Thiamine induces long-term changes in amino acid profiles and activities of 2-oxoglutarate and 2-oxoadipate dehydrogenases in rat brain

  • 83 Accesses

  • 5 Citations


Molecular mechanisms of long-term changes in brain metabolism after thiamine administration (single i.p. injection, 400 mg/kg) were investigated. Protocols for discrimination of the activities of the thiamine diphosphate (ThDP)-dependent 2-oxoglutarate and 2-oxoadipate dehydrogenases were developed to characterize specific regulation of the multienzyme complexes of the 2-oxoglutarate (OGDHC) and 2-oxoadipate (OADHC) dehydrogenases by thiamine. The thiamine-induced changes depended on the brain-region-specific expression of the ThDP-dependent dehydrogenases. In the cerebral cortex, the original levels of OGDHC and OADHC were relatively high and not increased by thiamine, whereas in the cerebellum thiamine upregulated the OGDHC and OADHC activities, whose original levels were relatively low. The effects of thiamine on each of the complexes were different and associated with metabolic rearrangements, which included (i) the brain-region-specific alterations of glutamine synthase and/or glutamate dehydrogenase and NADP+-dependent malic enzyme, (ii) the brain-region-specific changes of the amino acid profiles, and (iii) decreased levels of a number of amino acids in blood plasma. Along with the assays of enzymatic activities and average levels of amino acids in the blood and brain, the thiamine-induced metabolic rearrangements were assessed by analysis of correlations between the levels of amino acids. The set and parameters of the correlations were tissue-specific, and their responses to the thiamine treatment provided additional information on metabolic changes, compared to that gained from the average levels of amino acids. Taken together, the data suggest that thiamine decreases catabolism of amino acids by means of a complex and long-term regulation of metabolic flux through the tricarboxylic acid cycle, which includes coupled changes in activities of the ThDP-dependent dehydrogenases of 2-oxoglutarate and 2-oxoadipate and adjacent enzymes.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA



glutamate dehydrogenase


glutamine synthase


malate dehydrogenase


NADP+-dependent malic enzyme


2-oxoadipate dehydrogenase


2-oxoadipate dehydrogenase complex


2-oxoglutarate dehydrogenase


2-oxoglutarate dehydrogenase complex


pyruvate dehydrogenase complex


tricarboxylic acid


thiamine diphosphate


  1. 1.

    Bunik, V. I. (2014) Benefits of thiamin (vitamin B1) administration in neurodegenerative diseases may be due to both the coenzyme and non-coenzyme roles of thiamin, J. Alzheimer’s Dis. Parkinson., 4, 173–177.

  2. 2.

    Butterworth, R. F., and Heroux, M. (1989) Effect of pyrithiamine treatment and subsequent thiamine rehabilitation on regional cerebral amino acids and thiaminedependent enzymes, J. Neurochem., 52, 1079–1084.

  3. 3.

    Gibson, G. E., Blass, J. P., Beal, M. F., and Bunik, V. (2005) The alpha-ketoglutarate-dehydrogenase complex: a mediator between mitochondria and oxidative stress in neurodegeneration, Mol. Neurobiol., 31, 43–63.

  4. 4.

    Artiukhov, A. V., Bunik, V. I., and Graf, A. V. (2016) Directed regulation of multienzyme complexes of the 2-oxo acid dehydrogenases using phosphonate and phosphinate analogs of 2-oxo acids, Biochemistry (Moscow), 81, 1791–1816.

  5. 5.

    Graf, A., Trofimova, L., Loshinskaja, A., Mkrtchyan, G., Strokina, A., Lovat, M., Tylicky, A., Strumilo, S., Bettendorff, L., and Bunik, V. I. (2013) Up-regulation of 2-oxoglutarate dehydrogenase as a stress response, Int. J. Biochem. Cell Biol., 45, 175–189.

  6. 6.

    Trofimova, L. K., Araujo, W. L., Strokina, A. A., Fernie, A. R., Bettendorff, L., and Bunik, V. I. (2012) Consequences of the alpha-ketoglutarate dehydrogenase inhibition for neuronal metabolism and survival: implications for neurodegenerative diseases, Curr. Med. Chem., 19, 5895–5906.

  7. 7.

    Navarro, D., Zwingmann, C., and Butterworth, R. F. (2008) Region-selective alterations of glucose oxidation and amino acid synthesis in the thiamine-deficient rat brain: a re-evaluation using 1H/13C nuclear magnetic resonance spectroscopy, J. Neurochem., 106, 603–612.

  8. 8.

    Bunik, V. I., Tylicki, A., and Lukashev, N. V. (2013) Thiamin diphosphate-dependent enzymes: from enzymology to metabolic regulation, drug design and disease models, FEBS J., 280, 6412–6442.

  9. 9.

    Bunik, V. I., Schloss, J. V., Pinto, J. T., Dudareva, N., and Cooper, A. J. (2011) A survey of oxidative paracatalytic reactions catalyzed by enzymes that generate carbanionic intermediates: implications for ROS production, cancer etiology, and neurodegenerative diseases, Adv. Enzymol. Rel. Areas Mol. Biol., 77, 307–360.

  10. 10.

    Wang, D., and Hazell, A. S. (2010) Microglial activation is a major contributor to neurologic dysfunction in thiamine deficiency, Biochem. Biophys. Res. Commun., 402, 123–128.

  11. 11.

    Spinas, E., Saggini, A., Kritas, S. K., Cerulli, G., Caraffa, A., Antinolfi, P., Pantalone, A., Frydas, A., Tei, M., Speziali, A., Saggini, R., Pandolfi, F., and Conti, P. (2015) Crosstalk between vitamin B and immunity, J. Biol. Regul. Homeost. Agents, 29, 283–288.

  12. 12.

    Diaz-Munoz, M. D., Bell, S. E., Fairfax, K., Monzon-Casanova, E., Cunningham, A. F., Gonzalez-Porta, M., Andrews, S. R., Bunik, V. I., Zarnack, K., Curk, T., Heggermont, W. A., Heymans, S., Gibson, G. E., Kontoyiannis, D. L., Ule, J., and Turner, M. (2015) The RNA-binding protein HuR is essential for the B cell antibody response, Nat. Immunol., 16, 415–425.

  13. 13.

    Bunik, V. I., and Degtyarev, D. (2008) Structure-function relationships in the 2-oxo acid dehydrogenase family: substrate-specific signatures and functional predictions for the 2-oxoglutarate dehydrogenase-like proteins, Proteins, 71, 874–890.

  14. 14.

    Hagen, J., te Brinke, H., Wanders, R. J., Knegt, A. C., Oussoren, E., Hoogeboom, A. J., Ruijter, G. J., Becker, D., Schwab, K. O., Franke, I., Duran, M., Waterham, H. R., Sass, J. O., and Houten, S. M. (2015) Genetic basis of alpha-aminoadipic and alpha-ketoadipic aciduria, J. Inher. Metab. Dis., 38, 873–879.

  15. 15.

    Stiles, A. R., Venturoni, L., Mucci, G., Elbalalesy, N., Woontner, M., Goodman, S., and Abdenur, J. E. (2015) New cases of DHTKD1 mutations in patients with 2-ketoadipic aciduria, JIMD Rep., 25, 15–19.

  16. 16.

    Danhauser, K., Sauer, S. W., Haack, T. B., Wieland, T., Staufner, C., Graf, E., Zschocke, J., Strom, T. M., Traub, T., Okun, J. G., Meitinger, T., Hoffmann, G. F., Prokisch, H., and Kolker, S. (2012) DHTKD1 mutations cause 2-aminoadipic and 2-oxoadipic aciduria, Am. J. Hum. Genet., 91, 1082–1087.

  17. 17.

    Xu, W. Y., Gu, M. M., Sun, L. H., Guo, W. T., Zhu, H. B., Ma, J. F., Yuan, W. T., Kuang, Y., Ji, B. J., Wu, X. L., Chen, Y., Zhang, H. X., Sun, F. T., Huang, W., Huang, L., Chen, S. D., and Wang, Z. G. (2012) A nonsense mutation in DHTKD1 causes Charcot–Marie–Tooth disease type 2 in a large Chinese pedigree, Am. J. Hum. Genet., 91, 1088–1094.

  18. 18.

    Hallen, A., Jamie, J. F., and Cooper, A. J. (2013) Lysine metabolism in mammalian brain: an update on the importance of recent discoveries, Amino Acids, 45, 1249–1272.

  19. 19.

    Dunckelmann, R. J., Ebinger, F., Schulze, A., Wanders, R. J., Rating, D., and Mayatepek, E. (2000) 2-Ketoglutarate dehydrogenase deficiency with intermittent 2-ketoglutaric aciduria, Neuropediatrics, 31, 35–38.

  20. 20.

    Bunik, V., Westphal, A. H., and De Kok, A. (2000) Kinetic properties of the 2-oxoglutarate dehydrogenase complex from Azotobacter vinelandii evidence for the formation of a precatalytic complex with 2-oxoglutarate, FEBS J., 267, 3583–3591.

  21. 21.

    Bunik, V. I., and Pavlova, O. G. (1993) Inactivation of alphaketoglutarate dehydrogenase during oxidative decarboxylation of alpha-ketoadipic acid, FEBS Lett., 323, 166–170.

  22. 22.

    Sauer, S. W., Opp, S., Hoffmann, G. F., Koeller, D. M., Okun, J. G., and Kolker, S. (2011) Therapeutic modulation of cerebral L-lysine metabolism in a mouse model for glutaric aciduria type I, Brain, 134, 157–170.

  23. 23.

    Mkrtchyan, G., Aleshin, V., Parkhomenko, Y., Kaehne, T., Luigi Di Salvo, M., Parroni, A., Contestabile, R., Vovk, A., Bettendorff, L., and Bunik, V. (2015) Molecular mechanisms of the non-coenzyme action of thiamin in brain: biochemical, structural and pathway analysis, Sci. Rep., 5, 12583.

  24. 24.

    Aleshin, V. A., Artiukhov, A. V., Oppermann, H., Kazantsev, A. V., Lukashev, N. V., and Bunik, V. I. (2015) Mitochondrial impairment may increase cellular NAD(P)H: resazurin oxidoreductase activity, perturbing the NAD(P)H-based viability assays, Cells, 4, 427–451.

  25. 25.

    Araujo, W. L., Trofimova, L., Mkrtchyan, G., Steinhauser, D., Krall, L., Graf, A., Fernie, A. R., and Bunik, V. I. (2013) On the role of the mitochondrial 2-oxoglutarate dehydrogenase complex in amino acid metabolism, Amino Acids, 44, 683–700.

  26. 26.

    Bunik, V. I., and Fernie, A. R. (2009) Metabolic control exerted by the 2-oxoglutarate dehydrogenase reaction: a cross-kingdom comparison of the crossroad between energy production and nitrogen assimilation, Biochem. J., 422, 405–421.

  27. 27.

    Levintow, L. (1954) The glutamyltransferase activity of normal and neoplastic tissues, J. Natl. Cancer Inst., 15, 347–352.

  28. 28.

    Mkrtchyan, G., Graf, A., Bettendorff, L., and Bunik, V. (2016) Cellular thiamine status is coupled to function of mitochondrial 2-oxoglutarate dehydrogenase, Neurochem. Int., 101, 66–75.

  29. 29.

    Graf, A., Kabysheva, M., Klimuk, E., Trofimova, L., Dunaeva, T., Zundorf, G., Kahlert, S., Reiser, G., Storozhevykh, T., Pinelis, V., Sokolova, N., and Bunik, V. (2009) Role of 2-oxoglutarate dehydrogenase in brain pathologies involving glutamate neurotoxicity, J. Mol. Catal. B Enzym., 61, 80–87.

  30. 30.

    Cooper, A. J., and Jeitner, T. M. (2016) Central role of glutamate metabolism in the maintenance of nitrogen homeostasis in normal and hyperammonemic brain, Biomolecules, 6.

  31. 31.

    Bunik, V., Mkrtchyan, G., Grabarska, A., Oppermann, H., Daloso, D., Araujo, W. L., Juszczak, M., Rzeski, W., Bettendorff, L., Fernie, A. R., Meixensberger, J., Stepulak, A., and Gaunitz, F. (2016) Inhibition of mitochondrial 2-oxoglutarate dehydrogenase impairs viability of cancer cells in a cell-specific metabolism-dependent manner, Oncotarget, 7, 26400–26421.

  32. 32.

    Xu, W., Zhu, H., Gu, M., Luo, Q., Ding, J., Yao, Y., Chen, F., and Wang, Z. (2013) DHTKD1 is essential for mitochondrial biogenesis and function maintenance, FEBS Lett., 587, 3587–3592.

  33. 33.

    Wu, Y., Williams, E. G., Dubuis, S., Mottis, A., Jovaisaite, V., Houten, S. M., Argmann, C. A., Faridi, P., Wolski, W., Kutalik, Z., Zamboni, N., Auwerx, J., and Aebersold, R. (2014) Multilayered genetic and omics dissection of mitochondrial activity in a mouse reference population, Cell, 158, 1415–1430.

  34. 34.

    Goncalves, R. L., Bunik, V. I., and Brand, M. D. (2016) Production of superoxide/hydrogen peroxide by the mitochondrial 2-oxoadipate dehydrogenase complex, Free Radic. Biol. Med., 91, 247–255.

  35. 35.

    Wang, M., Weiss, M., Simonovic, M., Haertinger, G., Schrimpf, S. P., Hengartner, M. O., and von Mering, C. (2012) PaxDb, a database of protein abundance averages across all three domains of life, Mol. Cell. Proteom., 11, 492–500.

  36. 36.

    Rindi, G., Comincioli, V., Reggiani, C., and Patrini, C. (1984) Nervous tissue thiamine metabolism in vivo. II. Thiamine and its phosphoesters dynamics in different brain regions and sciatic nerve of the rat, Brain Res., 293, 329–342.

  37. 37.

    Bunik, V., Kaehne, T., Degtyarev, D., Shcherbakova, T., and Reiser, G. (2008) Novel isoenzyme of 2-oxoglutarate dehydrogenase is identified in brain, but not in heart, FEBS J., 275, 4990–5006.

  38. 38.

    Lim, J., Liu, Z., Apontes, P., Feng, D., Pessin, J. E., Sauve, A. A., Angeletti, R. H., and Chi, Y. (2014) Dual mode action of mangiferin in mouse liver under high fat diet, PLoS One, 9, e90137.

  39. 39.

    Luong, K. V., and Nguyen, L. T. (2012) The impact of thiamine treatment in the diabetes mellitus, J. Clin. Med. Res., 4, 153–160.

  40. 40.

    Bettendorff, L., Wirtzfeld, B., Makarchikov, A. F., Mazzucchelli, G., Frederich, M., Gigliobianco, T., Gangolf, M., De Pauw, E., Angenot, L., and Wins, P. (2007) Discovery of a natural thiamine adenine nucleotide, Nat. Chem. Biol., 3, 211–212.

  41. 41.

    Rossi-Fanelli, A., Siliprandi, N., and Fasella, P. (1952) On the presence of the triphosphothiamine (TPT) in the liver, Science, 116, 711–713.

  42. 42.

    McLure, K. G., Takagi, M., and Kastan, M. B. (2004) NAD+ modulates p53 DNA binding specificity and function, Mol. Cell. Biol., 24, 9958–9967.

  43. 43.

    Liu, S., Miriyala, S., Keaton, M. A., Jordan, C. T., Wiedl, C., Clair, D. K., and Moscow, J. A. (2014) Metabolic effects of acute thiamine depletion are reversed by rapamycin in breast and leukemia cells, PLoS One, 9, e85702.

Download references

Author information

Correspondence to V. I. Bunik.

Additional information

Published in Russian in Biokhimiya, 2017, Vol. 82, No. 6, pp. 954-969.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tsepkova, P.M., Artiukhov, A.V., Boyko, A.I. et al. Thiamine induces long-term changes in amino acid profiles and activities of 2-oxoglutarate and 2-oxoadipate dehydrogenases in rat brain. Biochemistry Moscow 82, 723–736 (2017) doi:10.1134/S0006297917060098

Download citation


  • dhtkd1
  • multienzyme complexes of 2-oxo acid dehydrogenases
  • ogdh
  • ogdhl
  • 2-oxoadipate
  • 2-oxoglutarate
  • thiamine