Biochemistry (Moscow)

, Volume 82, Issue 8, pp 962–971 | Cite as

Quantitative analysis of L1-retrotransposons in Alzheimer’s disease and aging

  • M. S. ProtasovaEmail author
  • F. E. Gusev
  • A. P. Grigorenko
  • I. L. Kuznetsova
  • E. I. Rogaev
  • T. V. Andreeva


LINE1 retrotransposons are members of a class of mobile genetic elements capable of retrotransposition in the genome via a process of reverse transcription. LINE1 repeats, integrating into different chromosomal loci, affect the activity of genes and cause different genomic mutations. Somatic variability of the human genome is linked to the activity of some subfamilies of LINE1, in particular, a high level of LINE1 retrotranspositions has been observed in brain tissues. However, the contribution of LINE1 to genomic variability during normal aging and in age-related neurodegenerative diseases is poorly understood. We conducted quantitative real-time PCR analysis of active subfamilies of LINE1 repeats (aL1) using genomic DNA extracted from brain specimens of Alzheimer’s disease (AD) patients and individuals without neuropsychiatric pathologies, as well as DNA extracted from blood specimens of individuals of different ages (healthy and AD subjects). Inter-individual quantitative variations of active families of aL1 repeats in the genome were observed. No significant age-dependent differences were identified. Likewise, no difference of aL1 copy number in brain and blood were indicated between AD patients and the aged-matched control group without dementia. These data imply that aging and the AD-associated neurodegenerative process are not the major factors contributing to the retrotransposition processes of active LINE1 repeats.


LINE1 retrotransposons Alzheimer’s disease aging quantitative analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., Funke, R., Gage, D., Harris, K., Heaford, A., Howland, J., Kann, L., Lehoczky, J., LeVine, R., McEwan, P., McKernan, K., Meldrim, J., Mesirov, J. P., Miranda, C., Morris, W., Naylor, J., Raymond, C., Rosetti, M., Santos, R., Sheridan, A., Sougnez, C., Stange-Thomann, Y., Stojanovic, N., Subramanian, A., Wyman, D., Rogers, J., Sulston, J., Ainscough, R., Beck, S., Bentley, D., Burton, J., Clee, C., Carter, N., Coulson, A., Deadman, R., Deloukas, P., Dunham, A., Dunham, I., Durbin, R., French, L., Grafham, D., Gregory, S., Hubbard, T., Humphray, S., Hunt, A., Jones, M., Lloyd, C., McMurray, A., Matthews, L., Mercer, S., Milne, S., Mullikin, J. C., Mungall, A., Plumb, R., Ross, M., Shownkeen, R., Sims, S., Waterston, R. H., Wilson, R. K., Hillier, L. W., McPherson, J. D., Marra, M. A., Mardis, E. R., Fulton, L. A., Chinwalla, A. T., Pepin, K. H., Gish, W. R., Chissoe, S. L., Wendl, M. C., Delehaunty, K. D., Miner, T. L., Delehaunty, A., Kramer, J. B., Cook, L. L., Fulton, R. S., Johnson, D. L., Minx, P. J., Clifton, S. W., Hawkins, T., Branscomb, E., Predki, P., Richardson, P., Wenning, S., Slezak, T., Doggett, N., Cheng, J. F., Olsen, A., Lucas, S., Elkin, C., Uberbacher, E., Frazier, M., Gibbs, R. A., Muzny, D. M., Scherer, S. E., Bouck, J. B., Sodergren, E. J., Worley, K. C., Rives, C. M., Gorrell, J. H., Metzker, M. L., Naylor, S. L., Kucherlapati, R. S., Nelson, D. L., Weinstock, G. M., Sakaki, Y., Fujiyama, A., Hattori, M., Yada, T., Toyoda, A., Itoh, T., Kawagoe, C., Watanabe, H., Totoki, Y., Taylor, T., Weissenbach, J., Heilig, R., Saurin, W., Artiguenave, F., Brottier, P., Bruls, T., Pelletier, E., Robert, C., Wincker, P., Smith, D. R., Doucette-Stamm, L., Rubenfield, M., Weinstock, K., Lee, H. M., Dubois, J., Rosenthal, A., Platzer, M., Nyakatura, G., Taudien, S., Rump, A., Yang, H., Yu, J., Wang, J., Huang, G., Gu, J., Hood, L., Rowen, L., Madan, A., Qin, S., Davis, R. W., Federspiel, N. A., Abola, A. P., Proctor, M. J., Myers, R. M., Schmutz, J., Dickson, M., Grimwood, J., Cox, D. R., Olson, M. V., Kaul, R., Raymond, C., Shimizu, N., Kawasaki, K., Minoshima, S., Evans, G. A., Athanasiou, M., Schultz, R., Roe, B. A., Chen, F., Pan, H., Ramser, J., Lehrach, H., Reinhardt, R., McCombie, W. R., De la Bastide, M., Dedhia, N., Blocker, H., Hornischer, K., Nordsiek, G., Agarwala, R., Aravind, L., Bailey, J. A., Bateman, A., Batzoglou, S., Birney, E., Bork, P., Brown, D. G., Burge, C. B., Cerutti, L., Chen, H. C., Church, D., Clamp, M., Copley, R. R., Doerks, T., Eddy, S. R., Eichler, E. E., Furey, T. S., Galagan, J., Gilbert, J. G., Harmon, C., Hayashizaki, Y., Haussler, D., Hermjakob, H., Hokamp, K., Jang, W., Johnson, L. S., Jones, T. A., Kasif, S., Kaspryzk, A., Kennedy, S., Kent, W. J., Kitts, P., Koonin, E. V., Korf, I., Kulp, D., Lancet, D., Lowe, T. M., McLysaght, A., Mikkelsen, T., Moran, J. V., Mulder, N., Pollara, V. J., Ponting, C. P., Schuler, G., Schultz, J., Slater, G., Smit, A. F., Stupka, E., Szustakowki, J., Thierry-Mieg, D., Thierry-Mieg, J., Wagner, L., Wallis, J., Wheeler, R., Williams, A., Wolf, Y. I., Wolfe, K. H., Yang, S. P., Yeh, R. F., Collins, F., Guyer, M. S., Peterson, J., Felsenfeld, A., Wetterstrand, K. A., Patrinos, A., Morgan, M. J., de Jong, P., Catanese, J. J., Osoegawa, K., Shizuya, H., Choi, S., Chen, Y. J., and Szustakowki, J.; International Human Genome Sequencing Consortium (2001) Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome, Nature, 409, 860–921.CrossRefPubMedGoogle Scholar
  2. 2.
    Ngamphiw, C., Tongsima, S., Mutirangura, A., and Feil, R. (2014) Roles of intragenic and intergenic L1s in mouse and human, PLoS One, 9, e113434.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kulpa, D. A., and Moran, J. V. (2006) Cis-preferential LINE-1 reverse transcriptase activity in ribonucleoprotein particles, Nat. Struct. Mol. Biol., 13, 655–660.CrossRefPubMedGoogle Scholar
  4. 4.
    Feng, Q., Moran, J. V., Kazazian, H. H., Jr., and Boeke, J. D. (1996) Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition, Cell, 87, 905–916.CrossRefPubMedGoogle Scholar
  5. 5.
    Moran, J. V., Holmes, S. E., Naas, T. P., DeBerardinis, R. J., Boeke, J. D., and Kazazian, H. H., Jr. (1996) High frequency retrotransposition in cultured mammalian cells, Cell, 87, 917–927.CrossRefPubMedGoogle Scholar
  6. 6.
    Babushok, D. V., and Kazazian, H. H., Jr. (2007) Progress in understanding the biology of the human mutagen LINE-1, Hum. Mutat., 28, 527–539.CrossRefPubMedGoogle Scholar
  7. 7.
    Brouha, B., Schustak, J., Badge, R. M., Lutz-Prigge, S., Farley, A. H., Moran, J. V., and Kazazian, H. H., Jr. (2003) Hot L1s account for the bulk of retrotransposition in the human population, Proc. Natl. Acad. Sci. USA, 100, 5280–5285.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Pavlicek, A., Paces, J., Zika, R., and Hejnar, J. (2002) Length distribution of long interspersed nucleotide elements (LINEs) and processed pseudogenes of human endogenous retroviruses: implications for retrotransposition and pseudogene detection, Gene, 300, 189–194.CrossRefPubMedGoogle Scholar
  9. 9.
    Mandal, P. K., Ewing, A. D., Hancks, D. C., and Kazazian, H. H. (2013) Enrichment of processed pseudogene transcripts in L1-ribonucleoprotein particles, Hum. Mol. Genet., 22, 3730–3748.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Grimaldi, G., Skowronski, J., and Singer, M. F. (1984) Defining the beginning and end of KpnI family segments, EMBO J., 3, 1753–1759.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Chow, J. C., Ciaudo, C., Fazzari, M. J., Mise, N., Servant, N., Glass, J. L., Attreed, M., Avner, P., Wutz, A., Barillot, E., Greally, J. M., Voinnet, O., and Heard, E. (2010) LINE-1 activity in facultative heterochromatin formation during X chromosome inactivation, Cell, 141, 956–969.CrossRefPubMedGoogle Scholar
  12. 12.
    Nigumann, P., Redik, K., Matlik, K., and Speek, M. (2002) Many human genes are transcribed from the antisense promoter of L1 retrotransposon, Genomics, 79, 628–634.CrossRefPubMedGoogle Scholar
  13. 13.
    Kano, H., Godoy, I., Courtney, C., Vetter, M. R., Gerton, G. L., Ostertag, E. M., and Kazazian, H. H., Jr. (2009) L1 retrotransposition occurs mainly in embryogenesis and creates somatic mosaicism, Genes Dev., 23, 1303–1312.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Baillie, J. K., Barnett, M. W., Upton, K. R., Gerhardt, D. J., Richmond, T. A., De Sapio, F., Brennan, P. M., Rizzu, P., Smith, S., Fell, M., Talbot, R. T., Gustincich, S., Freeman, T. C., Mattick, J. S., Hume, D. A., Heutink, P., Carninci, P., Jeddeloh, J. A., and Faulkner, G. J. (2011) Somatic retrotransposition alters the genetic landscape of the human brain, Nature, 479, 534–537.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Branciforte, D., and Martin, S. L. (1994) Developmental and cell type specificity of LINE-1 expression in mouse testis: implications for transposition, Mol. Cell. Biol., 14, 2584–2592.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Prak, E. T., Dodson, A. W., Farkash, E. A., and Kazazian, H. H., Jr. (2003) Tracking an embryonic L1 retrotransposition event, Proc. Natl. Acad. Sci. USA, 100, 1832–1837.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Xie, Y., Mates, L., Ivics, Z., Izsvak, Z., Martin, S. L., and An, W. (2013) Cell division promotes efficient retrotransposition in a stable L1 reporter cell line, Mob. DNA, 4, 10.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hancks, D. C., and Kazazian, H. H., Jr. (2012) Active human retrotransposons: variation and disease, Curr. Opin. Genet. Dev., 22, 191–203.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Bao, J., and Yan, W. (2012) Male germline control of transposable elements, Biol. Reprod., 86, 1–14.CrossRefGoogle Scholar
  20. 20.
    Coufal, N. G., Garcia-Perez, J. L., Peng, G. E., Yeo, G. W., and Mu, Y. (2009) L1 retrotransposition in human neural progenitor cells, Nature, 460, 1127–1131.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kurnosov, A. A., Ustyugova, S. V., Nazarov, V. I., Minervina, A. A., Komkov, A. Y., Shugay, M., Pogorelyy, M. V., Khodosevich, K. V., Mamedov, I. Z., and Lebedev, Y. B. (2015) The evidence for increased L1 activity in the site of human adult brain neurogenesis, PLoS One, 10, e0117854.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Bundo, M., Toyoshima, M., Okada, Y., Akamatsu, W., Ueda, J., Nemoto-Miyauchi, T., Sunaga, F., Toritsuka, M., Ikawa, D., Kakita, A., Kato, M., Kasai, K., Kishimoto, T., Nawa, H., Okano, H., Yoshikawa, T., Kato, T., and Iwamoto, K. (2013) Increased L1 retrotransposition in the neuronal genome in schizophrenia, Neuron, 81, 306–313.CrossRefGoogle Scholar
  23. 23.
    Golenkina, S. A., Gol’tsov, A. Iu., Kuznetsova, I. L., Grigorenko, A. P., Andreeva, T. V., Reshetov, D. A., Kunizheva, S. S., Shagam, L. I., Morozova, I. Iu., Goldenkova-Pavlova, I. V., Shimshilashvili, Kh., Viacheslavova, A. O., Faskhutdinova, G., Gareeva, A. E., Zainullina, A. G., Khusnutdinova, E. K., Puzyrev, V. P., Stepanov, V. A., Kolotvin, A. V., Samokhodskaia, L. M., Selezneva, N. D., Gavrilova, S. I., and Rogaev, E. I. (2010) Analysis of clusterin gene (CLU/APOJ) polymorphism in Alzheimer’s disease patients and in normal cohorts from Russian populations, Mol. Biol. (Moscow), 44, 620–626.CrossRefGoogle Scholar
  24. 24.
    Ponomareva, N., Andreeva, T., Protasova, M., Shagam, L., Malina, D., Goltsov, A., Fokin, V., Mitrofanov, A., and Rogaev, E. (2013) Age-dependent effect of Alzheimer’s risk variant of CLU on EEG alpha rhythm in non-demented adults, Front. Aging Neurosci., 5, 86.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Dik, W. A., Pike-Overzet, K., Weerkamp, F., de Ridder, D., de Haas, E. F., Baer, M. R., van der Spek, P., Koster, E. E., Reinders, M. J., van Dongen, J. J., Langerak, A. W., and Staal, F. J. (2005) New insights on human T cell development by quantitative T cell receptor gene rearrangement studies and gene expression profiling, J. Exp. Med., 201, 1715–1723.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Forslund, O., Antonsson, A., Higgins, G., Ly, H., Delius, H., Hunziker, A., and De Villiers, E. M. (2003) Nucleotide sequence and phylogenetic classification of candidate human papilloma virus type 92, Virology, 312, 255–260.CrossRefPubMedGoogle Scholar
  27. 27.
    Gibbonsa, J. G., Brancoa, A. T., Godinhob, S. A., Yua, S., and Lemos, B. (2014) Concerted copy number variation balances ribosomal DNA dosage in human and mouse genomes, PNAS, 112, 2485–2490.CrossRefGoogle Scholar
  28. 28.
    Stults, D. M., Killen, M. W., Pierce, H. H., and Pierce, A. J. (2008) Genomic architecture and inheritance of human ribosomal RNA gene clusters, Genome Res., 18, 13–18.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Hallgren, J., Pietrzak, M., Rempala, G., Nelson, P. T., and Hetman, M. (2014) Neurodegeneration-associated instability of ribosomal DNA, Biochim. Biophys. Acta, 1842, 860–868.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Pietrzak, M., Rempala, G., Nelson, P. T., Zheng, J. J., and Hetman, M. (2011) Epigenetic silencing of nucleolar rRNA genes in Alzheimer’s disease, PLoS One, 6, 22585.CrossRefGoogle Scholar
  31. 31.
    Garcia-Montojo, M., Dominguez-Mozo, M., Arias-Leal, A., Garcia-Martinez, A., De las Heras, V., Casanova, I., Faucard, R., Gehin, N., Madeira, A., Arroyo, R., Curtin, F., Alvarez-Lafuente, R., and Perron, H. (2013) The DNA copy number of human endogenous retrovirus-W (MSRV-type) is increased in multiple sclerosis patients and is influenced by gender and disease severity, PLoS One, 8, e53623.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Morgan, R. G., Venturelli, M., Gross, C., Tarperi, C., Schena, F., Reggiani, C., Naro, F., Pedrinolla, A., Monaco, L., Richardson, R. S., and Donato, A. J. (2017) Age-associated ALU element instability in white blood cells is linked to lower survival in elderly adults: a preliminary cohort study, PLoS One, 12, e0169628.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Pyle, A., Anugrha, H., Kurzawa-Akanbi, M., Yarnall, A., Burn, D., and Hudson, G. (2016) Reduced mitochondrial DNA cop number is a biomarker of Parkinson’s disease, Neurobiol. Aging, 216, 7–10.Google Scholar
  34. 34.
    Korovaitseva, G. I., Shcherbatykh, T. V., Selezneva, N. V., Gavrilova, S. I., Golimbet, V. E., Voskresenskaia, N. I., and Rogaev, E. I. (2001) Genetic association between the apolipoprotein E (ApoE) gene alleles and various forms of Alzheimer’s disease, Genetika, 37, 529–535.PubMedGoogle Scholar
  35. 35.
    Hanks, D. C., and Kazazian, H. H. (2012) Active human retrotransposons: variation and disease, Curr. Opin. Gen. Dev., 22, 1–13.CrossRefGoogle Scholar
  36. 36.
    Smith, Z. D., Chan, M. M., Mikkelsen, T. S., Gu, H., Gnirke, A., Regev, A., and Meissner, A. (2012) A unique regulatory phase of DNA methylation in the early mammalian embryo, Nature, 11, 339–344.CrossRefGoogle Scholar
  37. 37.
    Beraldi, R., Pottoggi, C., Sciamanna, I., Mattei, E., and Spadafora, C. (2006) Expression of LINE-1 retroposons is essential for murine preimplantation development, Mol. Reprod. Dev., 11, 279–287.CrossRefGoogle Scholar
  38. 38.
    Talens, R. P., Christensen, K., Putter, H., Willemsen, G., Christiansen, L., Kremer, D., Suchiman, H. E., Slagboom, P. E., Boomsma, D. I., and Heijmans, B. T. (2012) Epigenetic variation during the adult lifespan: cross-sectional and longitudinal data on monozygotic twin pairs, Aging Cell, 11, 694–703.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Teschendorff, A. E., Menon, U., Gentry-Maharaj, A., Ramus, S. J., Weisenberger, D. J., Shen, H., Campan, M., Noushmehr, H., Bell, C. G., and Maxwell, A. P. (2010) Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer, Genome Res., 20, 440–446.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Wallace, N. A., Belancio, V. P., and Deininger, P. L. (2008) L1 mobile element expression causes multiple types of toxicity, Gene, 419, 75–81.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Bell, J. T., Tsai, P. C., Yang, T. P., Pidsley, R., Nisbet, J., Glass, D., Mangino, M., Zhai, G., Zhang, F., and Valdes, A. (2012) Epigenome-wide scans identify differentially methylated regions for age and age-related phenotypes in a healthy ageing population, PLoS Genet., 8, 1002629.CrossRefGoogle Scholar
  42. 42.
    Bollati, V., Schwartz, J., Wright, R., Litonjua, A., Tarantini, L., Suh, H., Sparrow, D., Vokonas, P., and Baccarelli, A. (2009) Decline in genomic DNA methylation through aging in a cohort of elderly subjects, Mech. Ageing Dev., 130, 234–239.CrossRefPubMedGoogle Scholar
  43. 43.
    Cho, Y. H., Woo, H. D., Jang, Y., Porter, V., Christensen, S., Hamilton, R. F., Jr., and Chung, H. W. (2015) The association of LINE-1 hypomethylation with age and centromere positive micronuclei in human lymphocytes, PLoS One, 10, e0133909.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Jintaridth, P., and Mutirangura, A. (2010) Distinctive patterns of age-dependent hypomethylation in interspersed repetitive sequences, Physiol. Genom., 41, 194–200.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • M. S. Protasova
    • 1
    Email author
  • F. E. Gusev
    • 1
  • A. P. Grigorenko
    • 1
    • 2
  • I. L. Kuznetsova
    • 1
  • E. I. Rogaev
    • 1
    • 2
    • 3
  • T. V. Andreeva
    • 1
  1. 1.Vavilov Institute of General GeneticsRussian Academy of SciencesMoscowRussia
  2. 2.Department of PsychiatryUniversity of Massachusetts Medical School, Brudnick Neuropsychiatric Research InstituteWorcesterUSA
  3. 3.Faculty of Biology, Faculty of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations