Advertisement

Biochemistry (Moscow)

, Volume 82, Issue 7, pp 760–777 | Cite as

Design, synthesis, and some aspects of the biological activity of mitochondria-targeted antioxidants

  • G. A. KorshunovaEmail author
  • A. V. Shishkina
  • M. V. Skulachev
Review

Abstract

This review summarizes for the first time data on the design and synthesis of biologically active compounds of a new generation–mitochondria-targeted antioxidants, which are natural (or synthetic) p-benzoquinones conjugated via a lipophilic linker with (triphenyl)phosphonium or ammonium cations with delocalized charge. It also describes the synthesis of mitochondria-targeted antioxidants – uncouplers of oxidative phosphorylation – based on fluorescent dyes.

Keywords

mitochondria antioxidants uncouplers of oxidative phosphorylation benzoquinones phosphonium and ammonium cations 

Abbreviations

DMF

dimethylformamide

HPLC

high pressure liquid chromatography

MitoQ

[10-(4,5-dimethoxy-2-methyl-3,6-dioxocyclohexa-1,4-dien-1-yl)decyl](triphenyl)phosphonium bromide

NBD-Cl

4-chloro-7-nitro-2,1,3-benzoxadiazole; NMR, nuclear magnetic resonance

ROS

reactive oxygen species

SkQ1

[10-(4,5-dimethyl-3,6-dioxocyclohexa-1,4-dien-1-yl)decyl](triphenyl)phosphonium bro-mide

SkQ3

[10-(2,4,5-trimethyl-3,6-dioxocyclohexa-1,4-dien-1-yl)decyl](triphenyl)phosphonium bromide

SkQR1

(N-[(3Z)-9-[2-({[10-(4,5-dimethyl-3,6-dioxocyclohexa-1,4-dien-1-yl)decyl]oxy}carbonyl)phenyl]-6-(ethylamino)-2,7-dimethyl-3H-xanten-3-yliden]ethanaminium chloride

SkQT-m

10-(5-methyl-3,6-dioxocyclohexa-1,4-dien-1-yl)decyl](triphen-yl)phosphonium bromide

SkQT-p

[10-(4-methyl-3,6-dioxocyclohexa-1,4-dien-1-yl)decyl](triphenyl)phosphonium bro-mide

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Liberman, E. A., Topaly, V. P., Tsofina, L. M., Jasaitis, A. A., and Skulachev, V. P. (1969) Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria, Nature, 222, 1076–1078.CrossRefPubMedGoogle Scholar
  2. 2.
    Green, D. E. (1974) The electrochemical model for energy coupling in mitochondria, Biochim. Biophys. Acta, 346, 27–78.CrossRefPubMedGoogle Scholar
  3. 3.
    Severin, S. E., Skulachev, V. P., and Yaguzhinsky, L. S. (1970) The possible role of carnitine in transport of fatty acids through the mitochondrial membrane, Biochemistry (Moscow), 35, 1250–1252.Google Scholar
  4. 4.
    Smith, R. A., Porteous, C. M., Coulter, C. V., and Murphy, M. P. (1999) Selective targeting of an antioxidant to mitochondria, Eur. J. Biochem., 263, 709–716.CrossRefPubMedGoogle Scholar
  5. 5.
    James, A. M., Cocheme, H. M., Smith, R. A., and Murphy, M. P. (2005) Interactions of mitochondrial-targeted and untargeted ubiquinones with the mitochondrial respiratory chain and reactive oxygen species: implications for the use of exogenous ubiquinones as therapies and experimental tools, J. Biol. Chem., 280, 21295–21312.CrossRefPubMedGoogle Scholar
  6. 6.
    Murphy, M. P., and Smith, R. A. J. (2007) Targeting antioxidants to mitochondria by conjugation to lipophilic cations, Annu. Rev. Pharmacol. Toxicol., 47, 629–656.CrossRefPubMedGoogle Scholar
  7. 7.
    O’Malley, Y., Fink, B. D., Ross, N. C., Prisinzano, T. E., and Sivitz, W. I. (2006) Reactive oxygen and targeted antioxidant administration in endothelial cell mitochondria, J. Biol. Chem., 281, 39766–39775.CrossRefPubMedGoogle Scholar
  8. 8.
    Skulachev, V. P., Anisimov, V. N., Antonenko, Y. N., Bakeeva, L. E., Chernyak, B. V., Erichev, V. P., Filenko, O. F., Kalinina, N. I., Kapelko, V. I., Kolosova, N. G., Kopnin, B. P., Korshunova, G. A., Lichinitser, M. R., Obukhova, L. A., Pasyukova, E. G., Pisarenko, O. I., Roginsky, V. A., Ruuge, E. K., Senin, I. I., Severina, I. I., Skulachev, M. V., Spivak, I. M., Tashlitsky, V. N., Tkachuk, V. A., Vyssokikh, M. Y., Yaguzhinsky, L. S., and Zorov, D. B. (2009) An attempt to prevent senescence: a mitochondrial approach, Biochim. Biophys. Acta, 1787, 437–461.CrossRefPubMedGoogle Scholar
  9. 9.
    Skulachev, M. V., Antonenko, Y. N., Anisimov, V. N., Chernyak, B. V., Cherepanov, D. A., Chistyakov, V. A., Egorov, M. V., Kolosova, N. G., Korshunova, G. A., Lyamzaev, K. G., Plotnikov, E. Y., Roginsky, V. A., Savchenko, A. Y., Severina, I. I., Severin, F. F., Shkurat, T. P., Tashlitsky, V. N., Shidlovsky, K. M., Vyssokikh, M. Y., Zamyatnin, A. A., Zorov, D. B., and Skulachev, V. P. (2011) Mitochondrial-targeted plastoquinone derivatives. Effect on senescence and acute agerelated pathologies, Curr. Drug Targets, 12, 800–826.CrossRefPubMedGoogle Scholar
  10. 10.
    Lukashev, A. N., Skulachev, M. V., Ostapenko, V., Savchenko, A. Y., Pavshintsev, V. V., and Skulachev, V. P. (2014) Advances in development of rechargeable mitochondrial antioxidants, Prog. Mol. Biol. Transl. Sci., 127, 251–265.CrossRefPubMedGoogle Scholar
  11. 11.
    Skulachev, V. P. (2008) Method of acting upon organism by targeted delivery of biologically active substances into mitochondria, pharmaceutical composition for carrying out said method, and compound used for the purpose, Patent WO2007046729.Google Scholar
  12. 12.
    Skulachev, V. P. (2005) How to clean the dirtiest place in the cell: cationic antioxidants as intramitochondrial ROS scavengers, IUBMB Life, 57, 305–310.CrossRefPubMedGoogle Scholar
  13. 13.
    Cayuela, J. A., Manas, A-R. B., Jamesa, A. M., Smith, R. A. J., and Murphy, M. P. (2004) Fine-tuning the hydrophobicity of a mitochondria-targeted antioxidant, FEBS Lett., 571, 9–16.CrossRefGoogle Scholar
  14. 14.
    Antonenko, Y. N., Avetisyan, A. V., Cherepanov, D. A., Knorre, D. A., Korshunova, G. A., Markova, O. V., Ojovan, S. M., Perevoshchikova, I. V., Pustovidko, A. V., Rokitskaya, T. I., Severina, I. I., Simonyan, R. A., Smirnova, E. A., Sobko, A. A., Sumbatyan, N. V., Severin, F. F., and Skulachev, V. P. (2011) Derivatives of rhodamine 19 as mild mitochondria-targeted cationic uncouplers, J. Biol. Chem., 286, 17831–17840.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kelso, G. F., Porteous, C. M., Coulter, C. V., Hughes, G., Porteous, W. K., Ledgerwood, E. C., Smith, R. A., and Murphy, M. P. (2001) Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties, J. Biol. Chem., 276, 4588–4596.CrossRefPubMedGoogle Scholar
  16. 16.
    Kanazawa, A., Ikeda, T., and Endo, T. (1994) Synthesis and antimicrobial activity of dimethyl-and trimethyl-substituted phosphonium salts with alkyl chains of various lengths, Antimicrob. Agents Chemother., 38, 945–952.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Listvan, V. M. (1996) Phosphonium salts and ylides in diarylethylenes and diacylacetylenes synthesis, Funct. Mater., 3, 496–501.Google Scholar
  18. 18.
    Listvan, V. N., and Listvan, V. V. (2003) Reactions of phosphorus ylides with acyl chlorides: pathways and preparative potential, Russ. Chem. Rev., 72, 705–713.CrossRefGoogle Scholar
  19. 19.
    Voronchikhina, L. I., and Naryshkin, A. V. (2008) Synthesis and biological activity of quaternary salts of (triphenyl)phosphonium, Fundament. Res., 4, 113–114.Google Scholar
  20. 20.
    Galkina, I. V., and Egorova, S. N. (2009) Biological activity of quaternary salts of phosphonium and perspectives of their medical application, Med. Alm., 3, 142–145.Google Scholar
  21. 21.
    Patent WO 2007046729 A1 (2007) Method of acting upon organism by targeted delivery of biologically active substances into mitochondria, pharmaceutical composition for carrying out said method, and compound used for the purpose.Google Scholar
  22. 22.
    Liotta, D., Arbiser, J., Short, J. W., and Saindane, M. (1983) A simple inexpensive procedure for the large-scale production of alkyl quinones, J. Org. Chem., 48, 2933–2936.CrossRefGoogle Scholar
  23. 23.
    Veguillas, M., Ribagorda, M., and Carre, M. C. (2011) Regioselective alkylation of heteroaromatic compounds with 3-methyl-2-quinonyl boronic acids, Org. Lett., 13, 656–659.CrossRefPubMedGoogle Scholar
  24. 24.
    Fujiwara, Y., Domingo, V., Seiple, I. B., Gianatassio, R., Del Bel, M., and Baran, P. S. (2011) Practical C-H functionalization of quinones with boronic acids, J. Am. Chem. Soc., 133, 3292–3295.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Wang, D., Ge, B., Ju, A., Zhou, Y., Xu, C., and Ding, Y. (2015) Ir-catalyzed arylation, alkylation of quinones with boronic acids through C–C coupling, J. Organometal Chem., 780, 30–33.CrossRefGoogle Scholar
  26. 26.
    Jacobsen, N., and Torsell, K. (1972) Synthesis of naturally occurring quinones. Alkylation with the silver ion–peroxydisulphate–carboxylic acid system, Justus Liebigs Ann. Chem., 763, 135–140.CrossRefGoogle Scholar
  27. 27.
    Ashnagar, A., Bruce, J. M., and Lloyd-Williams, P. (1988) Synthesis of 2,3-dialkyl-6,7-dichloro-and 2,3-dialkyl-6,7-dibromo-1,4-naphthoquinones, J. Chem. Soc. Perkin Trans., 1, 559–561.CrossRefGoogle Scholar
  28. 28.
    Gu, L., Cuihua, L., Jingxing, X., and King, T. E. (1990) Synthesis and inhibitory activity of bromoquinone derivatives, Tetrahedron, 46, 3199–3210.CrossRefGoogle Scholar
  29. 29.
    Matyushin, A. A., Tsarev, D. A., Grigorenko, M. A., Fedorov, I. I., Ramenskaya, G. N., Tashlitsky, V. N., and Skulachev, V. P. (2008) Estimation of the lipophilicity of some new generation antioxidants, Pharmacy, 5, 23–29.Google Scholar
  30. 30.
    Tsarev, D. A., Zverev, R. S., Kazmina, E. M., Tashlitsky, V. N., and Skulachev, V. P. (2013) Evaluating stability of plastoquinone cation derivative in Visomitin eye drops, Pharm. Chem. J., 47, 219–224.CrossRefGoogle Scholar
  31. 31.
    Skulachev, M. V., Skulachev, V. P., Zamyatnin, A. A., Efremov, E. S., Tashlitsky, V. N., Zinovkin, R. A., Egorov, M. V., Friedhoff, L. T., Pletjushkina, O. Yu., Andreev-Andrievsky, A. A., and Zinevich, T. V. (2012) Oral Formulations of Mitochondrially-Targeted Antioxidants and Their Preparation and Use. Patent WO 2012167236.Google Scholar
  32. 32.
    Skulachev, V. P., Antonenko, Y. N., Cherepanov, D. A., Chernyak, B. V., Izyumov, D. S., Khailova, L. S., Klishin, S. S., Korshunova, G. A., Lyamzaev, K. G., Pletjushkina, O. Y., Roginsky, V. A., Rokitskaya, T. I., Severin, F. F., Severina, I. I., Simonyan, R. A., Skulachev, M. V., Sumbatyan, N. V., Sukhanova, E. I., Tashlitsky, V. N., Trendeleva, T. A., Vyssokikh, M. Y., and Zvyagilskaya, R. A. (2010) Prevention of cardiolipin oxidation and fatty acid cycling as two antioxidant mechanisms of cationic derivatives of plastoquinone (SkQs), Biochim. Biophys. Acta, 1797, 878–889.CrossRefPubMedGoogle Scholar
  33. 33.
    Severin, F. F., Severina, I. I., Antonenko, Yu. N., Rokitskaya, T. I., Cherepanov, D. A., Mokhova, E. N., Vyssokikh, M. Yu., Pustovidko, A. V., Markova, O. V., Yaguzhinsky, L. S., Korshunova, G. A., Sumbatyan, N. V., Skulachev, M. V., and Skulachev, V. P. (2010) Penetrating cation/fatty acid anion pair as a mitochondria-targeted protonophore, Proc. Natl. Acad. Sci. USA, 107, 663–668.CrossRefPubMedGoogle Scholar
  34. 34.
    Stefanova, N. A., Muraleva, N. A., Skulachev, V. P., and Kolosova, N. G. (2014) Alzheimer’s disease-like pathology in senescence-accelerated OXYS rats can be partially retarded with mitochondria-targeted antioxidant SkQ1, J. Alzheimer’s Dis., 38, 681–694.Google Scholar
  35. 35.
    Isaev, N. K., Stelmashook, E. V., Genrikhs, E. E., Korshunova, G. A., Sumbatyan, N. V., Kapkaeva, M. R., and Skulachev, V. P. (2016) Neuroprotective properties of mitochondria-targeted antioxidants of the SkQ-type, Rev. Neurosci., 27, 849–855.CrossRefPubMedGoogle Scholar
  36. 36.
    Feniouk, B. A., and Skulachev, V. P. (2017) Cellular and molecular mechanisms of action of mitochondria-targeted antioxidants, Curr. Aging Sci., 10, 41–48.CrossRefPubMedGoogle Scholar
  37. 37.
    Fetisova, E. K., Chernyak, B. V., Korshunova, G. A., Muntyan, M. S., and Skulachev, V. P. (2017) Mitochondria-targeted antioxidants as a prospective therapeutic strategy for multiple sclerosis, Curr. Med. Chem., 24, 1–29.CrossRefGoogle Scholar
  38. 38.
    Nazarov, P. A., Osterman, I. A., Tokarchuk, A. V., Karakozova, M. V., Korshunova, G. A., Lyamzaev, K. G., Skulachev, M. V., Kotova, E. A., Skulachev, V. P., and Antonenko, Y. N. (2017) Mitochondria-targeted antioxidants as highly effective antibiotics, Sci. Rep., in press.Google Scholar
  39. 39.
    Skulachev, V. P., Holtze, S., Vyssokikh, M. Y., Bakeeva, L. E., Skulachev, M. V., Markov, A. V., Hildebrandt, T. B., and Sadovnichii, V. A. (2017) Neoteny, prolongation of youth: from naked mole rats to “naked apes” (humans), Physiol. Rev., 97, 699–720.CrossRefPubMedGoogle Scholar
  40. 40.
    Heitz, S. (1965) New preparation of 5-methoxy-toluquinone, Compt. Rend., 261, 3158–3161.Google Scholar
  41. 41.
    Eremeev, S. A., Motovilov, K. A., Volkov, E. M., and Yaguzhinsky, L. S. (2011) SkQ3: the new member of the class of membranotropic uncouplers, Biol. Membr., 28, 339–344.Google Scholar
  42. 42.
    Rud’, N. K. (2015) The Developing of the Technology of Drugs from the Seeds of Black Cumin and Rationing Their Quality: Candidate of pharmacy sciences dissertation [in Russian], Krasnodar.Google Scholar
  43. 43.
    Skulachev, V. P. (2013) Cationic antioxidants as a powerful tool against mitochondrial oxidative stress, Biochem. Biophys. Res. Comm., 441, 275–279.CrossRefPubMedGoogle Scholar
  44. 44.
    Severina, I. I., Severin, F. F., Korshunova, G. A., Sumbatyan, N. V., Ilyasova, T. M., Simonyan, R. A., Rogov, A. G., Trendeleva, T. A., Zvyagilskaya, R. A., Dugina, V. B., Domnina, L. V., Fetisova, E. K., Lyamzaev, K. G., Vyssokikh, M. Y., Chernyak, B. V., Skulachev, M. V., Skulachev, V. P., and Sadovnichii, V. A. (2013) In search of novel highly active mitochondria-targeted antioxidants: thymoquinone and its cationic derivatives, FEBS Lett., 587, 2018–2024.CrossRefPubMedGoogle Scholar
  45. 45.
    Skulachev, V. P., and Skulachev, M. V. (2015) Mitochondria-Targeted Thymoquinones and Toluquinones, Patent WO 2015063553 A2.Google Scholar
  46. 46.
    Genrikhs, E. E., Stelmashook, E. V., Popova, O. V., Kapay, N. A., Korshunova, G. A., Sumbatyan, N. V., Skrebitsky, V. G., Skulachev, V. P., and Isaev, N. K. (2015) Mitochondria-targeted antioxidant SkQT1 decreases trauma-induced neurological deficit in rat and prevents amyloid-ß-induced impairment of long-term potentiation in rat hippocampal slices, J. Drug Target., 23, 347–352.CrossRefPubMedGoogle Scholar
  47. 47.
    Carnell, A. J., Hale, I., Denis, S., Wanders, R. J., Isaacs, W. B., Wilson, B. A., and Ferdinandusse, S. (2007) Design, synthesis, and in vitro testing of alpha-methylacyl-CoA racemase inhibitors, J. Med. Chem., 50, 2700–2707.CrossRefPubMedGoogle Scholar
  48. 48.
    Zhu, Y., Soroka, D. N., and Sang, S. (2012) Synthesis and inhibitory activities against colon cancer cell growth and proteasome of alkylresorcinols, J. Agric. Food Chem., 60, 8624–8631.CrossRefPubMedGoogle Scholar
  49. 49.
    Xie, Y., Sun, M., Zhou, H., Cao, Q., Gao, K., Niu, C., and Yang, H. (2013) Enantiospecific total synthesis of (+)-tanikolide via a key [2,3]-Meisenheimer rearrangement with an allylic amine N-oxide-directed epoxidation and a one-pot trichloroisocyanuric acid N-debenzylation and N-chlorination, J. Org. Chem., 78, 10251–10263.CrossRefPubMedGoogle Scholar
  50. 50.
    Khailova, L. S., Nazarov, P. A., Sumbatyan, N. V., Korshunova, G. A., Rokitskaya, T. I., Dedukhova, V. I., Antonenko, Y. N., and Skulachev, V. P. (2015) Uncoupling and toxic action of alkyltriphenylphosphonium cations on mitochondria and the bacterium Bacillus subtilis as a function of alkyl chain length, Biochemistry (Moscow), 80, 1589–1597.CrossRefGoogle Scholar
  51. 51.
    Patent US 2108765 (1938) Preserving and Disinfecting Media.Google Scholar
  52. 52.
    Devinsky, E., Lacko, I., Mlynarcik, D., Racansky, V., and Krasnec, L. (1985) Relationship between critical micelle concentrations and minimum inhibitory concentrations for some non-aromatic quaternary ammonium salts and amine oxide, Tenside Deterg., 22, 10–15.Google Scholar
  53. 53.
    Diz, M., Manresa, A., Pinazo, A., Erra, P., and Infante, M. R. (1994) Synthesis, surface active properties and antimicrobial activity of new bis quaternary ammonium com-pounds, J. Chem. Soc. Perkin Trans., 2, 1871–1879.CrossRefGoogle Scholar
  54. 54.
    Menger, F. M., and Keiper, J. S. (2000) Gemini surfactants, Angew. Chem. Int. Ed., 39, 1906–1920.CrossRefGoogle Scholar
  55. 55.
    Tischer, M., Pradel, G., Ohlsen, K., and Holzgrabe, U. (2012) Quaternary ammonium salts and their antimicrobial potential: targets or nonspecific interactions? Chem. Med. Chem., 7, 22–31.CrossRefPubMedGoogle Scholar
  56. 56.
    Antonenko, Y. N., Avetisyan, A. V., Cherepanov, D. A., Knorre, D. A., Korshunova, G. A., Markova, O. V., Ojovan, S. M., Perevoshchikova, I. V., Pustovidko, A. V., Rokitskaya, T. I., Severina, I. I., Simonyan, R. A., Smirnova, E. A., Sobko. A. A., Sumbatyan, N. V., Severin, F. F., and Skulachev, V. P. (2011) Derivatives of rhodamine 19 as mild mitochondria-targeted cationic uncouplers, J. Biol. Chem., 286, 17831–17840.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Khailova, L. S., Silachev, D. N., Rokitskaya, T. I., Avetisyan, A. V., Lyamzaev, K. G., Severina, I. I., Il’yasova, T. M., Gulyaev, M. V., Dedukhova, V. I., Trendeleva, T. A., Plotnikov, E. Y., Zvyagilskaya, R. A., Chernyak, B. V., Zorov, D. B., Antonenko, Y. N., and Skulachev, V. P. (2014) A short-chain alkyl derivative of rhodamine 19 acts as a mild uncoupler of mitochondria and a neuroprotector, Biochim. Biophys. Acta, 1837, 1739–1747.CrossRefPubMedGoogle Scholar
  58. 58.
    Fetisova, E. K., Antoschina, M. M., Cherepanynets, V. D., Izumov, D. S., Kireev, I. I., Kireev, R. I., Lyamzaev, K. G., Riabchenko, N. I., Chernyak, B. V., and Skulachev, V. P. (2015) Radioprotective effects of mitochondria-targeted antioxidant SkQR1, Radiat. Res., 183, 64–71.CrossRefPubMedGoogle Scholar
  59. 59.
    Fierz-David, H. E., and Rufener, J-P. (1934) Zur Kenntnis des Mono-äthyl-o-toluidins und einiger daraus erhältlicher Rhodamine, Helv. Chim. Acta, 17, 1452–1459.CrossRefGoogle Scholar
  60. 60.
    Patent RF 2527519c2 (2014).Google Scholar
  61. 61.
    Rokitskaya, T. I., Sumbatyan, N. V., Tashlitsky, V. N., Korshunova, G. A., Antonenko, Y. N., and Skulachev, V. P. (2010) Mitochondria-targeted penetrating cations as carriers of hydrophobic anions through lipid membranes, Biochim. Biophys. Acta, 1798, 1698–1706.CrossRefPubMedGoogle Scholar
  62. 62.
    Rokitskaya, T. I., Denisov, S. S., Korshunova, G. A., and Antonenko, Y. N. (2015) 10th Int. Frumkin Symp. on Electrochemistry, 21-23 October, Moscow, Book of Abstracts,271.Google Scholar
  63. 63.
    Samorsorn, S. (2005) PhD Thesis: Development of Berberine-Based Derivatives as Novel Antimicrobial Agent, Department of Chemistry, University of Wollongong, Australia, p.213.Google Scholar
  64. 64.
    Lyamzaev, K. G., Pustovidko, A. V., Simonyan, R. A., Rokitskaya, T. I., Domnina, L. V., Ivanova, O. Y., Severina, I. I., Sumbatyan, N. V., Korshunova, G. A., Tashlitsky, V. N., Roginsky, V. A., Antonenko, Y. N., Skulachev, M. V., Chernyak, B. V., and Skulachev, V. P. (2011) Novel mitochondria-targeted antioxidants: plastoquinone conjugated with cationic plant alkaloids berberine and palmatine, Pharm. Res., 28, 2883–2895.CrossRefPubMedGoogle Scholar
  65. 65.
    Pustovidko, A. V., Rokitskaya, T. I., Severina, I. I., Simonyan, R. A., Trendeleva, T. A., Lyamzaev, K. G., Antonenko, Yu. N., Rogov, A. G., Zvyagilskaya, R. A., Skulachev, V. P., and Chernyak, B. V. (2013) Derivatives of the cationic plant alkaloids berberine and palmatine amplify protonophorous activity of fatty acids in model membranes and mitochondria, Mitochondrion, 13, 520–525.CrossRefPubMedGoogle Scholar
  66. 66.
    Urano, Y., Kamiya, M., Kanda, K., Ueno, T., Hirose, K., and Nagano, T. (2005) Evolution of fluorescein as a platform for finely tunable fluorescence probes, J. Am. Chem. Soc., 127, 4888–4894.CrossRefPubMedGoogle Scholar
  67. 67.
    Shchepinova, M. M., Denisov, S. S., Kotova, E. A., Khailova, L. S., Knorre, D. A., Korshunova, G. A., Tashlitsky, V. N., Severin, F. F., and Antonenko, Y. N. (2014) Dodecyl and octyl esters of fluorescein as protonophores and uncouplers of oxidative phosphorylation in mitochondria at submicromolar concentrations, Biochim. Biophys. Acta, 1837, 149–158.CrossRefPubMedGoogle Scholar
  68. 68.
    Brown, L., Holling, P. J., Johnston, G. A., Suckling, C. J., and Valivety, R. H. (1990) The synthesis of some water insoluble dyes for the measurement of pH in water immiscible solvent, J. Chem. Soc. Perkin. Trans., 1, 3349–3353.CrossRefGoogle Scholar
  69. 69.
    Denisov, S. S., Kotova, E. A., Plotnikov, E. Y., Tikhonov, A. A., Zorov, D. B., Korshunova, G. A., and Antonenko, Y. N. (2014) A mitochondria-targeted protonophoric uncoupler derived from fluorescein, Chem. Commun., 50, 15366–15369.CrossRefGoogle Scholar
  70. 70.
    Antonenko, Y. N., Denisov, S. S., Silachev, D. N., Khailova, L. S., Jankauskas, S. S., Rokitskaya, T. I., Danilina, T. I., Kotova, E. A., Korshunova, G. A., Plotnikov, E. Y., and Zorov, D. B. (2016) A long-linker conjugate of fluorescein and triphenylphosphonium as mitochondria-targeted uncoupler and fluorescent neuro-and nephroprotector, Biochim. Biophys. Acta, 1860, 2463–2473.CrossRefPubMedGoogle Scholar
  71. 71.
    Chattopadhyay, A. (1990) Chemistry and biology of N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-labeled lipids: fluores-cent probes of biological and model membranes, Chem. Phys. Lipids, 53, 1–15.CrossRefPubMedGoogle Scholar
  72. 72.
    Cardoso, R. M., Martins, P. A., Gomes, F., Doktorovova, S., Vaz, W. L., and Moreno, M. J. (2011) Chain-length dependence of insertion, desorption, and translocation of a homologous series of 7-nitrobenz-2-oxa-1,3-diazol-4-yl-labeled aliphatic amines in membranes, J. Phys. Chem. B, 115, 10098–10108.CrossRefPubMedGoogle Scholar
  73. 73.
    Uchiyama, S., Santa, T., Okiyama, N., Fukushima, T., and Imai, K. (2001) Fluorogenic and fluorescent labeling reagents with a benzofurazan skeleton, Biomed. Chromatogr., 15, 295–318.CrossRefPubMedGoogle Scholar
  74. 74.
    Denisov, S. S., Kotova, E. A., Khailova, L. S., Korshunova, G. A., and Antonenko, Y. N. (2014) Tuning the hydrophobicity overcomes unfavorable deprotonation making octylamino-substituted 7-nitrobenz-2-oxa-1,3-diazole (n-octylamino-NBD) a protonophore and uncoupler of oxidative phosphorylation in mitochondria, Bioelectro-chemistry, 98, 30–38.CrossRefGoogle Scholar
  75. 75.
    Kotova, E. A., Denisov, S. S., Khailova, L. S., Nazarov, P. A., Korshunova, G. A., and Antonenko, Y. N. (2016) Arylamino-substituted derivatives of 7-nitro-benzoxodiazol as protonophoric uncouplers of mitochondrial oxidative phosphorylation and antimicrobial agents, Biochim. Biophys. Acta, 1857, Supplement, EBEC Abstracts, e120.CrossRefGoogle Scholar
  76. 76.
    Yani, E. V., Katargina, L. A., Chesnokova, N. B, Beznos, O. V., Savchenko, A. Yu., Vygodin, V. A., Gudkova, E. Yu., Zamyatnin, A. A., Jr., and Skulachev, M. V. (2012) The first experience of using the drug Vizomitin in the treatment of “dry eyes”, Prakt. Med., 4, 134–137.Google Scholar
  77. 77.
    Maksimova, O. I., Karger, E. M., and Skulachev, M. V. (2014) Prevention and treatment of corneal injury in people wearing soft contact lenses, Med. Sovet (Medical Council), 17, 134–137.Google Scholar
  78. 78.
    Brzheskiy, V. V., Efimova, E. L., Vorontsova, T. N., Alekseev, V. N., Gusarevich, O. G., Shaidurova, K. N., Ryabtseva, A. A., Andryukhina, O. M., Kamenskikh, T. G., Sumarokova, E. S., Miljudin, E. S., Egorov, E. A., Lebedev, O. I., Surov, A. V., Korol, A. R., Nasinnyk, O., Bezditko, P. A., Muzhychuk, O. P., Vygodin, V. A., Yani, E. V., Savchenko, A. Y., Karger, E. M., Fedorkin, O. N., Mironov, A. N., Ostapenko, V., Popeko, N. A., Skulachev, V. P., and Skulachev, M. V. (2015) Results of a multicenter, randomized, double-masked, placebo-controlled clinical study of the efficacy and safety of Visomitin eye drops in patients with dry eye syndrome, Adv. Ther., 32, 1263–1279.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Petrov, A., Perekhvatova, N., Skulachev, M., Stein, L., and Ousler, G. (2016) SkQ1 ophthalmic solution for dry eye treatment: results of a phase 2 safety and efficacy clinical study in the environment and during challenge in the controlled adverse environment model, Adv. Ther., 33, 96–115.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Erichev, V. P., Kozlova, I. V., Reshchikova, V. S., Alekseev, V. N., Levko, M. A., Zamyatnin, A. A., Jr., Gudkova, E. Yu., Kovaleva, N. A., Vygodin, V. A., Fedorkin, O. N., Ostapenko, V., Senin, I. I., Savchenko, A. Yu., Popeko, N. A., Skulachev, V. P., and Skulachev, M. V. (2016) Efficacy and safety of Visomitin® eye drops, in patients with age-related cataract: a randomized, double-blind, placebo-controlled clinical study, Natl. J. Glaukoma, 15, 61–69.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • G. A. Korshunova
    • 1
    Email author
  • A. V. Shishkina
    • 1
  • M. V. Skulachev
    • 1
  1. 1.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations