Advertisement

Biochemistry (Moscow)

, Volume 82, Issue 9, pp 990–1005 | Cite as

Klotho protein: Its role in aging and central nervous system pathology

  • I. S. BokshaEmail author
  • T. A. Prokhorova
  • O. K. Savushkina
  • E. B. Tereshkina
Review

Abstract

This review is devoted to Klotho protein and recent evidences for its functions in the brain. Information on transcriptional regulation of the klotho gene and posttranslational modifications of the protein resulting in multiple forms of Klotho is reviewed. Evidence is summarized that Klotho regulates the activity of protein factors, enzymes, and receptors, including data suggesting the importance of its glycosidase activity. Effects of Klotho on components of the glutamatergic neurotransmitter system, signal cascades involving protein kinases and protein phosphorylation, as well as oligodendrocyte differentiation and myelination are discussed. A possible contribution is proposed for Klotho levels in the development of central nervous system pathologies including mental disorders.

Keywords

Klotho protein aging brain signal cascades myelination glutamate system mental pathology 

Abbreviations

a.a.

amino acid residue

FGF

fibroblast growth factor

(h)APP

(human) amyloid precursor protein

OPC

oligodendrocyte progenitor cells

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kuro-o, M., Matsumura, Y., Aizawa, H., Kawaguchi, H., Suga, T., Utsugi, T., Ohyama, Y., Kurabayashi, M., Kaname, T., Kume, E., Iwasaki, H., Iida, A., Shiraki-Iida, T., Nishikawa, S., Nagai, R., and Nabeshima, Y. I. (1997) Mutation of the mouse klotho gene leads to a syndrome resembling aging, Nature, 390, 45–51.PubMedCrossRefGoogle Scholar
  2. 2.
    Kurosu, H., Yamamoto, M., Clark, J. D., Pastor, J. V., Nandi, A., Gurnani, P., McGuinness, O. P., Chikuda, H., Yamaguchi, M., Kawaguchi, H., Shimomura, I., Takayama, Y., Herz, J., Kahn, C. R., Rosenblatt, K. P., and Kuro-o, M. (2005) Suppression of aging in mice by the hormone Klotho, Science, 309, 1829–1833.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Duce, J. A., Podvin, S., Hollander, W., Kipling, D., Rosene, D. L., and Abraham, C. R. (2008) Gene profile analysis implicates Klotho as an important contributor to aging changes in brain white matter of the rhesus monkey, Glia, 56, 106–117.PubMedCrossRefGoogle Scholar
  4. 4.
    Abraham, C. R., Mullen, P. C., Tucker-Zhou, T., Chen, C. D., and Zeldich, E. (2016) Klotho is a neuroprotective and cognition-enhancing protein, Vitamins Hormones, 101, 215–238.PubMedCrossRefGoogle Scholar
  5. 5.
    Xu, Y., and Sun, Zh. (2015) Molecular basis of Klotho: from gene to function in aging, Endocr. Rev., 36, 174–193.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Masso, A., Sanchez, A., Gimenez-Llort, L., Lizcano, J. M., Canete, M., Garcia, B., Torres-Lista, V., Puig, M., Bosch, A., and Chillon, M. (2015) Secreted and trans-membrane α-klotho isoforms have different spatio-temporal profiles in the brain during aging and Alzheimer’s disease progression, PLoS One, 10, e0143623.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Kurosu, H., Ogawa, Y., Miyoshi, M., Yamamoto, M., Nandi, A., Rosenblatt, K. P., Baum, M. G., Schiavi, S., Hu, M. C., Moe, O. W., and Kuro-o, M. (2006) Regulation of fibroblast growth factor-23 signaling by klotho, J. Biol. Chem., 281, 6120–6123.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Ito, S., Kinoshita, S., Shiraishi, N., Nakagawa, S., Sekine, S., Fujimori, T., and Nabeshima, Y. I. (2000) Molecular cloning and expression analyses of mouse β-klotho, which encodes a novel Klotho family protein, Mech. Dev., 98, 115–119.PubMedCrossRefGoogle Scholar
  9. 9.
    Suzuki, M., Uehara, Y., Motomura-Matsuzaka, K., Oki, J., Koyama, Y., Kimura, M., Asada, M., KomiKuramochi, A., Oka, S., and Imamura, T. (2008) β-Klotho is required for fibroblast growth factor (FGF) 21 signaling through FGF receptor (FGFR) 1c and FGFR3c, Mol. Endocrinol., 22, 1006–1014.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Kuro-o, M. (2012) Klotho in health and disease, Curr. Opin. Nephrol. Hypertens., 21, 362–368.PubMedCrossRefGoogle Scholar
  11. 11.
    Tohyama, O., Imura, A., Iwano, A., Freund, J. N., Henrissat, B., Fujimori, T., and Nabeshima, Y. (2004) Klotho is a novel glucuronidase capable of hydrolyzing steroid glucuronides, J. Biol. Chem., 279, 9777–9784.PubMedCrossRefGoogle Scholar
  12. 12.
    Cha, S. K., Ortega, B., Kurosu, H., Rosenblatt, K. P., Kuro-o, M., and Huang, C. L. (2008) Removal of sialic acid involving Klotho causes cell-surface retention of TRPV5 channel via binding to galectin-1, Proc. Natl. Acad. Sci. USA, 105, 9805–9810.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Wang, J., Xia, J., Zhang, F., Shi, Y., Wu, Y., Pu, H., Liou, A. K. F., Leak, R. K., Yu, X., Chen, L., and Chen, J. (2015) Galectin-1-secreting neural stem cells elicit long-term neuroprotection against ischemic brain injury, Sci. Rep., 5, 9621–9664.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Sopjani, M., Alesutan, I., Dermaku-Sopjani, M., Gu, S., Zelenak, C., Munoz, C., Velic, A., Foller, M., Rosenblatt, K. P., Kuro-o, M., and Lang, F. (2011) Regulation of the Na+/K+-ATPase by Klotho, FEBS Lett., 585, 1759–1764.PubMedCrossRefGoogle Scholar
  15. 15.
    Almilaji, A., Sopjani, M., Elvira, B., Borras, J., DenmakuSopjani, M., Munoz, C., Warsi, J., Lang, U. E., and Lang, F. (2014) Upregulation of creatine transporter Slc6A8 by klotho, Kidney Blood Press. Res., 39, 516–525.PubMedCrossRefGoogle Scholar
  16. 16.
    Almilaji, A., Munoz, C., Pakladok, T., Alesutan, I., Feger, M., Foller, M., Lang, U. E., Shumilina, E., and Lang, F. (2013) Klotho sensitivity of the neuronal excitatory amino acid transporters EAAT3 and EAAT4, PLoS One, 8, e70988.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    King, G. D., Rosene, D. L., and Abraham, C. R. (2012) Promoter methylation and age-related downregulation of klotho in rhesus monkey, Age (Dordr.), 34, 1405–1419.CrossRefGoogle Scholar
  18. 18.
    Sun, C.-Y., Chang, S.-C., and Wu, M.-S. (2012) Suppression of Klotho expression by protein-bound uremic toxins is associated with increased DNA methyltransferase expression and DNA hypermethylation, Kidney Int., 81, 640–650.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Moreno, J. A., Izquierdo, M. C., Sanchez-Nino, M. D., Suarez-Alvarez, B., Lopez-Larrea, C., Jakubowski, A., Blanco, J., Ramirez, R., Selgas, R., Ruiz-Ortega, M., Egido, J., Ortiz, A., and Sanz, A. B. (2011) The inflammatory cytokines TWEAK and TNFα reduce renal klotho expression through NFκB, J. Am. Soc. Nephrol., 22, 1315–1325.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Teocchi, M. A., Ferreira, A. E., da Luz de Oliveira, E. P., Tedeschi, H., and D’Souza-Li, L. (2013) Hippocampal gene expression dysregulation of Klotho, nuclear factor kappa B and tumor necrosis factor in temporal lobe epilepsy patients, J. Neuroinflammation, 10, 53.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Hsu, S.-C., Huang, S.-M., Lin, S.-H., Ka, S.-M., Chen, A., Shih, M.-F., and Hsu, Y.-J. (2014) Testosterone increases renal anti-aging klotho gene expression via the androgen receptor-mediated pathway, Biochem. J., 464, 221–229.PubMedCrossRefGoogle Scholar
  22. 22.
    Sarvari, M., Kallo, I., Hrabovszky, E., Solymosi, N., Rodolosse, A., Vastagh, C., Auer, H., and Liposits, Z. (2015) Hippocampal gene expression is highly responsive to estradiol replacement in middle-aged female rats, Endocrinology, 156, 2632–2645.PubMedCrossRefGoogle Scholar
  23. 23.
    Choi, B. H., Kim, C. G., Lim, Y., Lee, Y. H., and Shin, S. Y. (2010) Transcriptional activation of the human Klotho gene by epidermal growth factor in HEK293 cells; role of Egr-1, Gene, 450, 121–127.PubMedCrossRefGoogle Scholar
  24. 24.
    Li, C. B., Wang, B., Wang, Z., Guo, O., Tabuchi, K., Hammer, R. E., Sudhof, T. C., and Zheng, H. (2010) Soluble amyloid precursor protein (APP) regulates transthyretin and Klotho gene expression without rescuing the essential function of APP, Proc. Natl. Acad. Sci. USA, 107, 17362–17367.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Wagner, S. A., Beli, P., Weinert, B. T., Scholz, C., Kelstrup, C. D., Young, C., Nielsen, M. L., Olsen, J. V., Brakebusch, C., and Choudhary, C. (2012) Proteomic analyses reveal divergent ubiquitylation site patterns in murine tissues, Mol. Cell Proteomics, 11, 1578–1585.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Bloch, L., Sineshchekova, O., Reichenbach, D., Reiss, K., Saftig, P., Kuro-o, M., and Kaether, C. (2009) Klotho is a substrate for α-, β and γ-secretase, FEBS Lett., 583, 32213224.CrossRefGoogle Scholar
  27. 27.
    Chen, C. D., Podvin, S., Gillespie, E., Leeman, S. E., and Abraham, C. R. (2007) Insulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM10 and ADAM17, Proc. Natl. Acad. Sci. USA, 104, 19796–19801.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Imura, A., Iwano, A., Tohyama, O., Tsuji, Y., Nozaki, K., Hashimoto, N., Fujimori, T., and Nabeshima, Y. (2004) Secreted Klotho protein in sera and CSF: implication for post-translational cleavage in release of Klotho protein from cell membrane, FEBS Lett., 565, 143–147.PubMedCrossRefGoogle Scholar
  29. 29.
    Chen, C. D., Tung, T. Y., Liang, J., Zeldich, E., Tucker Zhou, T. B., Turk, B. E., and Abraham, C. R. (2014) Identification of cleavage sites leading to the shed form of the anti-aging protein klotho, Biochemistry, 53, 5579–5587.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Zheng, H., and Koo, E. H. (2006) The amyloid precursor protein: beyond amyloid, Mol. Neurodegener., 1, 5.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Unger, R. H. (2006) Klotho-induced insulin resistance: a blessing in disguise? Nat. Med., 12, 56–57.PubMedCrossRefGoogle Scholar
  32. 32.
    Pedersen, B. K. (2006) The anti-inflammatory effect of exercise: its role in diabetes and cardiovascular disease control, Essays Biochem., 42, 105–117.PubMedCrossRefGoogle Scholar
  33. 33.
    Cararo-Lopes, M. M., Mazucanti, C. H. Y., Scavone, C., Kawamoto, E. M., and Berwick, D. C. (2017) The relevance of α-Klotho to the central nervous system: some key questions, Aging Res. Rev., 36, 137–148.CrossRefGoogle Scholar
  34. 34.
    Semba, R. D., Moghekar, A. R., Hu, J., Sun, K., Turner, R., Ferrucci, L., and O’Brien, R. (2014) Klotho in the cerebrospinal fluid of adults with and without Alzheimer’s disease, Neurosci. Lett., 558, 37–40.PubMedCrossRefGoogle Scholar
  35. 35.
    Arking, D. E., Krebsova, A., Macek, M. Sr., Macek, M. Jr., Arking, A., Mian, I. S., Fried, L., Hamosh, A., Dey, S., McIntosh, I., and Dietz, H. C. (2002) Association of human aging with a functional variant of klotho, Proc. Natl. Acad. Sci. USA, 99, 856–861.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Tucker-Zhou, T. B., King, G. D., Chen, C., and Abraham, C. R. (2013) Biochemical and functional characterization of the klotho-VS polymorphism implicated in aging and disease risk, J. Biol. Chem., 288, 36302–36311.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Deary, I. J., Harris, S. E., Fox, H. C., Hayward, C., Wright, A. F., Starr, J. M., and Whalley, L. J. (2005) KLOTHO genotype and cognitive ability in childhood and old age in the same individuals, Neurosci. Lett., 378, 22–27.PubMedCrossRefGoogle Scholar
  38. 38.
    Burbaeva, G. Sh., Boksha, I. S., Tereshkina, E. B., Savushkina, O. K., Starodubtseva, L. I., Turishcheva, M. S., and Mukaetova-Ladinska, E. B. (2007) Systemic neurochemical alterations in schizophrenic brain: glutamate metabolism in focus, Neurochem. Res., 32, 1434–1444.PubMedCrossRefGoogle Scholar
  39. 39.
    Yokoyama, J. S., Sturm, V. E., Bonham, L. W., Klein, E., Arfanakis, K., Yu, L., Coppola, G., Kramer, J. H., Bennett, D. A., Miller, B. L., and Dubal, D. B. (2015) Variation in longevity gene klotho is associated with greater cortical volumes, Ann. Clin. Transl. Neurol., 2, 215–230.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Li, S. A., Watanabe, M., Yamada, H., Nagai, A., Kinuta, M., and Takei, K. (2004) Immunohistochemical localization of Klotho protein in brain, kidney, and reproductive organs of mice, Cell Struct. Funct., 29, 91–99.PubMedCrossRefGoogle Scholar
  41. 41.
    German, D. C., Khobahy, I., Pastor, J., Kuro-o, M., and Liu, X. (2012) Nuclear localization of Klotho in brain: an anti-aging protein, Neurobiol. Aging, 33, 1483.e25-1483.e30.Google Scholar
  42. 42.
    Matsumura, Y., Aizawa, H., Shiraki-Iida, T., Nagai, R., Kuro-o, M., and Nabeshima, Y. (1998) Identification of the human klotho gene and its two transcripts encoding membrane and secreted klotho protein, Biochem. Biophys. Res. Commun., 242, 626–630.PubMedCrossRefGoogle Scholar
  43. 43.
    Clinton, S. M., Glover, M. E., Maltare, A., Laszczyk, A. M., Mehi, S. J., Simmons, R. K., and King, G. D. (2013) Expression of klotho mRNA and protein in rat brain parenchyma from early postnatal development into adulthood, Brain Res., 1527, 1–14.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Li, Q., Vo, H. T., Wang, J., Fox-Quick, S., Dobrunz, L. E., and King, G. D. (2017) Klotho regulates CA1 hippocampal synaptic plasticity, Neuroscience, 347, 123–133.PubMedCrossRefGoogle Scholar
  45. 45.
    Kosakai, A., Ito, D., Nihei, Y., Yamashita, S., Okada, Y., Takahashi, K., and Suzuki, N. (2011) Degeneration of mesencephalic dopaminergic neurons in Klotho mouse related to vitamin D exposure, Brain Res., 1382, 109–117.PubMedCrossRefGoogle Scholar
  46. 46.
    Shiozaki, M., Yoshimura, K., Shibata, M., Koike, M., Matsuura, N., Uchiyama, Y., and Gotow, T. (2008) Morphological and biochemical signs of age-related neurodegenerative changes in klotho mutant mice, Neuroscience, 152, 924–941.PubMedCrossRefGoogle Scholar
  47. 47.
    Chen, C. D., Sloane, J. A., Li, H., Aytan, N., Giannaris, E. L., Zeldich, E., Hinman, J. D., Dedeoglu, A., Rosene, D. L., Bansal, R., Luebke, J. I., Kuro-o, M., and Abraham, C. R. (2013) The antiaging protein Klotho enhances oligodendrocyte maturation and myelination of the CNS, J. Neurosci., 33, 1927–1939.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Nagai, T., Yamada, K., Kim, H. C., Noda, Y., Nabeshima, Y., and Nabeshima, T. (2003) Cognition impairment in the klotho gene mutant mice and oxidative stress, Nihon Shinkei Seishin Yakurigaku Zasshi, 23, 211–217.PubMedGoogle Scholar
  49. 49.
    Lindberg, K., Amin, R., Moe, O. W., Hu, M.-C., Erben, R. G., Wernerson, A. O., Lanske, B., Olauson, H., and Larsson, T. E. (2014) The kidney is the principal organ mediating klotho effects, J. Am. Soc. Nephrol., 25, 21692175.CrossRefGoogle Scholar
  50. 50.
    Degaspari, S., Tzanno-Martins, C. B., Fujihara, C. K., Zatz, R., Branco-Martins, J. P., Viel, T. A., de Souza Buck, H., Orellana, A. M. M., Bohmer, A. E., and de Sa Lima, L. (2015) Altered KLOTHO and NF-κB-TNF-α signaling are correlated with nephrectomy-induced cognitive impairment in rats, PLoS One, 10, e0125271.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Sloane, J. A., Hinman, J. D., Lubonia, M., Hollander, W., and Abraham, C. R. (2003) Age-dependent myelin degeneration and proteolysis of oligodendrocyte proteins is associated with the activation of calpain-1 in the rhesus monkey, J. Neurochem., 84, 157–168.PubMedCrossRefGoogle Scholar
  52. 52.
    Kohama, S. G., Rosene, D. L., and Sherman, L. S. (2012) Age-related changes in human and non-human primate white matter: from myelination disturbances to cognitive decline, Age (Dordr.), 34, 1093–1110.CrossRefGoogle Scholar
  53. 53.
    Zeldich, E., Chen, C.-D., Avila, R., Medicetty, S., and Abraham, C. R. (2015) The anti-aging protein klotho enhances remyelination following cuprozone-induced demyelination, J. Mol. Neurosci., 57, 185–196.PubMedCrossRefGoogle Scholar
  54. 54.
    Taveggia, C., Feltri, M. L., and Wrabetz, L. (2010) Signals to promote myelin formation and repair, Nat. Rev. Neurol., 6, 276–287.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Vostrikov, V. M., and Uranova, N. A. (2016) A possible relationship between disturbed interhemispheric asymmetry and a decrease in perineuronal oligodendrocytes in schizophrenia, Zh. Nevrol. Psikhiatr. im. S. S. Korsakova, 116, 70–73.PubMedCrossRefGoogle Scholar
  56. 56.
    Uranova, N. A., Kolomeets, N. S., Vikhreva, O. V., Zimina, I. S., Rachmanova, V. I., and Orlovskaya, D. D. (2013) Ultrastructural pathology of myelinated fibers in schizophrenia, Zh. Nevrol. Psikhiatr. im. S. S. Korsakova, 113, 63–69.PubMedGoogle Scholar
  57. 57.
    Chihara, Y., Rakugi, H., Ishikawa, K., Ikushima, M., Maekawa, Y., Ohta, J., Kida, I., and Ogihara, T. (2006) Klotho protein promotes adipocyte differentiation, Endocrinology, 147, 3835–3842.PubMedCrossRefGoogle Scholar
  58. 58.
    Shimada, T., Takeshita, Y., Murohara, T., Sasaki, K., Egami, K., Shintani, S., Katsuda, Y., Ikeda, H., Nabeshima, Y., and Imaizumi, T. (2004) Angiogenesis and vasculogenesis are impaired in the precocious-aging klotho mouse, Circulation, 110, 1148–1155.PubMedCrossRefGoogle Scholar
  59. 59.
    Yamamoto, M., Clark, J. D., Pastor, J. V., Gurnani, P., Nandi, A., Kurosu, H., Miyoshi, M., Ogawa, Y., Castrillon, D. H., Rosenblatt, K. P., and Kuro-o, M. (2005) Regulation of oxidative stress by the anti-aging hormone klotho, J. Biol. Chem., 280, 38029–38034.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Ikushima, M., Rakugi, H., Ishikawa, K., Maekawa, Y., Yamamoto, K., Ohta, J., Chihara, Y., Kida, I., and Ogihara, T. (2006) Anti-apoptotic and anti-senescence effects of Klotho on vascular endothelial cells, Biochem. Biophys. Res. Commun., 339, 827–832.PubMedCrossRefGoogle Scholar
  61. 61.
    Brobey, R. K., German, D., Sonsalla, P. K., Gurnani, P., Pastor, J., Hsieh, C-C., Papaconstantinou, J., Foster, P. P., Kuro-o, M., and Rosenblatt, K. V. (2015) Klotho protects dopaminergic neuron oxidant-induced degeneration by modulating ASK1 and p38 MAPK signaling pathways, PLoS One, 10, e0139914.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Xin, Y. J., Yuan, B., Yu, B., Wang, Y. Q., Wu, J. J., Zhou, W. H., and Qiu, Z. (2015) Tet1-mediated DNA demethylation regulates neuronal cell death induced by oxidative stress, Sci. Rep., 5, 8951.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Kuro-o, M. (2008) Klotho as a regulator of oxidative stress and senescence, Biol. Chem., 389, 233–241.PubMedCrossRefGoogle Scholar
  64. 64.
    Oddo, S., Caccamo, A., Shepherd, J. D., Murphy, M. P., Golde, T. E., Kayed, R., Metherate, R., Mattson, M. P., Akbari, Y., and LaFerla, F. M. (2003) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Aβ and synaptic dysfunction, Neuron, 39, 409–421.PubMedCrossRefGoogle Scholar
  65. 65.
    Mostafidi, E., Moeen, A., Nasri, H., Ghorbani Hagjo, A., and Ardalan, M. (2016) Serum Klotho levels in trained athletes, Nephrourol. Mon., 8, e30245.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Xuan, N. T., Hoang, N. H., Nhung, V. P., Duong, N. T., Ha, N. H., and Hai, N. V. (2017) Regulation of dendritic cell function by insulin/IGF-1/PI3K/Akt signaling through klotho expression, J. Recept. Signal Transduct. Res., 37, 297–303.PubMedCrossRefGoogle Scholar
  67. 67.
    Rubinek, T., Shahmoon, S., Shabtay-Orbach, A., Ben Ami, M., Levy-Shraga, Y., Mazor-Aronovitch, K., Yeshayahu, Y., Doolman, R., Hemi, R., Kanety, H., Wolf, I., and Modan-Moses, D. (2016) Klotho response to treatment with growth hormone and the role of IGF-I as a mediator, Metabolism, 65, 1597–1604.PubMedCrossRefGoogle Scholar
  68. 68.
    Dubal, D. B., Zhu, L., Sanchez, P. E., Worden, K., Broestl, L., Johnson, E., Ho, K., Yu, G. Q., Kim, D., Betourne, A., Kuro-o, M., Masliah, E., Abraham, C. R., and Mucke, L. (2015) Life extension factor klotho prevents mortality and enhances cognition in hAPP transgenic mice, J. Neurosci., 35, 2358–2371.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Vossel, K. A., Beagle, A. J., Rabinovici, G. D., Shu, H., Lee, S. E., Naasan, G., Hegde, M., Cornes, S. B., Henry, M. L., Nelson, A. B., Seeley, W. W., Geschwind, M. D., Gorno-Tempini, M. L., Shih, T., Kirsch, H. E., Garcia, P. A., Miller, B. L., and Mucke, L. (2013) Seizures and epileptiform activity in the early stages of Alzheimer’s disease, JAMA Neurol., 70, 1158–1166.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Kuang, X., Chen, Y. S., Wang, L. F., Li, Y. J., Liu, K., Zhang, M. X., Li, L. J., Chen, C., He, Q., Wang, Y., and Du, J. R. (2014) Klotho upregulation contributes to the neuroprotection of ligustilide in an Alzheimer’s disease mouse model, Neurobiol. Aging, 35, 169–178.PubMedCrossRefGoogle Scholar
  71. 71.
    Brim, B. L., Haskell, R., Awedikian, R., Ellinwood, N. M., Jin, L., Kumar, A., Foster, T. C., and Magnusson, K. (2013), Memory in aged mice is rescued by enhanced expression of the GluN2B subunit of the NMDA receptor, Behav. Brain Res., 238, 211–226.PubMedCrossRefGoogle Scholar
  72. 72.
    Zhang, Y., Li, P., Feng, J., and Wu, M. (2016) Dysfunction of NMDA receptors in Alzheimer’s disease, Neurol. Sci., 37, 1039–1047.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Li, L. S., Jin, M., Koeglsperger, T., Shepardson, N. E., Shankar, G. M., and Selkoe, D. J. (2011) Soluble Aβ oligomers inhibit long-term potentiation through a mechanism involving excessive activation of extrasynaptic NR2Bcontaining NMDA receptors, J. Neurosci., 31, 6627–6638.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Hardingham, G. E., and Bading, H. (2010) Synaptic versus extrasynaptic NMDA receptor signaling: implications for neurodegenerative disorders, Nat. Rev. Neurosci., 11, 682–696.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Molokanova, E., Akhtar, M. W., Sanz-Blasco, S., Tu, S., Pina-Crespo, J. C., McKercher, S. R., and Lipton, S. A. (2014) Differential effects of synaptic and extrasynaptic NMDA receptors on Aβ-induced nitric oxide production in cerebrocortical neurons, J. Neurosci., 34, 5023–5028.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Ittner, L. M., Ke, Y. D., Delerue, F., Bi, M., Gladbach, A., van Eersel, J., Wolfing, H., Chieng, B. C., Christie, M. J., Napier, I. A., Eckert, A., Staufenbiel, M., Hardeman, E., and Gotz, J. (2010) Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models, Cell, 142, 387–397.PubMedCrossRefGoogle Scholar
  77. 77.
    Huang, Y., and Mucke, L. (2012) Alzheimer mechanisms and therapeutic strategies, Cell, 148, 1204–1222.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Zeldich, E., Chen, C. D., Colvin, T. A., Bove-Fenderson, E. A., Liang, J., Tucker-Zhou, T. B., Harris, D. A., and Abraham, C. R. (2014) The neuroprotective effect of Klotho is mediated via regulation of members of the redox system, J. Biol. Chem., 289, 24700–24715.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Amara, S. G., and Fontana, A. C. (2002) Excitatory amino acid transporters: keeping up with glutamate, Neurochem. Int., 41, 313–318.PubMedCrossRefGoogle Scholar
  80. 80.
    Huang, Y. H., Dykes-Hoberg, M., Tanaka, K., Rothstein, J. D., and Bergles, D. E. (2004) Climbing fiber activation of EAAT4 transporters and kainate receptors in cerebellar Purkinje cells, J. Neurosci., 24, 103–111.PubMedCrossRefGoogle Scholar
  81. 81.
    Dermaku-Sopjani, M., Sopjani, M., Saxena, A., Shojaiefard, M., Bogatikov, E., Alesutan, I., Eichenmuller, M., and Lang, F. (2011) Downregulation of NaPi-IIa and NaPi-IIb Na-coupled phosphate transporters by coexpression of Klotho, Cell Physiol. Biochem., 28, 251–258.PubMedCrossRefGoogle Scholar
  82. 82.
    Dalton, G., An, S. W., Al-Juboori, S. I., Nischan, N., Yoon, J., Dobrinskikh, E., Hilgemann, D. W., Xie, J., Luby-Phelps, K., Kohler, J. J., Birnbaumer, L., and Huang, C. L. (2017) Soluble klotho binds monosialoganglioside to regulate membrane microdomains and growth factor signaling, Proc. Natl. Acad. Sci. USA, 114, 752–757.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Huerta, I., McCullumsmith, R. E., Haroutunian, V., Gimenez-Amaya, J. M., and Meador-Woodruff, J. H. (2006) Expression of excitatory amino acid transporter interacting protein transcripts in the thalamus in schizophrenia, Synapse, 59, 394–402.PubMedCrossRefGoogle Scholar
  84. 84.
    Rakhade, S. N., and Loeb, J. A. (2008) Focal reduction of neuronal glutamate transporters in human neocortical epilepsy, Epilepsia, 49, 226–236.PubMedCrossRefGoogle Scholar
  85. 85.
    Kavalali, E. T., and Monteggia, L. M. (2012) Synaptic mechanisms underlying rapid antidepressant action of ketamine, Am. J. Psychiatry, 169, 1150–1156.PubMedCrossRefGoogle Scholar
  86. 86.
    Rao, J. S., Kellom, M., Reese, E. A., Rapoport, S. I., and Kim, H. W. (2012) Dysregulated glutamate and dopamine transporters in postmortem frontal cortex from bipolar and schizophrenic patients, J. Affect. Disord., 136, 63–71.PubMedCrossRefGoogle Scholar
  87. 87.
    Boksha, I. S. (2012) Specific Metabolism of Glutamate in Schizophrenia, LAP LAMBERT Academic Publishing, Saarbrucken, Germany.Google Scholar
  88. 88.
    Imura, A., Tsuji, Y., Murata, M., Maeda, R., Kubota, K., Iwano, A., Obuse, C., Togashi, K., Tominaga, M., and Kita, N. (2007) α-Klotho as a regulator of calcium homeostasis, Science, 316, 1615–1618.PubMedCrossRefGoogle Scholar
  89. 89.
    Kawamoto, E. M., Lima, L. S., Munhoz, C. D., Yshii, L. M., Kinoshita, P. F., Amara, F. G., Pestana, R. R., Orellana, A. M., Cipolla-Neto, J., Britto, L. R., Avellar, M. C., Rossoni, L. V., and Scavone, C. (2012) Influence of Nmethyl-D-aspartate receptors on ouabain activation of nuclear factor-κB in the rat hippocampus, Neurosci. Res., 90, 213–228.CrossRefGoogle Scholar
  90. 90.
    Aperia, A., Akkuratov, E. E., Fontana, J. M., and Brismar, H. (2016) Na, K-ATPase, a new class of plasma membrane receptors, Am. J. Physiol. Cell Physiol., 310, 491–495.CrossRefGoogle Scholar
  91. 91.
    Madan, N., Xu, Y., Duan, Q., Banerjee, M., Larre, I., Pierre, S. V., and Xie, Z. (2017) Src-independent ERK Physiolsignaling through the rat α3 isoform of Na/K-ATPase, Am. J. Physiol. Cell., 312, 222–232.CrossRefGoogle Scholar
  92. 92.
    Kinoshita, P. F., Leite, J. A., Orellana, A. M., Vasconcelos, A. R., Quintas, L. E., Kawamoto, E. M., and Scavone, C. (2016) The influence of Na+, K+-ATPase on glutamate signaling in neurodegenerative diseases and senescence, Front. Physiol., 7, 1–95.CrossRefGoogle Scholar
  93. 93.
    Holm, T. H., Isaksen, T. J., Glerup, S., Heuck, A., Bottger, P., Fuchtbauer, E.-M., Nedergaard, S., Nyengaard, J. R., Andreasen, M., Nissen, P., and Lykke-Hartmann, K. (2016) Cognitive deficits caused by a disease-mutation in the α3 Na+/K+-ATPase isoform, Sci. Rep., 6, 3197232015.CrossRefGoogle Scholar
  94. 94.
    Kioussi, C., Gross, M. K., and Gruss, P. (1995) Pax3: a paired domain gene as a regulator in PNS myelination, Neuron, 15, 553–562.PubMedCrossRefGoogle Scholar
  95. 95.
    Massa, P. T., Saha, S., Wu, C., and Jarosinski, K. W. (2000) Expression and function of the protein tyrosine phosphatase SHP-1 in oligodendrocytes, Glia, 29, 376–385.PubMedCrossRefGoogle Scholar
  96. 96.
    Bibollet-Bahena, O., and Almazan, G. (2009) IGF-1stimulated protein synthesis in oligodendrocyte progenitors requires PI3K/mTOR/Akt and MEK/ERK pathways, J. Neurochem., 109, 1440–1451.PubMedCrossRefGoogle Scholar
  97. 97.
    Bryant, M. R., Marta, C. B., Kim, F. S., and Bansal, R. (2009) Phosphorylation and lipid raft association of fibroblast growth factor receptor-2 in oligodendrocytes, Glia, 57, 935–946.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Chateau, M. T., Araiz, C., Descamps, S., and Galas, S. (2010) Klotho interferes with a novel FGF-signaling pathway and insulin/Igf-like signaling to improve longevity and stress resistance in Caenorhabditis elegans, Aging (Albany NY), 2, 567–581.CrossRefGoogle Scholar
  99. 99.
    Fancy, S. P., Baranzini, S. E., Zhao, C., Yuk, D. I., Irvine, K. A., Kaing, S., Sanai, N., Franklin, R. J., and Rowitch, D. H. (2009) Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS, Genes Dev., 23, 1571–1585.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Ahn, S. M., Byun, K., Kim, D., Lee, K., Yoo, J. S., Kim, S. U., Jho, E. H., Simpson, R. J., and Lee, B. (2008) Olig2-induced neural stem cell differentiation involves downregulation of Wnt signaling and induction of Dickkopf-1 expression, PLoS One, 3, e3917.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Ishii, A., Fyffe-Maricich, S. L., Furusho, M., Miller, R. H., and Bansal, R. (2012) ERK1/ERK2 MAPK signaling is required to increase myelin thickness independent of oligodendrocyte differentiation and initiation of myelination, J. Neurosci., 32, 8855–8864.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Pillinger, T., Beck, K., Gobjila, C., Donocik, J. G., Jauhar, S., and Howes, O. D. (2017) Impaired glucose homeostasis in first-episode schizophrenia: a systematic review and meta-analysis, JAMA Psychiatry, 74, 261–269.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • I. S. Boksha
    • 1
    • 2
    Email author
  • T. A. Prokhorova
    • 1
  • O. K. Savushkina
    • 1
  • E. B. Tereshkina
    • 1
  1. 1.Mental Health Research CenterMoscowRussia
  2. 2.Gamaleya Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian FederationMoscowRussia

Personalised recommendations