Advertisement

Biochemistry (Moscow)

, Volume 82, Issue 7, pp 821–825 | Cite as

Escherichia coli signal peptidase recognizes and cleaves archaeal signal sequence

  • Majida Atta Muhammad
  • Samia Falak
  • Naeem RashidEmail author
  • Qurra-tul-Ann Afza Gardner
  • Nasir Ahmad
  • Tadayuki Imanaka
  • Muhammad Akhtar
Article

Abstract

Tk1884, an open reading frame encoding α-amylase in Thermococcus kodakarensis, was cloned with the native signal sequence and expressed in Escherichia coli. Heterologous gene expression resulted in secretion of the recombinant protein to the extracellular culture medium. Extracellular α-amylase activity gradually increased after induction. Tk1884 was purified from the extracellular medium, and its molecular mass determined by electrospray ionization mass spectrometry indicated the cleavage of a few amino acids. The N-terminal amino acid sequence of the purified Tk1884 was determined, which revealed that the signal peptide was cleaved between Ala26 and Ala27 by E. coli signal peptidase. To the best of our knowledge, this is the first report describing an archaeal signal sequence recognized and cleaved by E. coli signal peptidase.

Keywords

α-amylase Thermococcus kodakarensis signal peptide purification mass spectrometry N-terminal sequencing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10541_2017_463_MOESM1_ESM.pdf (830 kb)
Majida Atta Muhammad, Samia Falak, Naeem Rashid, Qurra-tul-Ann Afza Gardner, Nasir Ahmad, Tadayuki Imanaka, and Muhammad Akhtar, Escherichia coli Signal Peptidase Recognizes and Cleaves Archaeal Signal Sequence (ISSN 0006-2979, Biochemistry (Moscow), 2017, Vol. 82, No. 7, pp. 821–825)

References

  1. 1.
    Tuteja, R. (2005) Type I signal peptidase: an overview, Arch. Biochem. Biophys., 441, 107–111.CrossRefPubMedGoogle Scholar
  2. 2.
    Schatz, G., and Dobberstein, B. (1996) Common principles of protein translocation across membranes, Science, 271, 1519–1526.CrossRefPubMedGoogle Scholar
  3. 3.
    Bardy, S. L., Eichler, J., and Jarrell, K. F. (2003) Archaeal signal peptides–a comparative survey at the genome level, Protein Sci., 12, 1833–1843.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Von Heijne, G. (1990) Protein targeting signals, Curr. Opin. Cell Biol., 2, 604–608.CrossRefGoogle Scholar
  5. 5.
    Brockmeier, U., Caspers, M., Freudl, R., Jockwer, A., Noll, T., and Eggert, T. (2006) Systematic screening of all signal peptides from Bacillus subtilis: a powerful strategy in optimizing heterologous protein secretion in Gram-positive bacteria, J. Mol. Biol., 362, 393–402.CrossRefPubMedGoogle Scholar
  6. 6.
    Ng, S. Y., Chaban, B., VanDyke, D. J., and Jarrell, K. F. (2007) Archaeal signal peptidases, Microbiology, 153, 305–314.CrossRefPubMedGoogle Scholar
  7. 7.
    Lee, S. Y. (1996) High cell density culture of Escherichia coli, Trends Biotechnol., 14, 98–105.CrossRefPubMedGoogle Scholar
  8. 8.
    Marston, F. A. (1986) The purification of eukaryotic polypeptides synthesized in Escherichia coli, Biochem. J., 240, 1–12.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Thomas, J. G., and Baneyx, F. (1997) Divergent effects of chaperone overexpression and ethanol supplementation on inclusion body formation in recombinant Escherichia coli, Protein Expres. Purif., 11, 289–296.CrossRefGoogle Scholar
  10. 10.
    Hockney, R. C. (1994) Recent developments in heterologous protein production in Escherichia coli, Trends Biotechnol., 12, 456–463.CrossRefPubMedGoogle Scholar
  11. 11.
    Makrides, S. C. (1996) Strategies for achieving high-level expression of genes in Escherichia coli, Microbiol. Rev., 60, 512–538.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Shokri, A., Sanden, A., and Larsson, G. (2003) Cell and process design for targeting of recombinant protein into the culture medium of Escherichia coli, Appl. Microbiol. Biotechnol., 60, 654–664.CrossRefPubMedGoogle Scholar
  13. 13.
    Choi, J. H., and Lee, S. Y. (2004) Secretory and extracellular production of recombinant proteins using Escherichia coli, Appl. Microbiol. Biotechnol., 64, 625–635.CrossRefPubMedGoogle Scholar
  14. 14.
    Malik, B., Rashid, N., Ahmad, N., and Akhtar, M. (2013) Escherichia coli signal peptidase recognizes and cleaves the signal sequence of a-amylase originating from Bacillus licheniformis, Biochemistry (Moscow), 78, 958–962.CrossRefGoogle Scholar
  15. 15.
    Jalal, A., Rashid, N., Ahmed, N., Iftikhar, S., and Akhtar, M. (2011) Escherichia coli signal peptidase recognizes and cleaves the signal sequence of xylanase from a newly isolated Bacillus subtilis strain R5, Biochemistry (Moscow), 76, 347–349.CrossRefGoogle Scholar
  16. 16.
    Morikawa, M., Izawa, Y., Rashid, N., Hoaki, T., and Imanaka, T. (1994) Purification and characterization of a thermostable thiol protease from a newly isolated hyperthermophilic Pyrococcus sp., Appl. Environ. Microbiol., 60, 4559–4566.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Atomi, H., Fukui, T., Kanai, T., Morikawa, M., and Imanaka, T. (2004) Description of Thermococcus kodakaraensis sp. nov., a well studied hyperthermophilic archaeon previously reported as Pyrococcus sp. KOD1, Archaea, 1, 263–267.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Niehaus, F., Bertoldo, C., Kahler, M., and Antranikian, G. (1999) Extremophiles as a source of novel enzymes for industrial application, Appl. Microbiol. Biotechnol., 51, 711–729.CrossRefPubMedGoogle Scholar
  19. 19.
    Rosano, G. L., and Ceccarelli, E. A. (2014) Recombinant protein expression in Escherichia coli: advances and challenges, Front. Microbiol., 5,172.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Shahhoseini, M., Ziaee, A. A., and Ghaemi, N. (2003) Expression and secretion of an a-amylase gene from a native strain of Bacillus licheniformis in Escherichia coli by T7 promoter and putative signal peptide of the gene, J. Appl. Microbiol., 95, 1250–1254.CrossRefPubMedGoogle Scholar
  21. 21.
    Ikemura, H., Takagi, H., and Inouye, M. (1987) Requirement of prosequence for the production of active subtilisin E in Escherichia coli, J. Biol. Chem., 262, 7859–7864.PubMedGoogle Scholar
  22. 22.
    Zhang, Q., Yan, X., Zhang, L., and Tang, W. (2006) Cloning, sequence analysis, and heterologous expreßsion of a β-mannanase gene from Bacillus subtilis Z-2, Mol. Biol., 40, 368–374.CrossRefGoogle Scholar
  23. 23.
    Yamabhai, M., Emrat, S., Sukasem, S., Pesatcha, P., Jaruseranee, N., and Buranabanyat, B. (2008) Secretion of recombinant Bacillus hydrolytic enzymes using Escherichia coli expression systems, J. Biotechnol., 133, 50–57.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • Majida Atta Muhammad
    • 1
  • Samia Falak
    • 1
  • Naeem Rashid
    • 1
    Email author
  • Qurra-tul-Ann Afza Gardner
    • 1
  • Nasir Ahmad
    • 2
  • Tadayuki Imanaka
    • 3
  • Muhammad Akhtar
    • 1
    • 4
  1. 1.University of the Punjab, School of Biological SciencesLahorePakistan
  2. 2.University of the Punjab, Institute of Agricultural SciencesLahorePakistan
  3. 3.Ritsumeikan University, The Research Organization of Science and TechnologyKusatsu, ShigaJapan
  4. 4.University of Southampton, School of Biological SciencesSouthamptonUK

Personalised recommendations