Advertisement

Biochemistry (Moscow)

, Volume 82, Issue 6, pp 692–697 | Cite as

An alternative pathway of light-induced transmembrane electron transfer in photosynthetic reaction centers of Rhodobacter sphaeroides

  • R. A. KhatypovEmail author
  • A. M. Khristin
  • T. Yu. Fufina
  • V. A. Shuvalov
Review

Abstract

In the absorption spectrum of Rhodobacter sphaeroides reaction centers, a minor absorption band was found with a maximum at 1053 nm. The amplitude of this band is ~10,000 times less and its half-width is comparable to that of the long-wavelength absorption band of the primary electron donor P870. When the primary electron donor is excited by femtosecond light pulses at 870 nm, the absorption band at 1053 nm is increased manifold during the earliest stages of charge separation. The growth of this absorption band in difference absorption spectra precedes the appearance of stimulated emission at 935 nm and the appearance of the absorption band of anion-radical BA at 1020 nm, reported earlier by several researchers. When reaction centers are illuminated with 1064 nm light, the absorption spectrum undergoes changes indicating reduction of the primary electron acceptor QA, with the primary electron donor P870 remaining neutral. These photoinduced absorption changes reflect the formation of the long-lived radical state PBAHAQA .

Keywords

femtosecond spectroscopy bacterial reaction centers electron transfer 

Abbreviations

BA and BB

accessory bacteriochlorophylls

BChl

bacteriochlorophyll

BPheo

bacteriopheophytin

ET

electron transfer

HA and HB

bacteriopheophytins serving as electron acceptors

P

BChl special pair (PA and PB) that is a primary electron donor

RC

reaction center

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen, J. P., Feher, G., Yeates, T. O., Komiya, H., and Rees, D. C. (1987) Structure of the reaction center from Rhodobacter sphaeroides R-26: the cofactors, Proc. Natl. Acad. Sci. USA, 84, 5730–5734.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Koepke, J., Krammer, E. M., Klingen, A. R., Sebban, P., Ullmann, G. M., and Fritzsch, G. (2007) pH modulates the quinone position in the photosynthetic reaction center from Rhodobacter sphaeroides in the neutral and charge separated states, J. Mol. Biol., 371, 396–409.CrossRefPubMedGoogle Scholar
  3. 3.
    Shuvalov, V. A., Klevanik, A. V., Sharkov, A. V., Matveetz, Yu. A., and Krukov, P. G. (1978) Picosecond detection of BChl-800 as an intermediate electron carrier between selectively excited P870 and bacteriopheophytin in Rhodospirillum rubrum reaction centers, FEBS Lett., 91, 135–139.CrossRefPubMedGoogle Scholar
  4. 4.
    Arlt, T., Schmidt, S., Kaiser, W., Lauterwasser, C., Meyer, M., Scheer, H., and Zinth, W. (1993) The accessory bacteriochlorophyll: a real electron carrier in primary photosynthesis, Proc. Natl. Acad. Sci. USA, 90, 11757–11761.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Holzwarth, A. R., and Muller, M. G. (1996) Energetics and kinetics of radical pairs in reaction centers from Rhodobacter sphaeroides. A femtosecond transient absorption study, Biochemistry, 35, 11820–11831.CrossRefPubMedGoogle Scholar
  6. 6.
    Van Stokkum, I. H. M., Beekman, L. M., Jones, M. R., Van Brederode, M. E., and Van Grondelle, R. (1997) Primary electron transfer kinetics in membrane-bound Rhodobacter sphaeroides reaction centers: a global and target analysis, Biochemistry, 36, 11360–11368.CrossRefPubMedGoogle Scholar
  7. 7.
    Sporlein, S., Zinth, W., and Wachtveitl, J. (1998) Vibrational coherence in photosynthetic reaction centers observed in the bacteriochlorophyll anion band, J. Phys. Chem. B, 102, 7492–7496.CrossRefGoogle Scholar
  8. 8.
    Kennis, J. T., Shkuropatov, A. Y., van Stokkum, I. H. M., Gast, P., Hoff, A. J., Shuvalov, V. A., and Aartsma, T. J. (1997) Formation of a long-lived P+BA state in plant pheophytin-exchanged reaction centers of Rhodobacter sphaeroides R26 at low temperature, Biochemistry, 36, 16231–16238.CrossRefPubMedGoogle Scholar
  9. 9.
    Schmidt, S., Arlt, T., Hamm, P., Huber, H., Nagele, T., Wachtveitl, J., Zinth, W., Meyer, M., and Scheer, H. (1995) Primary electron-transfer dynamics in modified bacterial reaction centers containing pheophytin a instead of bacteriopheophytin a, Spectrochim. Acta, 51, 1565–1578.CrossRefGoogle Scholar
  10. 10.
    Shkuropatov, A. Ya., and Shuvalov, V. A. (1993) Electron transfer in pheophytin a-modified reaction centers from Rhodobacter sphaeroides (R-26), FEBS Lett., 322, 168–172.CrossRefPubMedGoogle Scholar
  11. 11.
    Shuvalov, V. A., and Duysens, L. N. M. (1986) Primary electron transfer reactions in modified reaction centers from Rhodopseudomonas sphaeroides, Proc. Natl. Acad. Sci. USA, 83, 1690–1694.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Yakovlev, A. G., Shkuropatov, A. Y., and Shuvalov, V. A. (2000) Nuclear wavepacket motion producing a reversible charge separation in bacterial reaction centers, FEBS Lett., 466, 209–212.CrossRefPubMedGoogle Scholar
  13. 13.
    Yakovlev, A., and Shuvalov, V. (2000) Formation of bacteriochlorophyll anion band at 1020 nm produced by nuclear wavepacket motion in bacterial reaction centers, J. Chin. Chem. Soc., 47, 709–714.CrossRefGoogle Scholar
  14. 14.
    Kaufmann, K. J., Petty, K. M., Dutton, P. L., and Rentzepis, P. M. (1975) Picosecond kinetics of events leading to reaction center bacteriochlorophyll oxidation, Science, 188, 1301–1304.CrossRefPubMedGoogle Scholar
  15. 15.
    Rockley, M. G., Windsor, M. W., Cogdell, R. J., and Parson, W. W. (1975) Picosecond detection of an intermediate in the photochemical reaction of bacterial photosynthesis, Proc. Natl. Acad. Sci. USA, 72, 2251–2255.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Holten, D., Windsor, M. W., Parson, W. W., and Thornber, J. P. (1978) Primary photochemical processes in isolated reaction centers of Rhodopseudomonas viridis, Biochim. Biophys. Acta, 501, 112–126.CrossRefPubMedGoogle Scholar
  17. 17.
    Yakovlev, A. G., Shkuropatov, A. Y., and Shuvalov, V. A. (2002) Nuclear wavepacket motion between P* and P+BA potential surfaces with subsequent electron transfer to HA in bacterial reaction centers. 1. Room temperature, Biochemistry, 41, 2667–2674.CrossRefPubMedGoogle Scholar
  18. 18.
    Shuvalov, V. A., and Yakovlev, A. G. (2003) Coupling of nuclear wavepacket motion and charge separation in bacterial reaction centers, FEBS Lett., 540, 26–34.CrossRefPubMedGoogle Scholar
  19. 19.
    Khatypov, R. A., Khmelnitskiy, A. Y., Khristin, A. M., and Shuvalov, V. A. (2010) Femtosecond absorption band formation at 1080 and 1020 nm as an indication of chargeseparated states PA δ+PB δ– and P+BA in photosynthetic reaction centers of the purple bacterium Rhodobacter sphaeroides, Dokl. Biochem. Biophys., 430, 24–28.CrossRefPubMedGoogle Scholar
  20. 20.
    Khatypov, R. A., Khmelnitskiy, A. Y., Khristin, A. M., Fufina, T. Y., Vasilieva, L. G., and Shuvalov, V. A. (2012) Primary charge separation within P870* in wild type and heterodimer mutants in femtosecond time domain, Biochim. Biophys. Acta, 1817, 1392–1398.CrossRefPubMedGoogle Scholar
  21. 21.
    Hamm, P., and Zinth, W. (1995) Ultrafast initial reaction in bacterial photosynthesis revealed by femtosecond infrared spectroscopy, J. Phys. Chem., 99, 13537–13544.CrossRefGoogle Scholar
  22. 22.
    Hughes, J. L., Smith, P., Pace, R., and Krausz, E. (2006) Charge separation in photosystem II core complexes induced by 690-730 nm excitation at 1.7 K, Biochim. Biophys. Acta, 1757, 841–851.CrossRefPubMedGoogle Scholar
  23. 23.
    Zhu, J., van Stokkum, I. H. M., Paparelli, L., Jones, M. R., and Groot, M. L. (2013) Early bacteriopheophytin reduction in charge separation in reaction centers of Rhodobacter sphaeroides, Biophys. J., 104, 2493–2502.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Shuvalov, V. A., Shkuropatov, A. Ya., Kulakova, S. M., Ismailov, M. A., and Shkuropatova, V. A. (1986) Photoreactions of bacteriopheophytins and bacteriochlorophylls in reaction centers of Rhodopseudomonas sphaeroides and Chloroflexus aurantiacus, Biochim. Biophys. Acta, 849, 337–346.CrossRefGoogle Scholar
  25. 25.
    Takiff, L., and Boxer, S. G. (1988) Phosphorescence spectra of bacteriochlorophylls, J. Am. Soc., 110, 4425–4426.CrossRefGoogle Scholar
  26. 26.
    Takiff, L., and Boxer, S. G. (1988) Phosphorescence from the primary electron donor in Rhodobacter sphaeroides and Rhodopseudomonas viridis reaction centers, Biochim. Biophys. Acta, 932, 325–334.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • R. A. Khatypov
    • 1
    Email author
  • A. M. Khristin
    • 1
  • T. Yu. Fufina
    • 1
  • V. A. Shuvalov
    • 1
  1. 1.Institute of Basic Biological ProblemsRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations