Advertisement

Biochemistry (Moscow)

, Volume 82, Issue 6, pp 655–662 | Cite as

Mesoporous silica nanoparticles as a carrier platform for intracellular delivery of nucleic acids

  • N. A. Keasberry
  • C. W. Yapp
  • A. IdrisEmail author
Review

Abstract

Virus-mediated gene delivery has been, to date, the most successful and efficient method for gene therapy. However, this method has been challenged because of serious safety concerns. Over the past decade, mesoporous silica nanoparticles (MSNs) have attracted much attention for intracellular delivery of nucleic acids. Delivery of cellular plasmid DNA (pDNA) is designed to replace the function of a defective gene and restore its normal function in the cell. Delivery of small interfering RNAs (siRNAs) can selectively knockdown genes by targeting specific mRNAs. The biocompatibility and unique structures of MSNs make these nanoparticles ideal candidates to act as biomolecule carriers. This concise review highlights current progress in the field of nucleic acid delivery using MSNs, specifically for delivery of pDNA, siRNA, and combinatorial delivery of nucleic acids and drugs. The review describes important design parameters presently being applied to MSNs to administer drugs and therapeutic nucleic acids.

Keywords

silica nanoparticles siRNA pDNA MSN intracellular gene therapy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Slowing, I. I., Trewyn, B. G., Giri, S., and Lin, V. S.-Y. (2007) Mesoporous silica nanoparticles for drug delivery and biosensing applications, Adv. Funct. Mater., 17, 1225–1236.CrossRefGoogle Scholar
  2. 2.
    Vogt, C., Toprak, M. S., Muhammed, M., Laurent, S., Bridot, J.-L., and Muller, R. N. (2009) High quality and tuneable silica shell–magnetic core nanoparticles, J. Nanopart. Res., 12, 1137–1147.CrossRefGoogle Scholar
  3. 3.
    Tang, L., and Cheng, J. (2013) Nonporous silica nanoparticles for nanomedicine application, Nano Today, 8, 290–312.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Liberman, A., Mendez, N., Trogler, W. C., and Kummel, A. C. (2014) Synthesis and surface functionalization of silica nanoparticles for nanomedicine, Surf. Sci. Rep., 69, 132–158.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bharti, C., Nagaich, U., Pal, A. K., and Gulati, N. (2015) Mesoporous silica nanoparticles in target drug delivery system: a review, Int. J. Pharm. Invest., 5, 124–133.CrossRefGoogle Scholar
  6. 6.
    Heidegger, S., Gossl, D., Schmidt, A., Niedermayer, S., Argyo, C., Endres, S., and Bourquin, C. (2015) Immune response to functionalized mesoporous silica nanoparticles for targeted drug delivery, Nanoscale, 8, 938–948.CrossRefGoogle Scholar
  7. 7.
    Tang, F., Li, L., and Chen, D. (2012) Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery, Adv. Mater., 24, 1504–1534.CrossRefPubMedGoogle Scholar
  8. 8.
    Wu, S.-H., Hung, Y., and Mou, C.-Y. (2011) Mesoporous silica nanoparticles as nanocarriers, Chem. Commun., 47, 9972–9985.CrossRefGoogle Scholar
  9. 9.
    Wu, S.-H., Mou, C.-Y., and Lin, H.-P. (2013) Synthesis of mesoporous silica nanoparticles, Chem. Soc. Rev., 42, 3862–3875.CrossRefPubMedGoogle Scholar
  10. 10.
    Slowing, I. I., Vivero-Escoto, J. L., Wu, C.-W., and Lin, V. S.-Y. (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers, Adv. Drug Deliv. Rev., 60, 1278–1288.CrossRefPubMedGoogle Scholar
  11. 11.
    Wang, Y., Zhao, Q., Han, N., Bai, L., Li, J., Liu, J., and Wang, S. (2015) Mesoporous silica nanoparticles in drug delivery and biomedical applications, Nanomed. Nanotechnol. Biol. Med., 11, 313–327.CrossRefGoogle Scholar
  12. 12.
    Li, Q.-L., Xu, S.-H., Zhou, H., Wang, X., Dong, B., Gao, H., and Yang, Y.-W. (2015) pH and glutathione dualresponsive dynamic cross-linked supramolecular network on mesoporous silica nanoparticles for controlled anticancer drug release, ACS Appl. Mater. Interfaces, 7, 28656–28664.CrossRefPubMedGoogle Scholar
  13. 13.
    Sun, L., Liu, Y.-J., Yang, Z.-Z., and Qi, X.-R. (2015) Tumor specific delivery with redox-triggered mesoporous silica nanoparticles inducing neovascularization suppression and vascular normalization, RSC Adv., 5, 55566–55578.CrossRefGoogle Scholar
  14. 14.
    Zhao, N., Lin, X., Zhang, Q., Ji, Z., and Xu, F.-J. (2015) Redox-triggered gatekeeper-enveloped starlike hollow silica nanoparticles for intelligent delivery systems, Small, 11, 6467–6479.CrossRefPubMedGoogle Scholar
  15. 15.
    Yoshitomi, T., and Nagasaki, Y. (2015) Development of silica-containing redox nanoparticles for medical applications, Biomater. Sci., 3, 810–815.CrossRefPubMedGoogle Scholar
  16. 16.
    Song, N., and Yang, Y.-W. (2015) Molecular and supramolecular switches on mesoporous silica nanoparticles, Chem. Soc. Rev., 44, 3474–3504.CrossRefPubMedGoogle Scholar
  17. 17.
    Shahabi, S., Doscher, S., Bollhorst, T., Treccani, L., Maas, M., Dringen, R., and Rezwan, K. (2015) Enhancing cellular uptake and doxorubicin delivery of mesoporous silica nanoparticles via surface functionalization: effects of serum, ACS Appl. Mater. Interfaces, 7, 26880–26891.CrossRefPubMedGoogle Scholar
  18. 18.
    Gabizon, A., Shmeeda, H., and Grenader, T. (2012) Pharmacological basis of pegylated liposomal doxorubicin: impact on cancer therapy, Eur. J. Pharm. Sci., 45, 388–398.CrossRefPubMedGoogle Scholar
  19. 19.
    Giménez, C., De la Torre, C., Gorbe, M., Aznar, E., Sancenon, F., Murguia, J. R., and Amoros, P. (2015) Gated mesoporous silica nanoparticles for the controlled delivery of drugs in cancer cells, Langmuir, 31, 3753–3762.CrossRefPubMedGoogle Scholar
  20. 20.
    Qu, Q., Ma, X., and Zhao, Y. (2015) Targeted delivery of doxorubicin to mitochondria using mesoporous silica nanoparticle nanocarriers, Nanoscale, 7, 16677–16686.CrossRefPubMedGoogle Scholar
  21. 21.
    Chang, D., Gao, Y., Wang, L., Liu, G., Chen, Y., Wang, T., and Zeng, X. (2015) Polydopamine-based surface modification of mesoporous silica nanoparticles as pH-sensitive drug delivery vehicles for cancer therapy, J. Coll. Inter. Sci., 463, 279–287.CrossRefGoogle Scholar
  22. 22.
    Lu, J., Liong, M., Zink, J. I., and Tamanoi, F. (2007) Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs, Small, 3, 1341–1346.CrossRefPubMedGoogle Scholar
  23. 23.
    Mellaerts, R., Jammaer, J. A. G., Van Speybroeck, M., Chen, H., Van Humbeeck, J., Augustijns, P., and Martens, J. A. (2008) Physical state of poorly water soluble therapeutic molecules loaded into SBA-15 ordered mesoporous silica carriers: a case study with itraconazole and ibuprofen, Langmuir, 24, 8651–8659.CrossRefPubMedGoogle Scholar
  24. 24.
    Van Speybroeck, M., Barillaro, V., Thi, T. Do, Mellaerts, R., Martens, J., Van Humbeeck, J., and Augustijns, P. (2009) Ordered mesoporous silica material SBA-15: a broad-spectrum formulation platform for poorly soluble drugs, J. Pharm. Sci., 98, 2648–2658.CrossRefPubMedGoogle Scholar
  25. 25.
    Wang, H., Agarwal, P., Zhao, S., Yu, J., Lu, X., and He, X. (2015) A biomimetic hybrid nanoplatform for encapsulation and precisely controlled delivery of therasnostic agents, Nat. Commun., 6, 10081.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Taratula, O., Garbuzenko, O. B., Chen, A. M., and Minko, T. (2011) Innovative strategy for treatment of lung cancer: targeted nanotechnology-based inhalation co-delivery of anticancer drugs and siRNA, J. Drug Target., 19, 900–914.CrossRefPubMedGoogle Scholar
  27. 27.
    Mamaeva, V., Sahlgren, C., and Linden, M. (2013) Mesoporous silica nanoparticles in medicine–recent advances, Adv. Drug Deliver. Rev., 65, 689–702.CrossRefGoogle Scholar
  28. 28.
    Li, Z., Barnes, J. C., Bosoy, A., Stoddart, J. F., and Zink, J. I. (2012) Mesoporous silica nanoparticles in biomedical applications, Chem. Soc. Rev., 41, 2590–2605.CrossRefPubMedGoogle Scholar
  29. 29.
    Baeza, A., Colilla, M., and Vallet-Regi, M. (2015) Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery, Expert Opin. Drug Deliv., 12, 319–337.CrossRefPubMedGoogle Scholar
  30. 30.
    Radu, D. R., Lai, C.-Y., Jeftinija, K., Rowe, E. W., Jeftinija, S., and Lin, V. S.-Y. (2004) A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent, J. Am. Chem. Soc., 126, 13216–13217.CrossRefPubMedGoogle Scholar
  31. 31.
    Park, I. Y., Kim, I. Y., Yoo, M. K., Choi, Y. J., Cho, M.-H., and Cho, C. S. (2008) Mannosylated polyethylenimine coupled mesoporous silica nanoparticles for receptormediated gene delivery, Int. J. Pharm., 359, 280–287.CrossRefPubMedGoogle Scholar
  32. 32.
    Qin, F., Zhou, Y., Shi, J., and Zhang, Y. (2009) A DNA transporter based on mesoporous silica nanospheres mediated with polycation poly(allylamine hydrochloride) coating on mesopore surface, J. Biomed. Mater. Res. Part A, 90, 333–338.CrossRefGoogle Scholar
  33. 33.
    Kim, T.-H., Kim, M., Eltohamy, M., Yun, Y.-R., Jang, J.-H., and Kim, H.-W. (2013) Efficacy of mesoporous silica nanoparticles in delivering BMP-2 plasmid DNA for in vitro osteogenic stimulation of mesenchymal stem cells, J. Biomed. Mater. Res. Part A, 101, 1651–1660.CrossRefGoogle Scholar
  34. 34.
    Dengler, E. C., Liu, J., Kerwin, A., Torres, S., Olcott, C. M., Bowman, B. N., and Milligan, E. D. (2013) Mesoporous silica-supported lipid bilayers (protocells) for DNA cargo delivery to the spinal cord, J. Control. Rel., 168, 209–224.CrossRefGoogle Scholar
  35. 35.
    Brevet, D., Hocine, O., Delalande, A., Raehm, L., Charnay, C., Midoux, P., and Pichon, C. (2014) Improved gene transfer with histidine-functionalized mesoporous silica nanoparticles, Int. J. Pharm., 471, 197–205.CrossRefPubMedGoogle Scholar
  36. 36.
    Gao, F., Botella, P., Corma, A., Blesa, J., and Dong, L. (2009) Monodispersed mesoporous silica nanoparticles with very large pores for enhanced adsorption and release of DNA, J. Phys. Chem., 113, 1796–1804.CrossRefGoogle Scholar
  37. 37.
    Kim, M.-H., Na, H.-K., Kim, Y.-K., Ryoo, S.-R., Cho, H. S., Lee, K. E., and Min, D.-H. (2011) Facile synthesis of monodispersed mesoporous silica nanoparticles with ultralarge pores and their application in gene delivery, ACS Nano, 5, 3568–3576.CrossRefPubMedGoogle Scholar
  38. 38.
    Hom, C., Lu, J., Liong, M., Luo, H., Li, Z., Zink, J. I., and Tamanoi, F. (2010) Mesoporous silica nanoparticles facilitate delivery of siRNA to shutdown signaling pathways in mammalian cells, Small, 6, 1185–1190.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Ashley, C. E., Carnes, E. C., Epler, K. E., Padilla, D. P., Phillips, G. K., Castillo, R. E., and Brinker, C. J. (2012) Delivery of small interfering RNA by peptide-targeted mesoporous silica nanoparticle-supported lipid bilayers, ACS Nano, 6, 2174–2188.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Na, H.-K., Kim, M.-H., Park, K., Ryoo, S.-R., Lee, K. E., Jeon, H., and Min, D.-H. (2012) Efficient functional delivery of siRNA using mesoporous silica nanoparticles with ultralarge pores, Small, 8, 1752–1761.CrossRefPubMedGoogle Scholar
  41. 41.
    Zhang, L., Wang, T., Li, L., Wang, C., Su, Z., and Li, J. (2012) Multifunctional fluorescent-magnetic polyethyleneimine functionalized Fe3O4-mesoporous silica yolkshell nanocapsules for siRNA delivery, Chem. Commun., 48, 8706–8708.CrossRefGoogle Scholar
  42. 42.
    Hartono, S. B., Gu, W., Kleitz, F., Liu, J., He, L., Middelberg, A. P. J., and Qiao, S. Z. (2012) Poly-L-lysine functionalized large pore cubic mesostructured silica nanoparticles as biocompatible carriers for gene delivery, ACS Nano, 6, 2104–2117.CrossRefPubMedGoogle Scholar
  43. 43.
    Li, X., Chen, Y., Wang, M., Ma, Y., Xia, W., and Gu, H. (2013) A mesoporous silica nanoparticle–PEI–fusogenic peptide system for siRNA delivery in cancer therapy, Biomaterials, 34, 1391–1401.CrossRefPubMedGoogle Scholar
  44. 44.
    Wang, M., Li, X., Ma, Y., and Gu, H. (2013) Endosomal escape kinetics of mesoporous silica-based system for efficient siRNA delivery, Int. J. Pharm., 448, 51–57.CrossRefPubMedGoogle Scholar
  45. 45.
    Lin, D., Cheng, Q., Jiang, Q., Huang, Y., Yang, Z., Han, S., and Dong, A. (2013) Intracellular cleavable poly(2-dimethylaminoethyl methacrylate) functionalized mesoporous silica nanoparticles for efficient siRNA delivery in vitro and in vivo, Nanoscale, 5, 4291–4301.CrossRefPubMedGoogle Scholar
  46. 46.
    Shen, J., Kim, H. C., Su, H., Wang, F., Wolfram, J., Kirui, D., and Shen, H. (2014) Cyclodextrin and polyethylenimine functionalized mesoporous silica nanoparticles for delivery of siRNA cancer therapeutics, Theranostics, 4, 487–497.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Du, X., Xiong, L., Dai, S., Kleitz, F., and Qiao, S. Z. (2014) Intracellular microenvironment-responsive dendrimer-like mesoporous nanohybrids for traceable, effective, and safe gene delivery, Adv. Funct. Mater., 24, 7627–7637.CrossRefGoogle Scholar
  48. 48.
    Chen, Y., Gu, H., Zhang, D. S.-Z., Li, F., Liu, T., and Xia, W. (2014) Highly effective inhibition of lung cancer growth and metastasis by systemic delivery of siRNA via multimodal mesoporous silica-based nanocarrier, Biomaterials, 35, 10058–10069.CrossRefPubMedGoogle Scholar
  49. 49.
    Hartono, S. B., Yu, M., Gu, W., Yang, J., Strounina, E., Wang, X., and Yu, C. (2014) Synthesis of multi-functional large pore mesoporous silica nanoparticles as gene carriers, Nanotechnology, 25, 055701.CrossRefPubMedGoogle Scholar
  50. 50.
    Finlay, J., Roberts, C. M., Dong, J., Zink, J. I., Tamanoi, F., and Glackin, C. A. (2015) Mesoporous silica nanoparticle delivery of chemically modified siRNA against TWIST1 leads to reduced tumor burden, Nanomed. Nanotechnol., 11, 1657–1666.CrossRefGoogle Scholar
  51. 51.
    Xiong, L., Bi, J., Tang, Y., and Qiao, S.-Z. (2016) Magnetic core-shell silica nanoparticles with large radial mesopores for siRNA delivery, Small, 12, 4735–4742.CrossRefPubMedGoogle Scholar
  52. 52.
    Moller, K., Muller, K., Engelke, H., Brauchle, C., Wagner, E., Bein, T., and Brauchle, C. (2016) Highly efficient siRNA delivery from core-shell mesoporous silica nanoparticles with multifunctional polymer caps, Nanoscale, 8, 4007–4019.CrossRefPubMedGoogle Scholar
  53. 53.
    Bhattarai, S. R., Muthuswamy, E., Wani, A., Brichacek, M., Castaсeda, A. L., Brock, S. L., and Oupicky, D. (2010) Enhanced gene and siRNA delivery by polycation-modified mesoporous silica nanoparticles loaded with chloroquine, Pharm. Res., 27, 2556–2568.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Chen, A. M., Zhang, M., Wei, D., Stueber, D., Taratula, O., Minko, T., and He, H. (2009) Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells, Small, 5, 2673–2677.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Ma, X., Teh, C., Zhang, Q., Borah, P., Choong, C., Korzh, V., and Zhao, Y. (2014) Redox-responsive mesoporous silica nanoparticles: a physiologically sensitive codelivery vehicle for siRNA and doxorubicin, Antioxid. Redox Signal., 21, 707–722.CrossRefPubMedGoogle Scholar
  56. 56.
    Ma, X., Zhao, Y., Ng, K. W., and Zhao, Y. (2013) Integrated hollow mesoporous silica nanoparticles for target drug/siRNA co-delivery, Chemistry, 19, 15593–15603.CrossRefPubMedGoogle Scholar
  57. 57.
    Zhou, X., Chen, L., Nie, W., Wang, W., Qin, M., Mo, X., and He, C. (2016) Dual-responsive mesoporous silica nanoparticles mediated codelivery of doxorubicin and Bcl-2 siRNA for targeted treatment of breast cancer, J. Phys. Chem. C, 120, 22375–22387.CrossRefGoogle Scholar
  58. 58.
    Meng, H., Liong, M., Xia, T., Li, Z., Ji, Z., Zink, J. I., and Nel, A. E. (2010) Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line, ACS Nano, 4, 4539–4550.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Meng, H., Mai, W. X., Zhang, H., Xue, M., Xia, T., Lin, S., and Nel, A. E. (2013) Codelivery of an optimal drug/siRNA combination using mesoporous silica nanoparticles to overcome drug resistance in breast cancer in vitro and in vivo, ACS Nano, 7, 994–1005.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Kar, M., Tiwari, N., Tiwari, M., Lahiri, M., and Gupta, S. S. (2013) Poly-L-arginine grafted silica mesoporous nanoparticles for enhanced cellular uptake and their application in DNA delivery and controlled drug release, Particle Particle Systems Charact., 30, 166–179.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Faculty of ScienceUniversity Brunei DarussalamBandar Seri BegawanBrunei Darussalam
  2. 2.PAPRSB Institute of Health SciencesUniversity Brunei DarussalamBandar Seri BegawanBrunei Darussalam

Personalised recommendations