105–107.PubMedGoogle Scholar
  41. 41.
    Huynh, T. D. H., Gallien, C. L., Durand, J. P., and Chanoine, C. (1996) Cloning and expression of a thyroid hormone receptor alpha 1 in the perennibranchiate amphibian Proteus anguinus, Int. J. Dev. Biol., 40, 537–543.Google Scholar
  42. 42.
    Pfingsten, R. A., and White, A. M. (1989) Necturus maculosus (Rafinesque), mudpuppy, in Salamanders of Ohio. Ohio Biological Survey (Pfingsten, R. A., and Downs, F. L., eds.) Columbus, Ohio, pp. 72–78.Google Scholar
  43. 43.
    McDaniel, T. V., Martin, P. A., Barrett, G. C., Hughes, K., Gendron, A. D., Shirose, L., and Bishop, C. A. (2009) Relative abundance, age structure, and body size in mudpuppy populations in southwestern Ontario, J. Great Lakes Res., 35, 182–189.Google Scholar
  44. 44.
    Bonin, J., Desgranges, J. L., Bishop, C. A., Rodrigue, J., Gendron, A., and Elliott, J. E. (1995) Comparative-study of contaminants in the mudpuppy (Amphibia) and the common snapping turtle (Reptilia), St-Lawrence-River, Canada, Arch. Environ. Con. Tox., 28, 184–194.Google Scholar
  45. 45.
    Nielsen, J., Hedeholm, R. B., Heinemeier, J., Bushnell, P. G., Christiansen, J. S., Olsen, J., Ramsey, C. B., Brill, R. W., Simon, M., Steffensen, K. F., and Steffensen, J. F. (2016) Eye lens radiocarbon reveals centuries of longevity in the Greenland shark (Somniosus microcephalus), Science, 353, 702–704.PubMedGoogle Scholar
  46. 46.
    Soltanimazouni, N., and Bordereau, C. (1987) Changes in the cuticle, ovaries and colleterial glands during the pseudergate and neotenic molt in Kalotermes flavicollis (Fabr) (Isoptera, Kalotermitidae), Int. J. Insect. Morphol., 16, 221–235.Google Scholar
  47. 47.
    Perdereau, E., Bagneres, A. G., Vargo, E. L., Baudouin, G., Xu, Y., Labadie, P., Dupont, S., and Dedeine, F. (2015) Relationship between invasion success and colony breeding structure in a subterranean termite, Mol. Ecol., 24, 2125–2142.PubMedGoogle Scholar
  48. 48.
    Brokeland, W., and Brandt, A. (2004) Two new species of Ischnomesidae (Crustacea: Isopoda) from the Southern Ocean, displaying neoteny, Deep Sea Res. Pt. II, 51, 1769–1785.Google Scholar
  49. 49.
    Piraino, S., Boero, F., Aeschbach, B., and Schmid, V. (1996) Reversing the life cycle: medusae transforming into polyps and cell transdifferentiation in Turritopsis nutricula (Cnidaria, Hydrozoa), Biol. Bull., 190, 302–312.PubMedGoogle Scholar
  50. 50.
    Devarapalli, P., Kumavath, R. N., Barh, D., and Azevedo, V. (2014) The conserved mitochondrial gene distribution in relatives of Turritopsis nutricula, an immortal jellyfish, Bioinformation, 10, 586–591.PubMedGoogle Scholar
  51. 51.
    Tsai, C. H., and Fordyce, R. E. (2014) Juvenile morphology in baleen whale phylogeny, Naturwissenschaften, 101, 765–769.PubMedGoogle Scholar
  52. 52.
    Tsai, C. H., and Fordyce, R. E. (2014) Disparate heterochronic processes in baleen whale evolution, Evol. Biol., 41, 299–307.Google Scholar
  53. 53.
    Buffenstein, R. (2008) Negligible senescence in the longest living rodent, the naked mole-rat: insights from a successfully aging species, J. Comp. Physiol. B, 178, 439–445.PubMedGoogle Scholar
  54. 54.
    Buffenstein, R. (2005) The naked mole-rat? A new longliving model for human aging research, J. Gerontol., 60, 1369–1377.Google Scholar
  55. 55.
    Orr, M. E., Garbarino, V. R., Salinas, A., and Buffenstein, R. (2015) Sustained high levels of neuroprotective, high molecular weight, phosphorylated tau in the longest-lived rodent, Neurobiol. Aging, 36, 1496–1504.PubMedGoogle Scholar
  56. 56.
    Edrey, Y. H., Hanes, M., Pinto, M., Mele, J., and Buffenstein, R. (2011) Successful aging and sustained good health in the naked mole rat: a long-lived mammalian model for biogerontology and biomedical research, ILAR J., 52, 41–53.PubMedGoogle Scholar
  57. 57.
    Delaney, M. A., Nagy, L., Kinsel, M. J., and Treuting, P. M. (2013) Spontaneous histologic lesions of the adult naked mole rat (Heterocephalus glaber): a retrospective survey of lesions in a zoo population, Vet. Pathol., 50, 607–621.PubMedGoogle Scholar
  58. 58.
    Finch, C. (1990) Longevity, Senescence, and the Genome, University of Chicago Press, Chicago.Google Scholar
  59. 59.
    Skulachev, M. V., and Skulachev, V. P. (2017) (accepted) Phenoptosis–programmed death of an organism, in Apoptosis and Beyond: The Many Ways Cells Die (Radosevich, J., ed.) Springer-Verlag, Berlin-Heidelberg.Google Scholar
  60. 60.
    Alexander, R. D. (1991) Some unanswered questions about naked mole-rats, in The Biology of the Naked Mole-Rat: Monographs in Behavior and Ecology (Sherman, P. W., Jarvis, J. U. M., and Alexander, R. D., eds.) Princeton University Press, Princeton, NJ, pp. 446–465.Google Scholar
  61. 61.
    Larson, J., Drew, K. L., Folkow, L. P., Milton, S. L., and Park, T. J. (2014) No oxygen? No problem! Intrinsic brain tolerance to hypoxia in vertebrates, J. Exp. Biol., 217, 1024–1039.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Larson, J., and Park, T. J. (2009) Extreme hypoxia tolerance of naked mole-rat brain, Neuroreport, 20, 1634–1637.PubMedGoogle Scholar
  63. 63.
    Nathaniel, T., Umesiric, F., Saras, A., and Olajuyigbe, F. (2009) Tolerance to oxygen nutrient deprivation in the hippocampal slices of the naked mole rat, J. Cerebr. Blood. F Met., 29, S451–S451.Google Scholar
  64. 64.
    Boyle, R. (1725) Philosophical Works, Innys, London.Google Scholar
  65. 65.
    Duffy, T. E., Kohle, S. J., and Vannucci, R. C. (1975) Carbohydrate and energy metabolism in perinatal ratbrain–relation to survival in anoxia, J. Neurochem., 24, 271–276.PubMedGoogle Scholar
  66. 66.
    Bickler, P. E., Fahlram, C. S., and Taylor, D. M. (2003) Oxygen sensitivity of NMDA receptors: relationship to NR2 subunit composition and hypoxia tolerance of neonatal neurons, Neuroscience, 118, 25–35.PubMedGoogle Scholar
  67. 67.
    Cherubini, E., Benari, Y., and Krnjevic, K. (1989) Anoxia produces smaller changes in synaptic transmission, membrane-potential, and input resistance in immature rat hippocampus, J. Neurophysiol., 62, 882–895.Google Scholar
  68. 68.
    Penz, O. K., Fuzik, J., Kurek, A. B., Romanov, R., Larson, J., Park, T. J., Harkany, T., and Keimpema, E. (2015) Protracted brain development in a rodent model of extreme longevity, Sci. Rep., 5, 11592.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Triplett, J. C., Swomley, A., Kirk, J., Lewis, K., Orr, M., Rodriguez, K., Cai, J., Klein, J. B., Buffenstein, R., and Butterfield, D. A. (2015) Metabolic clues to salubrious longevity in the brain of the longest-lived rodent: the naked mole-rat, J. Neurochem., 134, 538–550.PubMedGoogle Scholar
  70. 70.
    Holtze, S., Eldarov, C. M., Vays, V. B., Vangeli, I. M., Vyssokikh, M. Y., Bakeeva, L. E., Skulachev, V. P., and Hildebrandt, T. B. (2016) Study of age-dependent structural and functional changes of mitochondria in skeletal muscles and heart of naked mole rats (Heterocephalus glaber), Biochemistry (Moscow), 81, 1429–1437.Google Scholar
  71. 71.
    Aprille, J. R., and Asimakis, G. K. (1980) Postnatal-development of rat-liver mitochondria–state-3 respiration, adenine-nucleotide translocase activity, and the net accumulation of adeninenucleotides, Arch. Biochem. Biophys., 201, 564–575.Google Scholar
  72. 72.
    Skulachev, V. P. (2015) Moscow News: Two More Representatives of Sodium Motive Force Generators (Na+-cbb3 Oxidase and Na+-Bacteriorhodopsin); Natural Delay of the Aging Program (Neoteny) in Mammals, Namely in Naked Mole Rat and “Naked Ape” (Human), MIP-2015, 11th Conf. Mitochondrial Physiology, Lucni Bouda, Czech Republic, Abstracts, pp. 64–66.Google Scholar
  73. 73.
    Bolk, L. (1926) The Problem of Human Development, Gustav Fischer, Jena.Google Scholar
  74. 74.
    Bolk, L. (1927) On the origin of human races, P K Akad. Wet-Amsterd., 30, 320–328.Google Scholar
  75. 75.
    Sakai, T., Hirata, S., Fuwa, K., Sugama, K., Kusunoki, K., Makishima, H., Eguchi, T., Yamada, S., Ogihara, N., and Takeshita, H. (2012) Fetal brain development in chimpanzees versus humans, Curr. Biol., 22, R791–792.PubMedGoogle Scholar
  76. 75a.
    Dilman, V. M. (1978) Ageing, metabolic immunodepression and carcinogenesis, Mech. Ageing Dev., 8, 153–173.PubMedGoogle Scholar
  77. 76.
    Kreger, C. D., Modern Human Origins (www. modernhumanorigins.net).Google Scholar
  78. 77.
    Lovejoy, C. O. (2009) Reexamining human origins in light of Ardipithecus ramidus, Science, 326, 74e1-8.Google Scholar
  79. 78.
    Schwartz, J. H. (1999) Sudden Origins: Fossils, Genes, and the Emergence of Species, John Wiley & Sons, New York.Google Scholar
  80. 79.
    Bromhall, C. (2003) The Eternal Child: an Explosive New Theory of Human Origins and Behaviour, Ebury, London.Google Scholar
  81. 80.
    Moxon, S. (2003) The eternal child: an explosive new theory of human origins and behaviour by Clive Bromhall, Ebury Press, Hum. Nat. Rev., 3, 402–405.Google Scholar
  82. 81.
    Liu, X. L., Somel, M., Tang, L., Yan, Z., Jiang, X., Guo, S., Yuan, Y., He, L., Oleksiak, A., Zhang, Y., Li, N., Hu, Y. H., Chen, W., Qiu, Z. L., Paabo, S., and Khaitovich, P. (2012) Extension of cortical synaptic development distinguishes humans from chimpanzees and macaques, Genome Res., 22, 611–622.PubMedPubMedCentralGoogle Scholar
  83. 82.
    Somel, M., Franz, H., Yan, Z., Lorenc, A., Guo, S., Giger, T., Kelso, J., Nickel, B., Dannemann, M., Bahn, S., Webster, M. J., Weickert, C. S., Lachmann, M., Paabo, S., and Khaitovich, P. (2009) Transcriptional neoteny in the human brain, Proc. Natl. Acad. Sci. USA, 106, 5743–5748.PubMedPubMedCentralGoogle Scholar
  84. 83.
    Petanjek, Z., Judas, M., Simic, G., Rasin, M. R., Uylings, H. B. M., Rakic, P., and Kostovic, I. (2011) Extraordinary neoteny of synaptic spines in the human prefrontal cortex, Proc. Nat. Acad. Sci. USA, 108, 13281–13286.PubMedPubMedCentralGoogle Scholar
  85. 84.
    Xiao, J. (2007) A new coordinate system for rodent brain and variability in the brain weights and dimensions of different ages in the naked mole-rat, J. Neurosci. Meth., 162, 162–170.Google Scholar
  86. 85.
    Davies, K. T. J., Bennett, N. C., Tsagkogeorga, G., Rossiter, S. J., and Faulkes, C. G. (2015) Family wide molecular adaptations to underground life in african molerats revealed by phylogenomic analysis, Mol. Biol. Evol., 32, 3089–3107.PubMedPubMedCentralGoogle Scholar
  87. 86.
    Faulkes, C. G., Bennett, N. C., Cotterill, F. P. D., Stanley, W., Mgode, G. F., and Verheyen, E. (2011) Phylogeography and cryptic diversity of the solitary-dwelling silvery molerat, genus Heliophobius (family: Bathyergidae), J. Zool., 285, 324–338.Google Scholar
  88. 87.
    Okrouhlik, J., Burda, H., Kunc, P., Knizkova, I., and Sumbera, R. (2015) Surprisingly low risk of overheating during digging in two subterranean rodents, Physiol. Behav., 138, 236–241.PubMedGoogle Scholar
  89. 88.
    Edrey, Y. H., Casper, D., Huchon, D., Mele, J., Gelfond, J. A., Kristan, D. M., Nevo, E., and Buffenstein, R. (2012) Sustained high levels of neuregulin-1 in the longest-lived rodents; a key determinant of rodent longevity, Aging Cell, 11, 213–222.PubMedGoogle Scholar
  90. 89.
    Ingram, C. M., Burda, H., and Honeycutt, R. L. (2004) Molecular phylogenetics and taxonomy of the African mole-rats, genus Cryptomys and the new genus Coetomys Gray, 1864, Mol. Phylogenet. Evol., 31, 997–1014.PubMedGoogle Scholar
  91. 90.
    Patterson, B. D., and Upham, N. S. (2014) A newly recognized family from the Horn of Africa, the Heterocephalidae (Rodentia: Ctenohystrica), Zool. J. Linn. Soc. Lond., 172, 942–963.Google Scholar
  92. 91.
    Dammann, P. (2017) Slow aging in mammals–lessons from African mole-rats and bats, Semin. Cell. Dev. Biol., S1084-9521, 30313–30315.Google Scholar
  93. 92.
    Jones, O. R., Scheuerlein, A., Salguero-Gomez, R., Camarda, C. G., Schaible, R., Casper, B. B., Dahlgren, J. P., Ehrlen, J., Garcia, M. B., Menges, E. S., Quintana-Ascencio, P. F., Caswell, H., Baudisch, A., and Vaupel, J. W. (2014) Diversity of ageing across the tree of life, Nature, 505, 169–173.PubMedGoogle Scholar
  94. 93.
    Anisimov, V. N., Egorov, M. V., Krasilshchikova, M. S., Lyamzaev, K. G., Manskikh, V. N., Moshkin, M. P., Novikov, E. A., Popovich, I. G., Rogovin, K. A., Shabalina, I. G., Shekarova, O. N., Skulachev, M. V., Titova, T. V., Vygodin, V. A., Vyssokikh, M. Y., Yurova, M. N., Zabezhinsky, M. A., and Skulachev, V. P. (2011) Effects of the mitochondria-targeted antioxidant SkQ1 on lifespan of rodents, Aging (Albany, NY), 3, 1110–1119.Google Scholar
  95. 94.
    Schriner, S. E., Linford, N. J., Martin, G. M., Treuting, P., Ogburn, C. E., Emond, M., Coskun, P. E., Ladiges, W., Wolf, N., Van Remmen, H., Wallace, D. C., and Rabinovitch, P. S. (2005) Extension of murine life span by overexpression of catalase targeted to mitochondria, Science, 308, 1909–1911.PubMedGoogle Scholar
  96. 95.
    Miller, R. A., Buehner, G., Chang, Y., Harper, J. M., Sigler, R., and Smith-Wheelock, M. (2005) Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance, Aging Cell, 4, 119–125.Google Scholar
  97. 96.
    Sanz, A., Caro, P., Ayala, V., Portero-Otin, M., Pamplona, R., and Barja, G. (2006) Methionine restriction decreases mitochondrial oxygen radical generation and leak as well as oxidative damage to mitochondrial DNA and proteins, FASEB J., 20, 1064–1073.PubMedGoogle Scholar
  98. 97.
    Caro, P., Gomez, J., Sanchez, I., Garcia, R., Lopez-Torres, M., Naudi, A., Portero-Otin, M., Pamplona, R., and Barja, G. (2009) Effect of 40% restriction of dietary amino acids (except methionine) on mitochondrial oxidative stress and biogenesis, AIF and SIRT1 in rat liver, Biogerontology, 10, 579–592.Google Scholar
  99. 98.
    Sanchez-Roman, I., Gomez, A., Perez, I., Sanchez, C., Suarez, H., Naudi, A., Jove, M., Lopez-Torres, M., Pamplona, R., and Barja, G. (2012) Effects of aging and methionine restriction applied at old age on ROS generation and oxidative damage in rat liver mitochondria, Biogerontology, 13, 399–411.PubMedGoogle Scholar
  100. 99.
    Stehle, J. H., Saade, A., Rawashdeh, O., Ackermann, K., Jilg, A., Sebesteny, T., and Maronde, E. (2011) A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases, J. Pineal. Res., 51, 17–43.PubMedGoogle Scholar
  101. 100.
    Wetterberg, L., Eberhard, G., and von Knorring, L. (1993) The Influence of Age, Sex, Height, Weight, Urine Volume and Latitude on Melatonin Concentrations in Urine from Normal Subjects: a Multinational Study. Light and Biological Rhythms in Man, Pergamon Press Ltd., Oxford, pp. 275–286.Google Scholar
  102. 101.
    Sack, R. L., Lewy, A. J., Erb, D. L., Vollmer, W. M., and Singer, C. M. (1986) Human melatonin production decreases with age, J. Pineal. Res., 3, 379–388.PubMedGoogle Scholar
  103. 102.
    Roth, G. S., Lesnikov, V., Lesnikov, M., Ingram, D. K., and Lane, M. A. (2001) Dietary caloric restriction prevents the age-related decline in plasma melatonin levels of rhesus monkeys, J. Clin. Endocrinol. Metab., 86, 3292–3295.PubMedGoogle Scholar
  104. 103.
    Solanas, G., Peixoto, F. O., Perdiguero, E., Jardi, M., Ruiz-Bonilla, V., Datta, D., Symeonidi, A., Castellanos, A., Welz, P. S., Caballero, J. M., Sassone-Corsi, P., Munoz-Canoves, P., and Benitah, S. A. (2017) Aged stem cells reprogram their daily rhythmic functions to adapt to stress, Cell, 170, 678–692.PubMedGoogle Scholar
  105. 104.
    Sato, S., Solanas, G., Peixoto, F. O., Bee, L., Symeonidi, A., Schmidt, M. S., Brenner, C., Masri, S., Benitah, S. A., and Sassone-Corsi, P. (2017) Circadian reprogramming in the liver identifies metabolic pathways of aging, Cell, 170, 664–677.PubMedGoogle Scholar
  106. 105.
    Kim, E. B., Fang, X., Fushan, A. A., Huang, Z., Lobanov, A. V., Han, L., Marino, S. M., Sun, X., Turanov, A. A., Yang, P., Yim, S. H., Zhao, X., Kasaikina, M. V., Stoletzki, N., Peng, C., Polak, P., Xiong, Z., Kiezun, A., Zhu, Y., Chen, Y., Kryukov, G. V., Zhang, Q., Peshkin, L., Yang, L., Bronson, R. T., Buffenstein, R., Wang, B., Han, C., Li, Q., Chen, L., Zhao, W., Sunyaev, S. R., Park, T. J., Zhang, G., Wang, J., and Gladyshev, V. N. (2011) Genome sequencing reveals insights into physiology and longevity of the naked mole rat, Nature, 479, 223–227.PubMedPubMedCentralGoogle Scholar
  107. 106.
    Quay, W. B. (1981) Pineal atrophy and other neuroendocrine and circumventricular features of the naked molerat, Heterocephalus glaber (Ruppell), a fossorial, equatorial rodent, J. Neural. Transm., 52, 107–115.Google Scholar
  108. 107.
    Pierpaoli, W., and Bulian, D. (2005) The pineal aging and death program: life prolongation in pre-aging pinealectomized mice, Ann. N. Y. Acad. Sci., 1057, 133–144.PubMedGoogle Scholar
  109. 108.
    Hart, L., Bennett, N. C., Malpaux, B., Chimimba, C. T., and Oosthuizen, M. K. (2004) The chronobiology of the Natal mole-rat, Cryptomys hottentotus natalensis, Physiol. Behav., 82, 563–569.PubMedGoogle Scholar
  110. 109.
    Skulachev, V. P. (1996) Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants, Q Rev. Biophys., 29, 169–202.PubMedGoogle Scholar
  111. 110.
    Korshunov, S. S., Skulachev, V. P., and Starkov, A. A. (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria, FEBS Lett., 416, 15–18.PubMedGoogle Scholar
  112. 111.
    Skulachev, V. P. (2013) Cationic antioxidants as a powerful tool against mitochondrial oxidative stress, Biochem. Biophys. Res. Commun., 441, 275–279.PubMedGoogle Scholar
  113. 112.
    Skulachev, V. P., Anisimov, V. N., Antonenko, Y. N., Bakeeva, L. E., Chernyak, B. V., Erichev, V. P., Filenko, O. F., Kalinina, N. I., Kapelko, V. I., Kolosova, N. G., Kopnin, B. P., Korshunova, G. A., Lichinitser, M. R., Obukhova, L. A., Pasyukova, E. G., Pisarenko, O. I., Roginsky, V. A., Ruuge, E. K., Senin, I. I., Severina, I. I., Skulachev, M. V., Spivak, I. M., Tashlitsky, V. N., Tkachuk, V. A., Vyssokikh, M. Y., Yaguzhinsky, L. S., and Zorov, D. B. (2009) An attempt to prevent senescence: a mitochondrial approach, Biochim. Biophys. Acta, 1787, 437–461.PubMedGoogle Scholar
  114. 113.
    Skulachev, V. P., Antonenko, Y. N., Cherepanov, D. A., Chernyak, B. V., Izyumov, D. S., Khailova, L. S., Klishin, S. S., Korshunova, G. A., Lyamzaev, K. G., Pletjushkina, O. Y., Roginsky, V. A., Rokitskaya, T. I., Severin, F. F., Severina, I. I., Simonyan, R. A., Skulachev, M. V., Sumbatyan, N. V., Sukhanova, E. I., Tashlitsky, V. N., Trendeleva, T. A., Vyssokikh, M. Y., and Zvyagilskaya, R. A. (2010) Prevention of cardiolipin oxidation and fatty acid cycling as two antioxidant mechanisms of cationic derivatives of plastoquinone (SkQs), Biochim. Biophys. Acta, 1797, 878–889.PubMedGoogle Scholar
  115. 114.
    Shabalina, I. G., Vyssokikh, M. Y., Gibanova, N., Csikasz, R. I., Edgar, D., Hallden-Waldemarson, A., Rozhdestvenskaya, Z., Bakeeva, L. E., Vays, V. B., Pustovidko, A. V., Skulachev, M. V., Cannon, B., Skulachev, V. P., and Nedergaard, J. (2017) Improved health-span and lifespan in mtDNA mutator mice treated with the mitochondrially targeted antioxidant SkQ1, Aging (Albany, NY), 9, 315–339.Google Scholar
  116. 115.
    Dai, D. F., Chen, T., Wanagat, J., Laflamme, M., Marcinek, D. J., Emond, M. J., Ngo, C. P., Prolla, T. A., and Rabinovitch, P. S. (2010) Age-dependent cardiomyopathy in mitochondrial mutator mice is attenuated by overexpression of catalase targeted to mitochondria, Aging Cell, 9, 536–544.PubMedPubMedCentralGoogle Scholar
  117. 116.
    Dai, D. F., and Rabinovitch, P. S. (2009) Cardiac aging in mice and humans: the role of mitochondrial oxidative stress, Trends Cardiovas. Med., 19, 213–220.Google Scholar
  118. 117.
    Lee, H. Y., Choi, C. S., Birkenfeld, A. L., Alves, T. C., Jornayvaz, F. R., Jurczak, M. J., Zhang, D., Woo, D. K., Shadel, G. S., Ladiges, W., Rabinovitch, P. S., Santos, J. H., Petersen, K. F., Samuel, V. T., and Shulman, G. I. (2010) Targeted expression of catalase to mitochondria prevents age-associated reductions in mitochondrial function and insulin resistance, Cell. Metab., 12, 668–674.PubMedPubMedCentralGoogle Scholar
  119. 118.
    Brzheskiy, V. V., Efimova, E. L., Vorontsova, T. N., Alekseev, V. N., Gusarevich, O. G., Shaidurova, K. N., Ryabtseva, A. A., Andryukhina, O. M., Kamenskikh, T. G., Sumarokova, E. S., Miljudin, E. S., Egorov, E. A., Lebedev, O. I., Surov, A. V., Korol, A. R., Nasinnyk, I. O., Bezditko, P. A., Muzhychuk, O. P., Vygodin, V. A., Yani, E. V., Savchenko, A. Y., Karger, E. M., Fedorkin, O. N., Mironov, A. N., Ostapenko, V., Popeko, N. A., Skulachev, V. P., and Skulachev, M. V. (2015) Results of a multicenter, randomized, double-masked, placebo-controlled clinical study of the efficacy and safety of visomitin eye drops in patients with dry eye syndrome, Adv. Ther., 32, 1263–1279.PubMedPubMedCentralGoogle Scholar
  120. 119.
    Petrov, A., Perekhvatova, N., Skulachev, M., Stein, L., and Ousler, G. (2016) SkQ1 ophthalmic solution for dry eye treatment: results of a phase 2 safety and efficacy clinical study in the environment and during challenge in the controlled adverse environment model, Adv. Ther., 33, 96–115.PubMedPubMedCentralGoogle Scholar
  121. 120.
    Skulachev, V. P., Bogachev, A. V., and Kasparinsky, F. O. (2013) Principles of Bioenergetics, Springer, Berlin-Heidelberg.Google Scholar
  122. 121.
    Griffith, A. V., Venables, T., Shi, J., Farr, A., van Remmen, H., Szweda, L., Fallahi, M., Rabinovitch, P., and Petrie, H. T. (2015) Metabolic damage and premature thymus aging caused by stromal catalase deficiency, Cell. Rep., 12, 1071–1079.PubMedPubMedCentralGoogle Scholar
  123. 122.
    Obukhova, L. A., Skulachev, V. P., and Kolosova, N. G. (2009) Mitochondria-targeted antioxidant SkQ1 inhibits age-dependent involution of the thymus in normal and senescence-prone rats, Aging (Albany, NY), 1, 389–401.Google Scholar
  124. 123.
    Latorre-Pellicer, A., Moreno-Loshuertos, R., Lechuga-Vieco, A. V., Sanchez-Cabo, F., Torroja, C., Acin-Perez, R., Calvo, E., Aix, E., Gonzalez-Guerra, A., Logan, A., Bernad-Miana, M. L., Romanos, E., Cruz, R., Cogliati, S., Sobrino, B., Carracedo, A., Perez-Martos, A., Fernandez-Silva, P., Ruiz-Cabello, J., Murphy, M. P., Flores, I., Vazquez, J., and Enriquez, J. A. (2016) Mitochondrial and nuclear DNA matching shapes metabolism and healthy ageing, Nature, 535, 561–565.PubMedGoogle Scholar
  125. 124.
    Skulachev, V. P. (2000) Mitochondria in the programmed death phenomena; a principle of biology: “it is better to die than to be wrong”, IUBMB Life, 49, 365–373.PubMedGoogle Scholar
  126. 125.
    Skulachev, V. P. (2001) The programmed death phenomena, aging, and the Samurai law of biology, Exp. Gerontol., 36, 995–1024.PubMedGoogle Scholar
  127. 126.
    Matsuzaki, J., Kuwamura, M., Yamaji, R., Inui, H., and Nakano, Y. (2001) Inflammatory responses to lipopolysac-charide are suppressed in 40% energy-restricted mice, J. Nutr., 131, 2139–2144.PubMedGoogle Scholar
  128. 127.
    Zhang, Q., Raoof, M., Chen, Y., Sumi, Y., Sursal, T., Junger, W., Brohi, K., Itagaki, K., and Hauser, C. J. (2010) Circulating mitochondrial DAMPs cause inflammatory responses to injury, Nature, 464, 104–107.PubMedPubMedCentralGoogle Scholar
  129. 128.
    Imai, Y., Kuba, K., Neely, G. G., Yaghubian-Malhami, R., Perkmann, T., Van Loo, G., Ermolaeva, M., Veldhuizen, R., Leung, Y. H., Wang, H., Liu, H., Sun, Y., Pasparakis, M., Kopf, M., Mech, C., Bavari, S., Peiris, J. S., Slutsky, A. S., Akira, S., Hultqvist, M., Holmdahl, R., Nicholls, J., Jiang, C., Binder, C. J., and Penninger, J. M. (2008) Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury, Cell, 133, 235–249.PubMedGoogle Scholar
  130. 129.
    Shirey, K. A., Lai, W., Scott, A. J., Lipsky, M., Mistry, P., Pletneva, L. M., Karp, C. L., McAlees, J., Gioannini, T. L., Weiss, J., Chen, W. H., Ernst, R. K., Rossignol, D. P., Gusovsky, F., Blanco, J. C., and Vogel, S. N. (2013) The TLR4 antagonist Eritoran protects mice from lethal influenza infection, Nature, 497, 498–502.PubMedPubMedCentralGoogle Scholar
  131. 130.
    Plotnikov, E. Y., Kazachenko, A. V., Vyssokikh, M. Y., Vasileva, A. K., Tcvirkun, D. V., Isaev, N. K., Kirpatovsky, V. I., and Zorov, D. B. (2007) The role of mitochondria in oxidative and nitrosative stress during ischemia/reperfusion in the rat kidney, Kidney Int., 72, 1493–1502.PubMedGoogle Scholar
  132. 131.
    Bakeeva, L. E., Barskov, I. V., Egorov, M. V., Isaev, N. K., Kapelko, V. I., Kazachenko, A. V., Kirpatovsky, V. I., Kozlovsky, S. V., Lakomkin, V. L., Levina, S. B., Pisarenko, O. I., Plotnikov, E. Y., Saprunova, V. B., Serebryakova, L. I., Skulachev, M. V., Stelmashook, E. V., Studneva, I. M., Tskitishvili, O. V., Vasilyeva, A. K., Victorov, I. V., Zorov, D. B., and Skulachev, V. P. (2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 2. Treatment of some ROS- and age-related diseases (heart arrhythmia, heart infarctions, kidney ischemia, and stroke), Biochemistry (Moscow), 73, 1288–1299.Google Scholar
  133. 132.
    Plotnikov, E. Y., Chupyrkina, A. A., Jankauskas, S. S., Pevzner, I. B., Silachev, D. N., Skulachev, V. P., and Zorov, D. B. (2011) Mechanisms of nephroprotective effect of mitochondria-targeted antioxidants under rhabdomyolysis and ischemia/reperfusion, Biochim. Biophys. Acta, 1812, 77–86.PubMedGoogle Scholar
  134. 133.
    Zorov, D. B., Plotnikov, E. Y., Jankauskas, S. S., Isaev, N. K., Silachev, D. N., Zorova, L. D., Pevzner, I. B., Pulkova, N. V., Zorov, S. D., and Morosanova, M. A. (2012) The phenoptosis problem: what is causing the death of an organism? Lessons from acute kidney injury, Biochemistry (Moscow), 77, 742–753.Google Scholar
  135. 134.
    Plotnikov, E. Y., Silachev, D. N., Jankauskas, S. S., Rokitskaya, T. I., Chupyrkina, A. A., Pevzner, I. B., Zorova, L. D., Isaev, N. K., Antonenko, Y. N., Skulachev, V. P., and Zorov, D. B. (2012) Mild uncoupling of respiration and phosphorylation as a mechanism providing nephro- and neuroprotective effects of penetrating cations of the SkQ family, Biochemistry (Moscow), 77, 1029–1037.Google Scholar
  136. 135.
    Jankauskas, S. S., Plotnikov, E. Y., Morosanova, M. A., Pevzner, I. B., Zorova, L. D., Skulachev, V. P., and Zorov, D. B. (2012) Mitochondria-targeted antioxidant SkQR1 ameliorates gentamycin-induced renal failure and hearing loss, Biochemistry (Moscow), 77, 666–670.Google Scholar
  137. 136.
    Plotnikov, E. Y., Morosanova, M. A., Pevzner, I. B., Zorova, L. D., Manskikh, V. N., Pulkova, N. V., Galkina, S. I., Skulachev, V. P., and Zorov, D. B. (2013) Protective effect of mitochondria-targeted antioxidants in an acute bacterial infection, Proc. Natl. Acad. Sci. USA, 110, 3100–3108.Google Scholar
  138. 137.
    Severin, F. F., Severina, I. I., Antonenko, Y. N., Rokitskaya, T. I., Cherepanov, D. A., Mokhova, E. N., Vyssokikh, M. Y., Pustovidko, A. V., Markova, O. V., Yaguzhinsky, L. S., Korshunova, G. A., Sumbatyan, N. V., Skulachev, M. V., and Skulachev, V. P. (2010) Penetrating cation/fatty acid anion pair as a mitochondria-targeted protonophore, Proc. Natl. Acad. Sci. USA, 107, 663–668.PubMedGoogle Scholar
  139. 138.
    Antonenko, Y. N., Avetisyan, A. V., Cherepanov, D. A., Knorre, D. A., Korshunova, G. A., Markova, O. V., Ojovan, S. M., Perevoshchikova, I. V., Pustovidko, A. V., Rokitskaya, T. I., Severina, I. I., Simonyan, R. A., Smirnova, E. A., Sobko, A. A., Sumbatyan, N. V., Severin, F. F., and Skulachev, V. P. (2011) Derivatives of rhodamine 19 as mild mitochondria-targeted cationic uncouplers, J. Biol. Chem., 286, 17831–17840.PubMedPubMedCentralGoogle Scholar
  140. 139.
    Padalko, V. I. (2005) Uncoupler of oxidative phosphorylation prolongs the lifespan of Drosophila, Biochemistry (Moscow), 70, 986–989.Google Scholar
  141. 140.
    Caldeira da Silva, C. C., Cerqueira, F. M., Barbosa, L. F., Medeiros, M. H., and Kowaltowski, A. J. (2008) Mild mitochondrial uncoupling in mice affects energy metabolism, redox balance and longevity, Aging Cell, 7, 552–560.Google Scholar
  142. 141.
    Plotnikov, E. Y., Silachev, D. N., Chupyrkina, A. A., Danshina, M. I., Jankauskas, S. S., Morosanova, M. A., Stelmashook, E. V., Vasileva, A. K., Goryacheva, E. S., Pirogov, Y. A., Isaev, N. K., and Zorov, D. B. (2010) New-generation Skulachev’ ions exhibiting nephroprotective and neuroprotective propertie, Biochemistry (Moscow), 75, 145–150.Google Scholar
  143. 142.
    Skulachev, M. V., Antonenko, Y. N., Anisimov, V. N., Chernyak, B. V., Cherepanov, D. A., Chistyakov, V. A., Egorov, M. V., Kolosova, N. G., Korshunova, G. A., Lyamzaev, K. G., Plotnikov, E. Y., Roginsky, V. A., Savchenko, A. Y., Severina, I. I., Severin, F. F., Shkurat, T. P., Tashlitsky, V. N., Shidlovsky, K. M., Vyssokikh, M. Y., Zamyatnin, A. A., Zorov, D. B., and Skulachev, V. P. (2011) Mitochondrial-targeted plastoquinone derivatives. Effect on senescence and acute age-related pathologies, Curr. Drug Targets, 12, 800–826.PubMedGoogle Scholar
  144. 143.
    Chouchani, E. T., Methner, C., Nadtochiy, S. M., Logan, A., Pell, V. R., Ding, S., James, A. M., Cocheme, H. M., Reinhold, J., Lilley, K. S., Partridge, L., Fearnley, I. M., Robinson, A. J., Hartley, R. C., Smith, R. A., Krieg, T., Brookes, P. S., and Murphy, M. P. (2013) Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I, Nat. Med., 19, 753–759.PubMedPubMedCentralGoogle Scholar
  145. 144.
    Kapay, N. A., Isaev, N. K., Stelmashook, E. V., Popova, O. V., Zorov, D. B., Skrebitsky, V. G., and Skulachev, V. P. (2011) In vivo injected mitochondria-targeted plastoquinone antioxidant SkQR1 prevents β-amyloid-induced decay of long-term potentiation in rat hippocampal slices, Biochemistry (Moscow), 76, 1367–1370.Google Scholar
  146. 145.
    Kapay, N. A., Popova, O. V., Isaev, N. K., Stelmashook, E. V., Kondratenko, R. V., Zorov, D. B., Skrebitsky, V. G., and Skulachev, V. P. (2013) Mitochondria-targeted plastoquinone antioxidant SkQ1 prevents amyloid-beta-induced impairment of long-term potentiation in rat hippocampal slices, J. Alzheimer’s Dis., 36, 377–383.Google Scholar
  147. 146.
    Ma, T., Hoeffer, C. A., Wong, H., Massaad, C. A., Zhou, P., Iadecola, C., Murphy, M. P., Pautler, R. G., and Klann, E. (2011) Amyloid beta-induced impairments in hippocampal synaptic plasticity are rescued by decreasing mitochondrial superoxide, J. Neurosci., 31, 5589–5595.PubMedPubMedCentralGoogle Scholar
  148. 147.
    Skulachev, V. P. (2012) Mitochondria-targeted antioxidants as promising drugs for treatment of age-related brain diseases, J. Alzheimer’s Dis., 28, 283–289.Google Scholar
  149. 148.
    Du, H., Guo, L., Fang, F., Chen, D., Sosunov, A. A., McKhann, G. M., Yan, Y., Wang, C., Zhang, H., Molkentin, J. D., Gunn-Moore, F. J., Vonsattel, J. P., Arancio, O., Chen, J. X., and Yan, S. D. (2008) Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer’s disease, Nat. Med., 14, 1097–1105.PubMedPubMedCentralGoogle Scholar
  150. 149.
    Schmalhausen, I. I. (1949) Factors of Evolution: the Theory Stabilizing Selection, Blakiston, Philadelphia.Google Scholar
  151. 150.
    Comfort, A. (1979) The Biology of Senescence, 3rd Edn., Elsevier, N. Y.Google Scholar
  152. 151.
    Wood, S. H., Christian, H. C., Miedzinska, K., Saer, B. R. C., Johnson, M., Paton, B., Yu, L., McNeilly, J., Davis, J. R. E., McNeilly, A. S., Burt, D. W., and Loudon, A. S. I. (2015) Binary switching of calendar cells in the pituitary defines the phase of the circannual cycle in mammals, Curr. Biol., 25, 2651–2662.PubMedPubMedCentralGoogle Scholar
  153. 152.
    Migliaccio, E., Giorgio, M., Mele, S., Pelicci, G., Reboldi, P., Pandolfi, P. P., Lanfrancone, L., and Pelicci, P. G. (1999) The p66shc adaptor protein controls oxidative stress response and life span in mammals, Nature, 402, 309–313.PubMedGoogle Scholar
  154. 153.
    Trinei, M., Giorgio, M., Cicalese, A., Barozzi, S., Ventura, A., Migliaccio, E., Milia, E., Padura, I. M., Raker, V. A., Maccarana, M., Petronilli, V., Minucci, S., Bernardi, P., Lanfrancone, L., and Pelicci, P. G. (2002) A p53-p66Shc signalling pathway controls intracellular redox status, levels of oxidation-damaged DNA and oxidative stress-induced apoptosis, Oncogene, 21, 3872–3878.PubMedGoogle Scholar
  155. 154.
    Napoli, C., Martin-Padura, I., De Nigris, F., Giorgio, M., Mansueto, G., Somma, P., Condorelli, M., Sica, G., De Rosa, G., and Pelicci, P. (2003) Deletion of the p66Shc longevity gene reduces systemic and tissue oxidative stress, vascular cell apoptosis, and early atherogenesis in mice fed a high-fat diet, Proc. Natl. Acad. Sci. USA, 100, 2112–2116.PubMedPubMedCentralGoogle Scholar
  156. 155.
    Giorgio, M., Migliaccio, E., Paolucci, D., Orsini, F., Contursi, C., Moroni, M., Marcaccio, A., Paolucci, F., and Pelicci, P. G. (2004) p66Shc Is a Signal Transduction Redox Enzyme, 13th EBEC Meeting Abstr., p.27.Google Scholar
  157. 156.
    Ku, H. H., Brunk, U. T., and Sohal, R. S. (1993) Relationship between mitochondrial superoxide and hydrogen peroxide production and longevity of mammalian species, Free Radic. Biol. Med., 15, 621–627.PubMedGoogle Scholar
  158. 157.
    Park, T. J., Reznick, J., Peterson, B. L., Blass, G., Omerbasic, D., Bennett, N. C., Kuich, P., Zasada, C., Browe, B. M., Hamann, W., Applegate, D. T., Radke, M. H., Kosten, T., Lutermann, H., Gavaghan, V., Eigenbrod, O., Begay, V., Amoroso, V. G., Govind, V., Minshall, R. D., Smith, E. S. J., Larson, J., Gotthardt, M., Kempa, S., and Lewin, G. R. (2017) Fructose-driven glycolysis supports anoxia resistance in the naked mole-rat, Science, 356, 307–311.PubMedGoogle Scholar
  159. 158.
    Kim, J., Song, G., Wu, G., and Bazer, F. W. (2012) Functional roles of fructose, Proc. Natl. Acad. Sci. USA, 109, 1619–1628.Google Scholar
  160. 159.
    Randall, G. C., and L’Ecuyer, C. (1976) Tissue glycogen and blood glucose and fructose levels in the pig fetus during the second half of gestation, Biol. Neonate, 28, 74–82.PubMedGoogle Scholar
  161. 160.
    Alva, N., Alva, R., and Carbonell, T. (2016) Fructose 1,6-bisphosphate: a summary of its cytoprotective mechanism, Curr. Med. Chem., 23, 4396–4417.PubMedGoogle Scholar
  162. 161.
    Dills, W. L. (1993) Protein fructosylation: fructose and the maillard reaction, Am. J. Clin. Nutr., 58, 779–787.Google Scholar
  163. 162.
    Lustig, R. H. (2013) Fructose: it’s “alcohol without the buzz”, Adv. Nutr., 4, 226–235.PubMedPubMedCentralGoogle Scholar
  164. 163.
    Andziak, B., O’Connor, T. P., and Buffenstein, R. (2005) Antioxidants do not explain the disparate longevity between mice and the longest-living rodent, the naked mole-rat, Mech. Ageing Dev., 126, 1206–1212.PubMedGoogle Scholar
  165. 164.
    Anisimov, V. N., Bakeeva, L. E., Egormin, P. A., Filenko, O. F., Isakova, E. F., Manskikh, V. N., Mikhelson, V. M., Panteleeva, A. A., Pasyukova, E. G., Pilipenko, D. I., Piskunova, T. S., Popovich, I. G., Roshchina, N. V., Rybina, O. Y., Saprunova, V. B., Samoylova, T. A., Semenchenko, A. V., Skulachev, M. V., Spivak, I. M., Tsybul’ko, E. A., Tyndyk, M. L., Vyssokikh, M. Y., Yurova, M. N., Zabezhinsky, M. A., and Skulachev, V. P. (2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 5. SkQ1 prolongs lifespan and prevents development of traits of senescence, Biochemistry (Moscow), 73, 1655–1670.Google Scholar
  166. 165.
    Yee, C., Yang, W., and Hekimi, S. (2014) The intrinsic apoptosis pathway mediates the pro-longevity response to mitochondrial ROS in C. elegans, Cell, 157, 897–909.PubMedPubMedCentralGoogle Scholar
  167. 166.
    Skulachev, M. V., and Skulachev, V. P. (2014) New data on programmed aging–slow phenoptosis, Biochemistry (Moscow), 79, 977–993.Google Scholar
  168. 167.
    Mechnikov, I. I. (1964) Sketches of Optimism [in Russian], AN SSSR, Moscow.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations