Biochemistry (Moscow)

, Volume 82, Issue 11, pp 1380–1390 | Cite as

Role of microRNA in development of instability of atherosclerotic plaques

  • I. A. Koroleva
  • M. S. NazarenkoEmail author
  • A. N. Kucher


MicroRNAs are small noncoding single-stranded RNAs that regulate gene expression. Today, we see an increasing number of studies highlighting the important role of microRNAs in the development and progression of cardiovascular diseases caused by atherosclerotic lesions of arteries. We review the available scientific data on association of the expression of these biomolecules with instability of atherosclerotic plaques in animal models and humans. We made special emphasis on miR-21, -100, -127, -133, -143/145, -221/222, and -494 because they were analyzed in more than one study. We discuss the possibility of microRNAs using in the diagnosis and therapy of atherosclerosis and its complications.


atherosclerosis instability of human atherosclerotic plaques microRNA 



endothelial cells


untranslated region


vascular smooth muscle cells


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Glass, C. K., and Witztum, J. L. (2001) Atherosclerosis: the road ahead, Cell, 104, 503–516.CrossRefPubMedGoogle Scholar
  2. 2.
    Chistiakov, D. A., Sobenin, I. A., Orekhov, A. N., and Bobryshev, Y. V. (2015) Human miR-221/222 in physiolog-ical and atherosclerotic vascular remodeling, Biomed Res. Int., 354517.Google Scholar
  3. 3.
    Volny, O., Kasickova, L., Coufalova, D., Cimflova, P., and Novak, J. (2015) MicroRNAs in cerebrovascular disease, Adv. Exp. Med. Biol., 888, 155–195.CrossRefPubMedGoogle Scholar
  4. 4.
    Ross, R. (1999) Atherosclerosis–an inflammatory disease, N. Engl. J. Med., 340, 115–126.CrossRefPubMedGoogle Scholar
  5. 5.
    Cipollone, F., Felicioni, L., Sarzani, R., Ucchino, S., Spigonardo, F., Mandolini, C., Malatesta, S., Bucci, M., Mammarella, C., Santovito, D., de Lutiis, F., Marchetti, A., Mezzetti, A., and Buttitta, F. (2011) A unique microRNA signature associated with plaque instability in humans, Stroke, 42, 2556–2563.CrossRefPubMedGoogle Scholar
  6. 6.
    Santovito, D., Egea, V., and Weber, C. (2016) Small but smart: microRNAs orchestrate atherosclerosis develop-ment and progression, Biochim. Biophys. Acta, 1861, 2075–2086.CrossRefPubMedGoogle Scholar
  7. 7.
    Madrigal-Matute, J., Rotllan, N., Aranda, J. F., and Fernandez-Hernando, C. (2013) MicroRNAs and athero-sclerosis, Curr. Atheroscler. Rep., 15, 322.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Andreou, I., Sun, X., Stone, P. H., Edelman, E. R., and Feinberg, M. W. (2015) miRNAs in atherosclerotic plaque initiation, progression, and rupture, Trends Mol. Med., 21, 307–318.CrossRefPubMedGoogle Scholar
  9. 9.
    Feinberg, M. W., and Moore, K. J. (2016) MicroRNA reg-ulation of atherosclerosis, Circ. Res., 118, 703–720.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kucher, A. N., and Nazarenko, M. S. (2017) Role of microRNA in atherogenesis, Kardiologiya, 57, 65–76.CrossRefGoogle Scholar
  11. 11.
    Maitrias, P., Metzinger-Le Meuth, V., Massy, Z. A., M’Baya-Moutoula, E., Reix, T., Caus, T., and Metzinger, L. (2015) MicroRNA deregulation in symptomatic carotid plaque, J. Vasc. Surg., 62, 1245–1250.CrossRefPubMedGoogle Scholar
  12. 12.
    Fang, Z., Du, R., Edwards, A., Flemington, E. K., and Zhang, K. (2013) The sequence structures of human microRNA molecules and their implications, PLoS One, 8, e54215.Google Scholar
  13. 13.
    Kurozumi, S., Yamaguchi, Y., Kurosumi, M., Ohira, M., Matsumoto, H., and Horiguchi, J. (2017) Recent trends in microRNA research into breast cancer with particular focus on the associations between microRNAs and intrinsic subtypes, J. Hum. Genet., 62, 15–24.CrossRefPubMedGoogle Scholar
  14. 14.
    Friedman, R. C., Farh, K. K., Burge, C. B., and Bartel, D. P. (2009) Most mammalian mRNAs are conserved targets of microRNAs, Genome Res., 19, 92–105.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    John, B., Enright, A. J., Aravin, A., Tuschl, T., Sander, C., and Marks, D. S. (2004) Human microRNA targets, PLoS Biol., 2, e36.Google Scholar
  16. 16.
    Kucher, A. N., Nazarenko, M. S., Markov, A. V., Koroleva, Yu. A., and Barabash, O. L. (2017) Variability of methyla-tion profiles of CpG sites in microRNA genes in leucocytes and vascular tissues of patients with atherosclerosis, Biochemistry (Moscow), 82, 698–706.CrossRefGoogle Scholar
  17. 17.
    Kucher, A. N., and Babushkina, N. P. (2011) Role of microRNA, genes involved in their biogenesis and func-tioning in the development of human disorders, Med. Genet., 1, 3–13.Google Scholar
  18. 18.
    Orom, U. A., Nielsen, F. C., and Lund, A. H. (2008) MicroRNA-10a binds the 5′-UTR of ribosomal protein mRNAs and enhances their translation, Mol. Cell, 30, 460–471.CrossRefPubMedGoogle Scholar
  19. 19.
    Forman, J. J., and Coller, H. A. (2010) The code within the code: microRNAs target coding regions, Cell Cycle, 9, 1533–1541.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Zhou, H., and Rigoutsos, I. (2014) MiR-103a-3p targets the 5′-UTR of GPRC5A in pancreatic cells, RNA, 20, 1431–1439.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Smirnova, A. V., Sukhorukov, V. N., Karagodin, V. P., and Orekhov, A. N. (2016) Epigenetic factors in atherogenesis: microRNA, Biomed. Khim., 10, 269–275.Google Scholar
  22. 22.
    Chakraborty, C., and Das, S. (2016) Profiling cell-free and circulating miRNA: a clinical diagnostic tool for different cancers, Tumour Biol., 37, 5705–5714.CrossRefPubMedGoogle Scholar
  23. 23.
    De Gonzalo-Calvo, D., Cenarro, A., Civeira, F., and Llorente-Cortes, V. (2016) MicroRNA expression profile in human coronary smooth muscle cell-derived micropar-ticles is a source of biomarkers, Clin. Investig. Arterioscler., 28, 167–177.CrossRefPubMedGoogle Scholar
  24. 24.
    Kumar, S., Kim, C. W., Simmons, R. D., and Jo, H. (2014) Role of flow-sensitive microRNAs in endothelial dysfunc-tion and atherosclerosis: mechanosensitive athero-miRs, Arterioscler. Thromb. Vasc. Biol., 34, 2206–2216.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Bazan, H. A., Hatfield, S. A., O’Malley, C. B., Brooks, A. J., Lightell, D. Jr., and Woods, T. C. (2015) Acute loss of miR-221 and miR-222 in the atherosclerotic plaque shoul-der accompanies plaque rupture, Stroke, 46, 3285–3287.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Santovito, D., Mandolini, C., Marcantonio, P., De Nardis, V., Bucci, M., Paganelli, C., Magnacca, F., Ucchino, S., Mastroiacovo, D., Desideri, G., Mezzetti, A., and Cipollone, F. (2013) Overexpression of microRNA-145 in atherosclerotic plaques from hypertensive patients, Expert Opin. Ther. Targets, 17, 217–223.CrossRefPubMedGoogle Scholar
  27. 27.
    Wezel, A., Welten, S. M., Razawy, W., Lagraauw, H. M., De Vries, M. R., Goossens, E. A., Boonstra, M. C., Hamming, J. F., Kandimalla, E. R., Kuiper, J., Quax, P. H., Nossent, A. Y., and Bot, I. (2015) Inhibition of microRNA-494 reduces carotid artery atherosclerotic lesion development and increases plaque stability, Ann. Surg., 262, 841–847.CrossRefPubMedGoogle Scholar
  28. 28.
    Markus, B., Grote, K., Worsch, M., Parviz, B., Boening, A., Schieffer, B., and Parahuleva, M. S. (2016) Differential expression of microRNAs in endarterectomy specimens taken from patients with asymptomatic and symptomatic carotid plaques, PLoS One, 11, e0161632.Google Scholar
  29. 29.
    Raitoharju, E., Lyytikainen, L. P., Levula, M., Oksala, N., Mennander, A., Tarkka, M., Klopp, N., Illig, T., Kahonen, M., Karhunen, P. J., Laaksonen, R., and Lehtimaki, T. (2011) MiR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere vascular study, Atherosclerosis, 219, 211–217.CrossRefPubMedGoogle Scholar
  30. 30.
    Wang, R., Dong, L. D., Meng, X. B., Shi, Q., and Sun, W.-Y. (2015) Unique MicroRNA signatures associated with early coronary atherosclerotic plaques, Biochem. Biophys. Res. Commun., 464, 574–579.CrossRefPubMedGoogle Scholar
  31. 31.
    Boettger, T., Beetz, N., Kostin, S., Schneider, J., Kruger, M., Hein, L., and Braun, T. (2009) Acquisition of the con-tractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster, J. Clin. Invest., 119, 2634–2647.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Cheng, Y., Liu, X., Yang, J., Lin, Y., Xu, D. Z., Lu, Q., Deitch, E. A., Huo, Y., Delphin, E. S., and Zhang, C. (2009) MicroRNA-145, a novel smooth muscle cell pheno-typic marker and modulator, controls vascular neointimal lesion formation, Circ. Res., 105, 158–166.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Cordes, K. R., Sheehy, N. T., White, M. P., Berry, E., Morton, S. U., Muth, A. N., Lee, T.-H., Miano, J. M., Ivey, K. N., and Srivastava, D. (2009) MiR-145 and miR-143 regulate smooth muscle cell fate and plasticity, Nature, 460, 705–710.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Ji, R., Cheng, Y., Yue, J., Yang, J., Liu, X., Chen, H., Dean, D. B., and Zhang, C. (2007) MicroRNA expression signature and antisense-mediated depletion reveal an essential role of microRNA in vascular neointimal lesion formation, Circ. Res., 100, 1579–1588.CrossRefPubMedGoogle Scholar
  35. 35.
    Lin, Y., Liu, X., Cheng, Y., Yang, J., Huo, Y., and Zhang, C. (2009) Involvement of microRNAs in hydrogen perox-ide-mediated gene regulation and cellular injury response in vascular smooth muscle cells, J. Biol. Chem., 284, 7903–7913.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Liu, X., Cheng, Y., Zhang, S., Lin, Y., Yang, J., and Zhang, C. (2009) A necessary role of miR-221 and miR-222 in vas-cular smooth muscle cell proliferation and neointimal hyperplasia, Circ. Res., 104, 476–487.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Liu, X., Cheng, Y., Yang, J., Xu, L., and Zhang, C. (2012) Cell-specific effects of miR-221/222 in vessels: molecular mechanism and therapeutic application, J. Mol. Cell. Cardiol., 52, 245–255.CrossRefPubMedGoogle Scholar
  38. 38.
    Xin, M., Small, E. M., Sutherland, L. B., Qi, X., McAnally, J., Plato, C. F., Richardson, J. A., Bassel-Duby, R., and Olson, E. N. (2009) MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury, Genes Dev., 23, 2166–2178.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Quintavalle, M., Elia, L., Condorelli, G., and Courtneidge, S. A. (2010) MicroRNA control of podosome formation in vascular smooth muscle cells in vivo and in vitro, J. Cell. Biol., 189, 13–22.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Sheedy, F. J., Palsson-McDermott, E., Hennessy, E. J., Martin, C., O’Leary, J. J., Ruan, Q., Johnson, D. S., Chen, Y., and O’Neill, L. A. (2010) Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21, Nat. Immunol., 11, 141–147.CrossRefPubMedGoogle Scholar
  41. 41.
    Torella, D., Iaconetti, C., Catalucci, D., Ellison, G. M., Leone, A., Waring, C. D., Bochicchio, A., Vicinanza, C., Aquila, I., Curcio, A., Condorelli, G., and Indolfi, C. (2011) MicroRNA-133 controls vascular smooth muscle cell phenotypic switch in vitro and vascular remodeling in vivo, Circ. Res., 109, 880–893.CrossRefPubMedGoogle Scholar
  42. 42.
    Maegdefessel, L., Azuma, J., Toh, R., Deng, A., Merk, D. R., Raiesdana, A., Leeper, N. J., Raaz, U., Schoelmerich, A. M., McConnell, M. V., Dalman, R. L., Spin, J. M., and Tsao, P. S. (2012) MicroRNA-21 blocks abdominal aortic aneurysm development and nicotine-augmented expan-sion, Sci. Transl. Med., 4, 122ra22.CrossRefGoogle Scholar
  43. 43.
    Kohlstedt, K., Trouvain, C., Boettger, T., Shi, L., Fisslthaler, B., and Fleming, I. (2013) AMP-activated pro-tein kinase regulates endothelial cell angiotensin-convert-ing enzyme expression via p53 and the post-transcriptional regulation of microRNA-143/145, Circ. Res., 112, 1150–1158.CrossRefPubMedGoogle Scholar
  44. 44.
    Liao, X. B., Zhang, Z. Y., Yuan, K., Liu, Y., Feng, X., Cui, R. R., Hu, Y. R., Yuan, Z. S., Gu, L., Li, S. J., Mao, D. A., Lu, Q., Zhou, X. M., de Jesus Perez, V. A., and Yuan, L. Q. (2013) MiR-133a modulates osteogenic differentiation of vascular smooth muscle cells, Endocrinology, 154, 3344–3352.CrossRefPubMedGoogle Scholar
  45. 45.
    Gao, S., Wassler, M., Zhang, L., Li, Y., Wang, J., Zhang, Y., Shelat, H., Williams, J., and Geng, Y.-J. (2014) MicroRNA-133a regulates insulin-like growth factor-1 receptor expres-sion and vascular smooth muscle cell proliferation in murine atherosclerosis, Atherosclerosis, 232, 171–179.CrossRefPubMedGoogle Scholar
  46. 46.
    Sala, F., Aranda, J. F., Rotllan, N., Ramirez, C. M., Aryal, B., Elia, L., Condorelli, G., Catapano, A. L., Fernandez-Hernando, C., and Norata, G. D. (2014) MiR-143/145 deficiency protects against progression of atherosclerosis in Ldlr−/− mice, Thromb. Haemost., 112, 796–802.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Climent, M., Quintavalle, M., Miragoli, M., Chen, J., Condorelli, G., and Elia, L. (2015) TGFβ triggers miR-143/145 transfer from smooth muscle cells to endothelial cells, thereby modulating vessel stabilization, Circ. Res., 116, 1753–1764.CrossRefPubMedGoogle Scholar
  48. 48.
    Wang, Z., Brandt, S., Medeiros, A., Wang, S., Wu, H., Dent, A., and Serezani, C. H. (2015) MicroRNA 21 is a homeostatic regulator of macrophage polarization and pre-vents prostaglandin E2-mediated M2 generation, PLoS One, 10, e0115855.Google Scholar
  49. 49.
    Hosin, A. A., Prasad, A., Viiri, L. E., Davies, A. H., and Shalhoub, J. (2014) MicroRNAs in atherosclerosis, J. Vasc. Res., 51, 338–349.CrossRefPubMedGoogle Scholar
  50. 50.
    Menghini, R., Stohr, R., and Federici, M. (2014) MicroRNAs in vascular aging and atherosclerosis, Ageing Res. Rev., 17, 68–78.CrossRefPubMedGoogle Scholar
  51. 51.
    Romaine, S. P., Tomaszewski, M., Condorelli, G., and Samani, N. J. (2015) MicroRNAs in cardiovascular dis-ease: an introduction for clinicians, Heart, 101, 921–928.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Kim, H. W., and Stansfield, B. K. (2017) Genetic and epi-genetic regulation of aortic aneurysms, Biomed. Res. Int., 7268521.Google Scholar
  53. 53.
    Zhao, W., Zhao, S.-P., and Zhao, Y. H. (2015) MicroRNA-143/-145 in cardiovascular diseases, Biomed. Res. Int., 531740.Google Scholar
  54. 54.
    Schober, A., and Weber, C. (2016) Mechanisms of microRNAs in atherosclerosis, Annu. Rev. Pathol., 11, 583–616.CrossRefPubMedGoogle Scholar
  55. 55.
    Poliseno, L., Tuccoli, A., Mariani, L., Evangelista, M., Citti, L., Woods, K., Mercatanti, A., Hammond, S., and Rainaldi, G. (2006) MicroRNAs modulate the angiogenic properties of HUVECs, Blood, 108, 3068–3071.CrossRefPubMedGoogle Scholar
  56. 56.
    Davis, B. N., Hilyard, A. C., Lagna, G., and Hata, A. (2008) SMAD proteins control DROSHA-mediated microRNA maturation, Nature, 454, 56–61.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Davis, B. N., Hilyard, A. C., Nguyen, P. H., Lagna, G., and Hata, A. (2009) Induction of microRNA-221 by platelet-derived growth factor signaling is critical for mod-ulation of vascular smooth muscle phenotype, J. Biol. Chem., 284, 3728–3738.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Chen, Y., Banda, M., Speyer, C. L., Smith, J. S., Rabson, A. B., and Gorski, D. H. (2010) Regulation of the expres-sion and activity of the antiangiogenic homeobox gene GAX/MEOX2 by ZEB2 and microRNA-221, Mol. Cell. Biol., 30, 3902–3913.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Dentelli, P., Rosso, A., Orso, F., Olgasi, C., Taverna, D., and Brizzi, M. F. (2010) microRNA-222 controls neovas-cularization by regulating signal transducer and activator of transcription 5A expression, Arterioscler. Thromb. Vasc. Biol., 30, 1562–1568.CrossRefPubMedGoogle Scholar
  60. 60.
    Sarkar, J., Gou, D., Turaka, P., Viktorova, E., Ramchandran, R., and Raj, J. U. (2010) MicroRNA-21 plays a role in hypoxia-mediated pulmonary artery smooth muscle cell proliferation and migration, Am. J. Physiol. Lung Cell. Mol. Physiol., 299, L861–871.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Wang, M., Li, W., Chang, G. Q., Ye, C. S., Ou, J. S., Li, X. X., Liu, Y., Cheang, T. Y., Huang, X. L., and Wang, S. M. (2011) MicroRNA-21 regulates vascular smooth muscle cell function via targeting tropomyosin 1 in arteriosclerosis obliterans of lower extremities, Arterioscler. Thromb. Vasc. Biol., 31, 2044–2053.CrossRefPubMedGoogle Scholar
  62. 62.
    Weber, M., Baker, M. B., Moore, J. P., and Searles, C. D. (2010) MiR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity, Biochem. Biophys. Res. Commun., 393, 643–648.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Zhu, N., Zhang, D., Chen, S., Liu, X., Lin, L., Huang, X., Guo, Z., Liu, J., Wang, Y., Yuan, W., and Qin, Y. (2010) Endothelial enriched microRNAs regulate angiotensin II-induced endothelial inflammation and migration, Atherosclerosis, 215, 286–293.CrossRefGoogle Scholar
  64. 64.
    Hergenreider, E., Heydt, S., Treguer, K., Boettger, T., Horrevoets, A. J. G., Zeiher, A. M., Scheffer, M. P., Frangakis, A. S., Yin, X., Mayr, M., Braun, T., Urbich, C., Boon, R. A., and Dimmeler, S. (2014) Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs, Nat. Cell. Biol., 14, 249–256.CrossRefGoogle Scholar
  65. 65.
    Lovren, F., Pan, Y., Quan, A., Singh, K. K., Shukla, P. C., Gupta, N., Steer, B. M., Ingram, A. J., Alistair, J., Gupta, M., Al-Omran, M., Teoh, H., Marsden, P. A., and Verma, S. (2012) MicroRNA-145 targeted therapy reduces athero-sclerosis, Circulation, 126, S81-90.Google Scholar
  66. 66.
    Rippe, C., Blimline, M., Magerko, K. A., Lawson, B. R., LaRocca, T., Donato, A. J., and Seals, D. R. (2012) MicroRNA changes in human arterial endothelial cells with senescence: relation to apoptosis, eNOS and inflam-mation, Exp. Gerontol., 47, 45–51.CrossRefPubMedGoogle Scholar
  67. 67.
    Zhang, X., Mao, H., Chen, J. Y., Wen, S., Li, D., Ye, M., and Lv, Z. (2013) Increased expression of microRNA-221 inhibits PAK1 in endothelial progenitor cells and impairs its function via c-Raf/MEK/ERK pathway, Biochem. Biophys. Res. Commun., 431, 404–408.CrossRefPubMedGoogle Scholar
  68. 68.
    Das, A., Ganesh, K., Khanna, S., Sen, C. K., and Roy, S. (2014) Engulfment of apoptotic cells by macrophages: a role of micro-RNA-21 in the resolution of wound inflam-mation, J. Immunol., 192, 1120–1129.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Zhou, J., Wang, K.-C., Wu, W., Subramaniam, S., Shyy, J. Y. J., Chiu, J.-J., Li, J. Y.-S., and Chien, S. (2011) MicroRNA-21 targets peroxisome proliferators-activated receptor-alpha in an autoregulatory loop to modulate flow-induced endothelial inflammation, Proc. Natl. Acad. Sci. USA, 108, 10355–10360.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Fan, X., Wang, E., Wang, X., Cong, X., and Chen, X. (2014) MicroRNA-21 is a unique signature associated with coronary plaque instability in humans by regulating matrix metalloproteinase-9 via reversion-inducing cysteine-rich protein with Kazal motifs, Exp. Mol. Pathol., 96, 242–249.CrossRefPubMedGoogle Scholar
  71. 71.
    Fichtlscherer, S., De Rosa, S., Fox, H., Schwietz, T., Fischer, A., Liebetrau, C., Weber, M., Hamm, C. W., Roxe, T., Muller-Ardogan, M., Bonauer, A., Zeiher, A. M., and Dimmeler, S. (2010) Circulating microRNAs in patients with coronary artery disease, Circ. Res., 107, 677–684.CrossRefPubMedGoogle Scholar
  72. 72.
    Eitel, I., Adams, V., Dieterich, P., Fuernau, G., De Waha, S., Desch, S., Schuler, G., and Thiele, H. (2012) Relation of circulating microRNA-133a concentrations with myocardial damage and clinical prognosis in ST-elevation myocardial infarction, Am. Heart J., 164, 706–714.CrossRefPubMedGoogle Scholar
  73. 73.
    Tsai, P. C., Liao, Y.-C., Wang, Y.-S., Lin, H.-F., Lin, R.-T., and Juo, S.-H. H. (2013) Serum microRNA-21 and microRNA-221 as potential biomarkers for cerebrovascular disease, J. Vasc. Res., 50, 346–354.CrossRefPubMedGoogle Scholar
  74. 74.
    Soeki, T., Yamaguchi, K., Niki, T., Uematsu, E., Bando, S., Matsuura, T., Ise, T., Kusunose, K., Hotchi, J., Tobiume, T., Yagi, S., Fukuda, D., Taketani, Y., Iwase, T., Yamada, H., Wakatsuki, T., Shimabukuro, M., and Sata, M. (2015) Plasma microRNA-100 is associated with coro-nary plaque vulnerability, Circ. J., 79, 413–418.CrossRefPubMedGoogle Scholar
  75. 75.
    Leistner, D. M., Boeckel, J. N., Reis, S. M., Thome, C. E., De Rosa, R., Keller, T., Palapies, L., Fichtlscherer, S., Dimmeler, S., and Zeiher, A. M. (2016) Transcoronary gra-dients of vascular miRNAs and coronary atherosclerotic plaque characteristics, Eur. Heart J., 37, 1738–1749.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • I. A. Koroleva
    • 1
  • M. S. Nazarenko
    • 1
    • 2
    • 3
    Email author
  • A. N. Kucher
    • 1
  1. 1.Research Institute of Medical Genetics, Tomsk National Research Medical CenterRussian Academy of SciencesTomskRussia
  2. 2.Research Institute for Complex Issues of Cardiovascular DiseasesSiberian Branch of the Russian Academy of SciencesKemerovoRussia
  3. 3.Siberian State Medical UniversityTomskRussia

Personalised recommendations