Advertisement

Biochemistry (Moscow)

, Volume 82, Issue 11, pp 1391–1401 | Cite as

Protein poly(ADP-ribosyl)ation system: Changes in development and aging as well as due to restriction of cell proliferation

  • G. A. Shilovsky
  • S. I. Shram
  • G. V. Morgunova
  • A. N. Khokhlov
Review

Abstract

It is well known that the number of dividing cells in an organism decreases with age. The average rate of cell division in tissues and organs of a mature organism sharply decreases, which is probably a trigger for accumulation of damage leading to disturbance of genome integrity. This can be a cause for the development of many age-related diseases and appearance of phenotypic and physiological signs of aging. In this connection, the protein poly(ADP-ribosyl)ation system, which is activated in response to appearance of various DNA damage, attracts great interest. This review summarizes and analyzes data on changes in the poly(ADP-ribosyl)ation system during development and aging in vivo and in vitro, and due to restriction of cell proliferation. Special attention is given to methodological aspects of determination of activity of poly(ADP-ribose) polymerases (PARPs). Analysis of relevant publications and our own data has led us to the conclusion that PARP activity upon the addition of free DNA ends (in this review referred to as stimulated PARP activity) is steadily decreasing with age. However, the dynamics of PARP activity measured without additional activation of the enzyme (in this review referred to as unstimulated activity) does not have such a clear trend: in many studies, the presented differences are statistically non-significant, although it is well known that the number of unrepaired DNA lesions steadily increases with aging. Apparently, the cell has additional regulatory systems that limit its own capability of reacting to DNA damage. Special attention is given to the influence of the cell proliferative status on PARP activity. We have systematized and analyzed data on changes in PARP activity during development and aging of an organism, as well as data on differences in the dynamics of this activity in the presence/absence of additional stimulation and on cellular processes that are associated with activation of these enzymes. Moreover, data obtained in different models of cellular aging are compared.

Keywords

DNA damage poly(ADP-ribosyl)ation poly(ADP-ribose) polymerase genome stability stationary phase aging replicative aging cell proliferation 

Abbreviations

CPD

cell population doubling

DIV

days in vitro

PAR

poly(ADP-ribose)

PARP

poly(ADP-ribose) polymerase

PARP-1

poly(ADP-ribose) polymerase 1

PBMC

peripheral blood mononuclear cells

SA

stimulated activity

UnSA

unstimulated activity

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shilovsky, G. A., Khokhlov, A. N., and Shram, S. I. (2013) The protein poly(ADP-ribosyl)ation system: its role in genome stability and lifespan determination, Biochemistry (Moscow), 78, 433–444.CrossRefGoogle Scholar
  2. 2.
    Bizec, J. C., Klethi, J., and Mandel, P. (1989) Regulation of protein adenosine diphosphate ribosylation in bovine lens during aging, Ophthalmic Res., 21, 175–183.CrossRefPubMedGoogle Scholar
  3. 3.
    Mandel, P. (1991) ADP-ribosylation: approach to molecu-lar basis of aging, Adv. Exp. Med. Biol., 296, 329–343.CrossRefPubMedGoogle Scholar
  4. 4.
    Schroder, H. C., Steffen, R., Wenger, R., Ugarkovic, D., and Muller, W. E. (1989) Age-dependent increase of DNA topoisomerase II activity in quail oviduct; modulation of the nuclear matrix-associated enzyme activity by protein phosphorylation and poly(ADP-ribosyl)ation, Mutat. Res., 219, 283–294.CrossRefPubMedGoogle Scholar
  5. 5.
    Quesada, P., Faraone-Mennella, M. R., Jones, R., Malanga, M., and Farina, B. (1990) ADP-ribosylation of nuclear proteins in rat ventral prostate during ageing, Biochem. Biophys. Res. Commun., 170, 900–907.CrossRefPubMedGoogle Scholar
  6. 6.
    Grube, K., and Burkle, A. (1992) Poly(ADP-ribose) poly-merase in mononuclear leukocytes of 13 mammalian species correlates with species-specific life span, Proc. Natl. Acad. Sci. USA, 82, 11759–11763.CrossRefGoogle Scholar
  7. 7.
    Mishra, S. K., and Das, B. R. (1992) (ADP-ribosyl)ation pattern of chromosomal proteins during ageing, Cell. Mol. Biol., 38, 457–462.PubMedGoogle Scholar
  8. 8.
    Messripour, M., Weltin, D., Rastegar, A., Ciesielski, L., Kopp, P., Chabert, M. D., and Mandel, P. (1994) Age-asso-ciated changes of rat brain neuronal and astroglial poly(ADP-ribose) polymerase activity, J. Neurochem., 62, 502–506.CrossRefPubMedGoogle Scholar
  9. 9.
    Strosznajder, J. B., Jesko, H., and Strosznajder, R. P. (2000b) Age-related alteration of poly(ADP-ribose) poly-merase activity in different parts of the brain, Acta Biochim. Pol., 47, 331–337.PubMedGoogle Scholar
  10. 10.
    Ushakova, T. E., Ploskonosova, I. I., Guliaeva, N. A., Rasskazova, E. A., and Gaziev, A. I. (2004) ADP-ribosyla-tion of proteins in nuclei and mitochondria from tissues rats of various age exposed gamma-radiation, Radiats. Biol. Radioekol., 44, 509–525.Google Scholar
  11. 11.
    Strosznajder, R. P., Jesko, H., and Adamczyk, A. (2005) Effect of aging and oxidative/genotoxic stress on poly(ADP-ribose) polymerase-1 activity in rat brain, Acta Biochim. Pol., 52, 909–914.PubMedGoogle Scholar
  12. 12.
    Braidy, N., Guillemin, G. J., Mansour, H., Chan-Ling, T., Poljak, A., and Grant, R. (2011) Age-related changes in NAD+ metabolism oxidative stress and Sirt1 activity in Wistar rats, PLoS One, 6, 191–194.CrossRefGoogle Scholar
  13. 13.
    Kanungo, M. (1980) Biochemistry of Aging, Academic Press, London.Google Scholar
  14. 14.
    Mocchegiani, E. (2007) Zinc and ageing: third Zincage conference, Immun. Ageing, 4, 5.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kunzmann, A., Dedoussis, G., Jajte, J., Malavolta, M., Mocchegiani, E., and Burkle, A. (2008) Effect of zinc on cellular poly(ADP-ribosyl)ation capacity, Exp. Gerontol., 43, 409–414.CrossRefPubMedGoogle Scholar
  16. 16.
    Zaremba, T., Thomas, H. D., Cole, M., Coulthard, S. A., Plummer, E. R., and Curtin, N. J. (2011) Poly(ADP-ribose) polymerase-1 (PARP-1) pharmacogenetics, activity and expression analysis in cancer patients and healthy vol-unteers, Biochem. J., 436, 671–679.CrossRefPubMedGoogle Scholar
  17. 17.
    Krasnov, M. S., Gurmizov, E. P., Iamskova, V. P., Gundorova, R. A., and Iamskov, I. A. (2005) New regula-tory protein isolated from the bovine eye lens and its action on the cataract development in rat in vitro, Vestn. Oftalmol., 121, 37–39.PubMedGoogle Scholar
  18. 18.
    Strosznajder, J. B., Jesko, H., and Strosznajder, R. P. (2000) Effect of amyloid beta peptide on poly(ADP-ribose) polymerase activity in adult and aged rat hippocampus, Acta Biochim. Pol., 47, 847–854.PubMedGoogle Scholar
  19. 19.
    Malanga, M., Romano, M., Ferone, A., Petrella, A., Monti, G., Jones, R., Limatola, E., and Farina, B. (2005) Misregulation of poly(ADP-ribose) polymerase-1 activity and cell type-specific loss of poly(ADP-ribose) synthesis in the cerebellum of aged rats, J. Neurochem., 93, 1000–1009.CrossRefPubMedGoogle Scholar
  20. 20.
    Thakur, M. K., and Prasad, S. (1990) ADP-ribosylation of HMG proteins and its modulation by different effectors in the liver of aging rats, Mech. Ageing Dev., 53, 91–100.CrossRefPubMedGoogle Scholar
  21. 21.
    Massudi, H., Grant, R., Braidy, N., Guest, J., Farnsworth, B., and Guillemin, G. J. (2012) Age-associated changes in oxidative stress and NAD+ metabolism in human tissue, PLoS One, 7, e42357.Google Scholar
  22. 22.
    O’Valle, F., Del Moral, R. G., Benitez, M. C., Martin-Oliva, D., Gomez-Morales, M., Aguilar, D., Aneiros-Fernandez, J., Hernandez-Cortes, P., Osuna, A., Moreso, F., Seron, D., Oliver, F. J., and Del Moral, R. G. (2004) Correlation of morphological findings with functional reserve in the aging donor: role of the poly(ADP-ribose) polymerase, Transplant. Proc., 36, 733–735.CrossRefPubMedGoogle Scholar
  23. 23.
    Khokhlov, A. N. (2010) From Carrel to Hayflick and back, or what we got from the 100-year cytogerontological stud-ies, Biophysics, 55, 859–864.CrossRefGoogle Scholar
  24. 24.
    Khokhlov, A. N., and Morgunova, G. V. (2017) Testing of geroprotectors in experiments on cell cultures: pros and cons, in Anti-aging Drugs: From Basic Research to Clinical Practice, RSC Drug Discovery (Vaiserman, A. M., ed.) Royal Society of Chemistry, pp. 53–74.Google Scholar
  25. 25.
    Comfort, A. (1979) The Biology of Senescence, Churchill Livingstone, Edinburgh-London.Google Scholar
  26. 26.
    Khokhlov, A. N. (2010) Does aging need an own program or the existing development program is more than enough, Russ. J. Gen. Chem., 80, 1507–1513.CrossRefGoogle Scholar
  27. 27.
    Khokhlov, A. N. (2013) Impairment of regeneration in aging: appropriateness or stochastics? Biogerontology, 14, 703–708.CrossRefPubMedGoogle Scholar
  28. 28.
    Khokhlov, A. N., Klebanov, A. A., Karmushakov, A. F., Shilovsky, G. A., Nasonov, M. M., and Morgunova, G. V. (2014) Testing of geroprotectors in experiments on cell cul-tures: choosing the correct model system, Moscow Univ. Biol. Sci. Bull., 69, 10–14.CrossRefGoogle Scholar
  29. 29.
    Dell’Orco, R. T. (1975) The use of arrested populations of human diploid fibroblasts for the study of senescence in vitro, Adv. Exp. Med. Biol., 53, 41–49.CrossRefPubMedGoogle Scholar
  30. 30.
    Vorsanova, S. G. (1977) Stationary cell populations as a model of aging, in Gerontology and Geriatrics, 1977. Annual [in Russian], Institute of Gerontology, Kiev, pp. 118–123.Google Scholar
  31. 31.
    Khokhlov, A. N. (1988) Cell Proliferation and Aging. Advances in Science and Technology, VINITI Akad. Sci. USSR, Ser. General Problems of Physicochemical Biology, Vol. 9 [in Russian], VINITI, Moscow.Google Scholar
  32. 32.
    Petrov, Y. P., and Tsupkina, N. V. (2013) Growth characteristics of CHO cells in culture, Cell Tiss. Biol., 7, 72–78.CrossRefGoogle Scholar
  33. 33.
    Khokhlov, A. N. (2013) Decline in regeneration during aging: appropriateness or stochastics? Russ. J. Dev. Biol., 44, 336–341.CrossRefGoogle Scholar
  34. 34.
    Khokhlov, A. N. (2014) On the immortal hydra. Again, Moscow Univ. Biol. Sci. Bull., 69, 153–157.CrossRefGoogle Scholar
  35. 35.
    Khokhlov, A. N. (2013) Does aging need its own program, or is the program of development quite sufficient for it? Stationary cell cultures as a tool to search for anti-aging factors, Curr. Aging Sci., 6, 14–20.CrossRefPubMedGoogle Scholar
  36. 36.
    Wei, L., Li, Y., He, J., and Khokhlov, A. N. (2012) Teaching the cell biology of aging at the Harbin Institute of Technology and Moscow State University, Moscow Univ. Biol. Sci. Bull., 67, 13–16.CrossRefGoogle Scholar
  37. 37.
    Morgunova, G. V., Klebanov, A. A., and Khokhlov, A. N. (2016) Some remarks on the relationship between autophagy, cell aging, and cell proliferation restriction, Moscow Univ. Biol. Sci. Bull., 71, 207–211.CrossRefGoogle Scholar
  38. 38.
    Burkle, A., Muller, M., Wolf, I., and Kupper, J.-H. (1994) Poly(ADP-ribose) polymerase activity in intact or perme-abilized leukocytes from mammalian species of different longevity, Mol. Cell. Biochem., 138, 85–90.CrossRefPubMedGoogle Scholar
  39. 39.
    Hart, R. W., and Setlow, R. B. (1974) Correlation between deoxyribonucleic acid excision-repair and life-span in a number of mammalian species, Proc. Natl. Acad. Sci. USA, 71, 2169–2173.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Sweigert, S. E., Marston, J. M., and Dethlefsen, L. A. (1990) Poly(ADP-ribose) metabolism in proliferating ver-sus quiescent cells and its relationship to their radiation responses, Int. J. Radiat. Biol., 58, 111–123.CrossRefPubMedGoogle Scholar
  41. 41.
    Kun, E., Kirsten, E., Bauer, P. I., and Ordahl, C. P. (2006) Quantitative correlation between cellular proliferation and nuclear poly(ADP-ribose) polymerase (PARP-1), Int. J. Mol. Med., 17, 293–300.PubMedGoogle Scholar
  42. 42.
    Salminen, A., Helenius, M., Lahtinen, T., Korhonen, P., Tapiola, T., Soininen, H., and Solovyan, V. (1997) Down-regulation of Ku autoantigen, DNA-dependent protein kinase, and poly(ADP-ribose) polymerase during cellular senescence, Biochem. Biophys. Res. Commun., 38, 712–716.CrossRefGoogle Scholar
  43. 43.
    Spina Purello, V., Cormaci, G., Denaro, L., Reale, S., Costa, A., Lalicata, C., Sabbatini, M., Marchetti, B., and Avola, R. (2002) Effect of growth factors on nuclear and mitochondrial ADP-ribosylation processes during astroglial cell development and aging in culture, Mech. Ageing Dev., 123, 511–520.CrossRefGoogle Scholar
  44. 44.
    Tanigawa, Y., Kawamura, M., Kitamura, A., and Shimoyama, M. (1978) Suppression and stimulation of DNA synthesis by ADP-ribosylation of nuclear proteins from adult hen and chick embryo liver, Biochem. Biophys. Res. Commun., 81, 1278–1285.CrossRefPubMedGoogle Scholar
  45. 45.
    Porteous, J. W., Furneaux, H. M., Pearson, C. K., Lake, C. M., and Morrison, A. (1979) Poly(adenosine diphosphate ribose) synthetase activity in nuclei of dividing and of non-dividing but differentiating intestinal epithelial cells, Biochem. J., 180, 455–461.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Rastl, E., and Swetly, P. (1978) Expression of poly(adeno-sine diphosphate-ribose) polymerase activity in ery-throleukemic mouse cells during cell cycle and erythropoi-etic differentiation, J. Biol. Chem., 253, 4333–4340.PubMedGoogle Scholar
  47. 47.
    Muller, W. E., Totsuka, A., Nusser, I., Obermeier, J., Rhode, H. J., and Zahn, R. K. (1974) Poly(adenosine diphosphate-ribose) polymerase in quail oviduct. Changes during estrogen and progesterone induction, Nucleic Acids Res., 1, 1317–1327.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Quesada, P., Farina, B., and Jones, R. (1989) Poly(ADP-ribosylation) of nuclear proteins in rat testis correlates with active spermatogenesis, Biochim. Biophys. Acta, 1007, 167–175.CrossRefPubMedGoogle Scholar
  49. 49.
    Quesada, P., Atorino, L., Cardone, A., Ciarcia, G., and Farina, B. (1996) Poly(ADP-ribosyl)ation system in rat germinal cells at different stages of differentiation, Exp. Cell Res., 226, 183–190.CrossRefPubMedGoogle Scholar
  50. 50.
    Shambaugh, G. E., III, Koehler, R. R., and Radosevich, J. A. (1988) Developmental pattern of poly(ADP-ribose) syn-thetase and NAD glycohydrolase in the brain of the fetal and neonatal rat, Neurochem. Res., 13, 973–981.CrossRefPubMedGoogle Scholar
  51. 51.
    Jackowski, G., and Kun, E. (1981) Age-dependent varia-tion of rates of polyadenosine-diphosphoribose synthesis by cardiocytes nuclei and the lack of correlation of enzymatic activity with macromolecular size distribution of DNA, J. Biol. Chem., 256, 3667–3670.PubMedGoogle Scholar
  52. 52.
    Hayflick, L. (1976) The cell biology of human aging, N. Engl. J. Med., 295, 1302–1308.CrossRefPubMedGoogle Scholar
  53. 53.
    Kennedy, B. K., Austriaco, N. R., Jr., and Guarente, L. (1994) Daughter cells of Saccharomyces cerevisiae from old mothers display a reduced life span, J. Cell Biol., 127, 1985–1993.CrossRefPubMedGoogle Scholar
  54. 54.
    Knorre, D. A., Kulemzina, I. A., Sorokin, M. I., Kochmak, S. A., Bocharova, N. A., Sokolov, S. S., and Severin, F. F. (2010) Sir2-dependent daughter-to-mother transport of the damaged proteins in yeast is required to prevent high stress sensitivity of the daughters, Cell Cycle, 9, 4501–4505.CrossRefPubMedGoogle Scholar
  55. 55.
    Sorokin, M. I., Knorre, D. A., and Severin, F. F. (2014) Early manifestations of replicative aging in the yeast Saccharomyces cerevisiae, Microb. Cell, 1, 37–42.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Nagarajan, S., Kruckeberg, A. L., Schmidt, K. H., Kroll, E., Hamilton, M., McInnerney, K., Summers, R., Taylor, T., and Rosenzweig, F. (2014) Uncoupling reproduction from metabolism extends chronological lifespan in yeast, Proc. Natl. Acad. Sci. USA, 111, 1538–1547.CrossRefGoogle Scholar
  57. 57.
    Chen, Q., Ding, Q., and Keller, J. N. (2005) The stationary phase model of aging in yeast for the study of oxidative stress and age-related neurodegeneration, Biogerontology, 6, 1–13.CrossRefPubMedGoogle Scholar
  58. 58.
    Morgunova, G. V., Klebanov, A. A., Marotta, F., and Khokhlov, A. N. (2017) Culture medium pH and stationary phase/chronological aging of different cells, Moscow Univ. Biol. Sci. Bull., 72, 47–51.CrossRefGoogle Scholar
  59. 59.
    Gensler, H. L., and Bernstein, H. (1981) DNA damage as the primary cause of aging, Q. Rev. Biol., 56, 279–303.CrossRefPubMedGoogle Scholar
  60. 60.
    Khokhlov, A. N., Kirnos, M. D., and Vaniushin, B. F. (1988) The level of DNA methylation and “stationary-phase aging” in cultured cells, Izv. Akad. Nauk SSSR Biol., 3, 476–478.Google Scholar
  61. 61.
    Vilenchik, M. M., Khokhlov, A. N., and Grinberg, K. N. (1981) Study of spontaneous DNA lesions and DNA repair in human diploid fibroblasts aged in vitro and in vivo, Stud. Biophys., 85, 53–54.Google Scholar
  62. 62.
    Dell’Orco, R. T., and Anderson, L. E. (1991) Decline of poly(ADP-ribosyl)ation during in vitro senescence in human diploid fibroblasts, J. Cell. Physiol., 146, 216–221.CrossRefPubMedGoogle Scholar
  63. 63.
    Holliday, R. (2007) Aging: The Paradox of Life: Why We Age, Springer, Dordrecht.Google Scholar
  64. 64.
    Zaniolo, K., Rufiange, A., Leclerc, S., Desnoyers, S., and Guerin, S. L. (2005) Regulation of the PARP-1 gene expression by the transcription factors Sp1 and Sp3 is under the influence of cell density in primary cultured cells, Biochem. J., 389, 423–433.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Shram, S. I., Shilovsky, G. A., and Khokhlov, A. N. (2006) Poly(ADP-ribose)-polymerase-1 and aging: experimental study of possible relationship on stationary cell cultures, Bull. Exp. Biol. Med., 141, 628–632.CrossRefPubMedGoogle Scholar
  66. 66.
    Khokhlov, A. N., Prokhorov, L. Iu., Akimov, S. S., Shilovskii, G. A., Shcheglova, M. V., and Soroka, A. E. (2005) “Stationary phase aging” of cell culture: an attempt of evaluation of growth medium “age” effect, Tsitologiia, 47, 318–322.PubMedGoogle Scholar
  67. 67.
    Harman, D. (1956) Aging: a theory based on free radical and radiation chemistry, J. Gerontol., 11, 298–300.CrossRefPubMedGoogle Scholar
  68. 68.
    Akif’ev, A. P., and Potapenko, A. I. (2001) Nuclear genetic material as an initial substrate for animal aging, Genetika, 37, 1445–1458.PubMedGoogle Scholar
  69. 69.
    Anisimov, V. N. (2008) Molecular and Physiological Mechanisms of Aging [in Russian], Nauka, SPb.Google Scholar
  70. 70.
    D’Amours, D., Desnoyers, S., D’Silva, I., and Poirier, G. G. (1999) Poly(ADP-ribosyl)ation reactions in the regula-tion of nuclear functions, Biochem. J., 342, 249–268.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Cuzzocrea, S., McDonald, M. C., Mazzon, E., Dugo, L., Serraino, I., Threadgill, M., Caputi, A. P., and Thiemermann, C. (2002) Effects of 5-aminoisoquinoli-none, a water-soluble, potent inhibitor of the activity of poly(ADP-ribose) polymeras, in a rodent model of lung injury, Biochem. Pharmacol., 63, 293–304.CrossRefPubMedGoogle Scholar
  72. 72.
    Rouleau, M., Patel, A., Hendzel, M. J., Kaufmann, S. H., and Poirier, G. G. (2010) PARP inhibition: PARP1 and beyond, Nat. Rev. Cancer, 10, 293–301.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Khokhlov, A. N. (2013) Evolution of the term “cellular senescence” and its impact on the current cytogerontolog-ical research, Moscow Univ. Biol. Sci. Bull., 68, 158–161.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • G. A. Shilovsky
    • 1
  • S. I. Shram
    • 2
  • G. V. Morgunova
    • 1
  • A. N. Khokhlov
    • 1
  1. 1.Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Institute of Molecular GeneticsRussian Academy of SciencesMoscowRussia

Personalised recommendations