Biochemistry (Moscow)

, Volume 82, Issue 6, pp 643–654 | Cite as

Role of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in DNA repair

  • A. A. Kosova
  • S. N. Khodyreva
  • O. I. Lavrik


Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is widely known as a glycolytic enzyme. Nevertheless, various functions of GAPDH have been found that are unrelated to glycolysis. Some of these functions presume interaction of GAPDH with DNA, but the mechanism of its translocation to the nucleus is not fully understood. When in the nucleus, GAPDH participates in the initiation of apoptosis and transcription of genes involved in antiapoptotic pathways and cell proliferation and plays a role in the regulation of telomere length. Several authors have shown that GAPDH displays the uracil-DNA glycosylase activity and interacts with some types of DNA damages, such as apurinic/apyrimidinic sites, nucleotide analogs, and covalent DNA adducts with alkylating agents. Moreover, GAPDH can interact with proteins participating in DNA repair, such as APE1, PARP1, HMGB1, and HMGB2. In this review, the functions of GAPDH associated with DNA repair are discussed in detail.


GAPDH glyceraldehyde-3-phosphate dehydrogenase protein–DNA interactions DNA repair AP site 


AP site

apurinic/apyrimidinic site


apurinic/apyrimidinic endonuclease 1


glyceraldehyde-3-phosphate dehydrogenase


high-mobility group proteins B1 and B2


poly(ADP-ribose) polymerase 1


uracil-DNA glycosylase


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Harris, J. I., and Waters, M. (1976) Glyceraldehyde-3-phosphate dehydrogenase, in The Enzymes (Boyer, P. D., ed.) Academic Press, N.Y., pp. 1–49.Google Scholar
  2. 2.
    Skarzynski, T., Moody, P. C., and Wonacott, A. J. (1987) Structure of holo-glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus at 1.8 Å resolution, J. Mol. Biol., 193, 171–187.CrossRefPubMedGoogle Scholar
  3. 3.
    Jeffery, C. J. (1999) Moonlighting proteins, Trends Biochem. Sci., 24, 8–11.CrossRefPubMedGoogle Scholar
  4. 4.
    Huberts, D. H., and Van der Klei, I. J. (2010) Moonlighting proteins: an intriguing mode of multitasking, Biochim. Biophys. Acta, 1803, 520–525.CrossRefPubMedGoogle Scholar
  5. 5.
    Bruns, G. A. P., and Gerald, P. S. (1976) Human glyceraldehyde-3-phosphate dehydrogenase in man-rodent somatic cell hybrids, Science, 192, 54–56.CrossRefPubMedGoogle Scholar
  6. 6.
    Mezquita, J., Pau, M., and Mezquita, C. (1998) Several novel transcripts of glyceraldehyde-3-phosphate dehydrogenase expressed in adult chicken testis, J. Cell Biochem., 71, 127–139.CrossRefPubMedGoogle Scholar
  7. 7.
    Seidler, N. W. (2013) GAPDH: biological properties and diversity, Adv. Exp. Med. Biol., 985, 1–291.CrossRefPubMedGoogle Scholar
  8. 8.
    Sirover, M. A. (1999) New insights into an old protein: the functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase, Biochim. Biophys. Acta, 1432, 159–184.CrossRefPubMedGoogle Scholar
  9. 9.
    Sirover, M. A. (2005) New nuclear functions of the glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase, in mammalian cells, J. Cell Biochem., 95, 45–52.CrossRefPubMedGoogle Scholar
  10. 10.
    Sirover, M. A. (2011) On the functional diversity of glyceraldehyde-3-phosphate dehydrogenase: biochemical mechanisms and regulatory control, Biochim. Biophys. Acta, 1810, 741–751.CrossRefPubMedGoogle Scholar
  11. 11.
    Sirover, M. A. (2012) Subcellular dynamics of multifunctional protein regulation: mechanisms of GAPDH intracellular translocation, J. Cell Biochem., 113, 2193–2200.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Sirover, M. A. (2014) Structural analysis of glyceraldehyde-3-phosphate dehydrogenase functional diversity, Int. J. Biochem. Cell Biol., 57, 20–26.CrossRefPubMedGoogle Scholar
  13. 13.
    Ryazanov, A. G., Ashmarina, L. I., and Muronetz, V. I. (1988) Association of glyceraldehyde-3-phosphate dehydrogenase with monoand polyribosomes of rabbit reticulocytes, Eur. J. Biochem., 171, 301–305.CrossRefPubMedGoogle Scholar
  14. 14.
    White, M. R., and Garcin, E. D. (2016) The sweet side of RNA regulation: glyceraldehyde-3-phosphate dehydrogenase as a noncanonical RNA-binding protein, Wiley Interdiscipl. Rev. RNA, 7, 53–70.CrossRefGoogle Scholar
  15. 15.
    Tsai, R., and Green, H. (1973) Studies on a mammalian cell protein (P8) with affinity for DNA in vitro, J. Mol. Biol., 73, 307–316.CrossRefPubMedGoogle Scholar
  16. 16.
    Melero, J. A., Salas, M. L., Salas, J., and Macpherson, I. A. (1975) Deoxyribonucleic acid-binding proteins in virustransformed cell lines, J. Biol. Chem., 250, 3683–3689.PubMedGoogle Scholar
  17. 17.
    Perucho, M., Salas, J., and Salas, M. L. (1977) Identification of the mammalian DNA-binding protein P8 as glyceraldehyde-3-phosphate dehydrogenase, Eur. J. Biochem., 81, 557–562.CrossRefPubMedGoogle Scholar
  18. 18.
    Morgenegg, G., Winkler, G. C., Hubscher, U., Heizmann, C. W., Mous, J., and Kuenzle, C. C. (1986) Glyceraldehyde-3-phosphate dehydrogenase is a nonhistone protein and a possible activator of transcription in neurons, J. Neurochem., 47, 54–62.CrossRefPubMedGoogle Scholar
  19. 19.
    Grosse, F., Nasheuer, H.-P., Scholtissek, S., and Schomburg, U. (1986) Lactate dehydrogenase and glyceraldehyde-3-phosphate dehydrogenase are single-stranded DNA-binding proteins that affect the DNA-polymerase−α-primase complex, Eur. J. Biochem., 160, 459–467.CrossRefPubMedGoogle Scholar
  20. 20.
    Ronai, Z. (1993) Glycolytic enzymes as DNA binding proteins, Int. J. Biochem., 25, 1073–1076.CrossRefPubMedGoogle Scholar
  21. 21.
    Sawa, A., Khan, A. A., Hester, L. D., and Snyder, S. H. (1997) Glyceraldehyde-3-phosphate dehydrogenase: nuclear translocation participates in neuronal and nonneuronal cell death, Proc. Natl. Acad. Sci. USA, 94, 11669–11674.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Jindal, H. K., and Vishwanatha, J. K. (1990) Purification and characterization of primer recognition proteins from HeLa cells, Biochemistry, 29, 4767–4773.CrossRefPubMedGoogle Scholar
  23. 23.
    Baty, J. W., Hampton, M. B., and Winterbourn, C. C. (2005) Proteomic detection of hydrogen peroxide-sensitive thiol proteins in Jurkat cells, Biochem. J., 389, 785–795.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ventura, M., Mateo, F., Serratosa, J., Salaet, I., Carujo, S., Bachs, O., and Pujol, M. J. (2010) Nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase is regulated by acetylation, Int. J. Biochem. Cell Biol., 42, 1672–1680.CrossRefPubMedGoogle Scholar
  25. 25.
    Cahuana, G. M., Tejedo, J. R., Jimenez, J., Ramirez, R., Sobrino, F., and Bedoya, F. J. (2004) Nitric oxide-induced carbonylation of Bcl-2, GAPDH and ANT precedes apoptotic events in insulin-secreting RINm5F cells, Exp. Cell Res., 293, 22–30.CrossRefPubMedGoogle Scholar
  26. 26.
    Huang, Q., Lan, F., Zheng, Z., Xie, F., Han, J., Dong, L., Xie, Y., and Zheng, F. (2011) Akt2 kinase suppresses glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-mediated apoptosis in ovarian cancer cells via phosphorylating GAPDH at threonine 237 and decreasing its nuclear translocation, J. Biol. Chem., 286, 42211–42220.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Hara, M. R., Agrawal, N., Kim, S. F., Cascio, M. B., Fujimuro, M., Ozeki, Y., Takahashi, M., Cheah, J. H., Tankou, S. K., Hester, L. D., Ferris, C. D., Hayward, S. D., Snyder, S. H., and Sawa, A. (2005) S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding, Nat. Cell. Biol., 7, 665–674.CrossRefPubMedGoogle Scholar
  28. 28.
    Hara, M. R., and Snyder, S. H. (2006) Nitric oxide-GAPDH-Siah: a novel cell death cascade, Cell Mol. Neurobiol., 26, 527–538.CrossRefPubMedGoogle Scholar
  29. 29.
    Joo, H. Y., Woo, S. R., Shen, Y. N., Yun, M. Y., Shin, H. J., Park, E. R., Kim, S. H., Park, J. E., Ju, Y. J., Hong, S. H., Hwang, S. G., Cho, M. H., Kim, J., and Lee, K. H. (2012) SIRT1 interacts with and protects glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from nuclear translocation: implications for cell survival after irradiation, Biochem. Biophys. Res. Commun., 424, 681–686.CrossRefPubMedGoogle Scholar
  30. 30.
    Kornberg, M. D., Sen, N., Hara, M. R., Juluri, K. R., Nguyen, J. V., Snowman, A. M., Law, L., Hester, L. D., and Snyder, S. H. (2010) GAPDH mediates nitrosylation of nuclear proteins, Nat. Cell Biol., 12, 1094–1100.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Park, J., Han, D., Kim, K., Kang, Y., and Kim, Y. (2009) O-GlcNAcylation disrupts glyceraldehyde-3-phosphate dehydrogenase homo-tetramer formation and mediates its nuclear translocation, Biochim. Biophys. Acta, 1794, 254–262.CrossRefPubMedGoogle Scholar
  32. 32.
    Jans, D. A. (1994) Nuclear signaling pathways for polypeptide ligands and their membrane receptors, FASEB J., 8, 841–847.PubMedGoogle Scholar
  33. 33.
    Brown, V. M., Krynetski, E. Y., Krynetskaia, N. F., Grieger, D., Mukatira, S. T., Murti, K. G., Slaughter, C. A., Park, H. W., and Evans, W. E. (2004) A novel CRM1-mediated nuclear export signal governs nuclear accumulation of glyceraldehyde-3-phosphate dehydrogenase following genotoxic stress, J. Biol. Chem., 279, 5984–5992.CrossRefPubMedGoogle Scholar
  34. 34.
    Arutyunova, E. I., Danshina, P. V., Domnina, L. V., Pleten, A. P., and Muronetz, V. I. (2003) Oxidation of glyceraldehyde-3-phosphate dehydrogenase enhances its binding to nucleic acids, Biochem. Biophys. Res. Commun., 307, 547–552.CrossRefPubMedGoogle Scholar
  35. 35.
    Barbini, L., Rodriguez, J., Dominguez, F., and Vega, F. (2007) Glyceraldehyde-3-phosphate dehydrogenase exerts different biologic activities in apoptotic and proliferating hepatocytes according to its subcellular localization, Mol. Cell. Biochem., 300, 19–28.CrossRefPubMedGoogle Scholar
  36. 36.
    Hwang, N. R., Yim, S. H., Kim, Y. M., Jeong, J., Song, E. J., Lee, Y., Lee, J. H., Choi, S., and Lee, K. J. (2009) Oxidative modifications of glyceraldehyde-3-phosphate dehydrogenase play a key role in its multiple cellular functions, Biochem. J., 423, 253–264.CrossRefPubMedGoogle Scholar
  37. 37.
    Peralta, D., Bronowska, A. K., Morgan, B., Doka, E., Van Laer, K., Nagy, P., Grater, F., and Dick, T. P. (2015) A proton relay enhances H2O2 sensitivity of GAPDH to facilitate metabolic adaptation, Nat. Chem. Biol., 11, 156–163.CrossRefPubMedGoogle Scholar
  38. 38.
    Hildebrandt, T., Knuesting, J., Berndt, C., Morgan, B., and Scheibe, R. (2015) Cytosolic thiol switches regulating basic cellular functions: GAPDH as an information hub? Biol. Chem., 396, 523–537.CrossRefPubMedGoogle Scholar
  39. 39.
    Demarse, N. A., Ponnusamy, S., Spicer, E. K., Apohan, E., Baatz, J. E., Ogretmen, B., and Davies, C. (2009) Direct binding of glyceraldehyde 3-phosphate dehydrogenase to telomeric DNA protects telomeres against chemotherapyinduced rapid degradation, J. Mol. Biol., 394, 789–803.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Saunders, P. A., Chalecka-Franaszek, E., and Chuang, D. M. (1997) Subcellular distribution of glyceraldehyde-3-phosphate dehydrogenase in cerebellar granule cells undergoing cytosine arabinoside-induced apoptosis, J. Neurochem., 69, 1820–1828.CrossRefPubMedGoogle Scholar
  41. 41.
    Ishitani, R., Tanaka, M., Sunaga, K., Katsube, N., and Chuang, D. M. (1998) Nuclear localization of overexpressed glyceraldehyde-3-phosphate dehydrogenase in cultured cerebellar neurons undergoing apoptosis, Mol. Pharmacol., 53, 701–707.PubMedGoogle Scholar
  42. 42.
    Saunders, P. A., Chen, R. W., and Chuang, D. M. (1999) Nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase isoforms during neuronal apoptosis, J. Neurochem., 72, 925–932.CrossRefPubMedGoogle Scholar
  43. 43.
    Shashidharan, P., Chalmers-Redman, R. M., Carlile, G. W., Rodic, V., Gurvich, N., Yuen, T., Tatton, W. G., and Sealfon, S. C. (1999) Nuclear translocation of GAPDH-GFP fusion protein during apoptosis, Neuroreport, 10, 1149–1153.CrossRefPubMedGoogle Scholar
  44. 44.
    Dastoor, Z., and Dreyer, J. L. (2001) Potential role of nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase in apoptosis and oxidative stress, J. Cell Sci., 114, 1643–1653.PubMedGoogle Scholar
  45. 45.
    Xing, C., La Porte, J. R., Barbay, J. K., and Myers, A. G. (2004) Identification of GAPDH as a protein target of the saframycin antiproliferative agents, Proc. Natl. Acad. Sci. USA, 101, 5862–5866.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Sen, N., Hara, M. R., Ahmad, A. S., Cascio, M. B., Kamiya, A., Ehmsen, J. T., Aggrawal, N., Hester, L., Dore, S., Snyder, S. H., and Sawa, A. (2009) GOSPEL: a neuroprotective protein that binds to GAPDH upon S-nitrosylation, Neuron, 63, 81–91.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Lee, S. Y., Kim, J. H., Jung, H., Chi, S. W., Chung, S. J., Lee, C. K., Park, B. C., Bae, K. H., and Park, S. G. (2012) Glyceraldehyde-3-phosphate, a glycolytic intermediate, prevents cells from apoptosis by lowering S-nitrosylation of glyceraldehyde-3-phosphate dehydrogenase, J. Microbiol. Biotechnol., 22, 571–573.CrossRefPubMedGoogle Scholar
  48. 48.
    Sen, N., Hara, M. R., Kornberg, M. D., Cascio, M. B., Bae, B. I., Shahani, N., Thomas, B., Dawson, T. M., Dawson, V. L., Snyder, S. H., and Sawa, A. (2008) Nitric oxide-induced nuclear GAPDH activates p300/CBP and mediates apoptosis, Nat. Cell Biol., 10, 866–873.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Carlile, G. W., Chalmers-Redman, R. M., Tatton, N. A., Pong, A., Borden, K. E., and Tatton, W. G. (2000) Reduced apoptosis after nerve growth factor and serum withdrawal: conversion of tetrameric glyceraldehyde-3-phosphate dehydrogenase to a dimer, Mol. Pharmacol., 57, 2–12.PubMedGoogle Scholar
  50. 50.
    Zheng, L., Roeder, R. G., and Luo, Y. (2003) S phase activation of the histone H2B promoter by OCA-S, a coactivator complex that contains GAPDH as a key component, Cell, 114, 255–266.CrossRefPubMedGoogle Scholar
  51. 51.
    Kim, S., Lee, J., and Kim, J. (2007) Regulation of oncogenic transcription factor hTAF(II)68-TEC activity by human glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Biochem. J., 404, 197–206.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Harada, N., Yasunaga, R., Higashimura, Y., Yamaji, R., Fujimoto, K., Moss, J., Inui, H., and Nakano, Y. (2007) Glyceraldehyde-3-phosphate dehydrogenase enhances transcriptional activity of androgen receptor in prostate cancer cells, J. Biol. Chem., 282, 22651–22661.CrossRefPubMedGoogle Scholar
  53. 53.
    Kimura, M., Suzuki, H., and Ishihama, A. (2002) Formation of a carboxy-terminal domain phosphatase (Fcp1)/TFIIF/RNA polymerase II (pol II) complex in Schizosaccharomyces pombe involves direct interaction between Fcp1 and the Rpb4 subunit of pol II, Mol. Cell. Biol., 22, 1577–1588.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Mitsuzawa, H., Kimura, M., Kanda, E., and Ishihama, A. (2005) Glyceraldehyde-3-phosphate dehydrogenase and actin associate with RNA polymerase II and interact with its Rpb7 subunit, FEBS Lett., 579, 48–52.CrossRefPubMedGoogle Scholar
  55. 55.
    Carlile, G. W., Tatton, W. G., and Borden, K. L. (1998) Demonstration of a RNA-dependent nuclear interaction between the promyelocytic leukemia protein and glyceraldehyde-3-phosphate dehydrogenase, Biochem. J., 335, 691–696.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Sundararaj, K. P., Wood, R. E., Ponnusamy, S., Salas, A. M., Szulc, Z., Bielawska, A., Obeid, L. M., Hannun, Y. A., and Ogretmen, B. (2004) Rapid shortening of telomere length in response to ceramide involves the inhibition of telomere binding activity of nuclear glyceraldehyde-3-phosphate dehydrogenase, J. Biol. Chem., 279, 6152–6162.CrossRefPubMedGoogle Scholar
  57. 57.
    Nicholls, C., Pinto, A. R., Li, H., Li, L., Wang, L., Simpson, R., and Liu, J. P. (2012) Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) induces cancer cell senescence by interacting with telomerase RNA component, Proc. Natl. Acad. Sci. USA, 109, 13308–13313.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Meyer-Siegler, K., Mauro, D. J., Seal, G., Wurzer, J., Deriel, J. K., and Sirover, M. A. (1991) A human nuclear uracil DNA glycosylase is the 37-kDa subunit of glyceraldehyde-3-phosphate dehydrogenase, Proc. Natl. Acad. Sci. USA, 88, 8460–8464.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Krynetski, E. Y., Krynetskaia, N. F., Gallo, A. E., Murti, K. G., and Evans, W. E. (2001) A novel protein complex distinct from mismatch repair binds thioguanylated DNA, Mol. Pharm., 59, 367–374.Google Scholar
  60. 60.
    Kosova, A. A., Khodyreva, S. N., and Lavrik, O. I. (2015) Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) interacts with apurinic/apyrimidinic sites in DNA, Mutat. Res., 779, 46–57.CrossRefPubMedGoogle Scholar
  61. 61.
    Lenglet, G., Depauw, S., Mendy, D., and David-Cordonnier, M. H. (2013) Protein recognition of the S23906-1/DNA adduct by nuclear proteins: direct involvement of glyceraldehyde-3-phosphate-dehydrogenase (GAPDH), Biochem. J., 452, 147–159.CrossRefPubMedGoogle Scholar
  62. 62.
    Baxi, M. D., and Vishwanatha, J. K. (1995) Uracil DNA glycosylase/glyceraldehyde-3-phosphate dehydrogenase is an Ap4A binding protein, Biochemistry, 34, 9700–9707.CrossRefPubMedGoogle Scholar
  63. 63.
    Sirover, M. A. (1979) Induction of the DNA repair enzyme uracil-DNA glycosylase in stimulated human lymphocytes, Cancer Res., 39, 2090–2095.PubMedGoogle Scholar
  64. 64.
    Caradonna, S., Ladner, R., Hansbury, M., Kosciuk, M., Lynch, F., and Muller, S. (1996) Affinity purification and comparative analysis of two distinct human uracil-DNA glycosylases, Exp. Cell Res., 222, 345–359.CrossRefPubMedGoogle Scholar
  65. 65.
    Ferreira, E., Gimenez, R., Canas, M. A., Aguilera, L., Aguilar, J., Badia, J., and Baldoma, L. (2015) Glyceraldehyde-3-phosphate dehydrogenase is required for efficient repair of cytotoxic DNA lesions in Escherichia coli, Int. J. Biochem. Cell Biol., 60, 202–212.CrossRefPubMedGoogle Scholar
  66. 66.
    Lindahl, T. (1993) Instability and decay of the primary structure of DNA, Nature, 362, 709–715.CrossRefPubMedGoogle Scholar
  67. 67.
    Levina, E. S., Bavykin, S. G., Shik, V. V., and Mirzabekov, A. D. (1980) The interaction of histones with DNA in chromatin. A new method for covalent binding of histones to DNA, convenient to their location on DNA, Biochemistry (Moscow), 45, 1133–1145.Google Scholar
  68. 68.
    Khodyreva, S. N., and Lavrik, O. I. (2011) Affinity modification in a proteomic study of DNA repair ensembles, Russ. J. Bioorg. Chem., 37, 80–94.CrossRefGoogle Scholar
  69. 69.
    Prasad, R., Liu, Y., Deterding, L. J., Poltoratsky, V. P., Kedar, P. S., Horton, J. K., Kanno, S., Asagoshi, K., Hou, E. W., Khodyreva, S. N., Lavrik, O. I., Tomer, K. B., Yasui, A., and Wilson, S. H. (2007) HMGB1 is a cofactor in mammalian base excision repair, Mol. Cell, 27, 829–841.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Ilina, E. S., Lavrik, O. I., and Khodyreva, S. N. (2008) Ku antigen interacts with abasic sites, Biochim. Biophys. Acta, 1784, 1777–1785.CrossRefPubMedGoogle Scholar
  71. 71.
    Khodyreva, S. N., Prasad, R., Ilina, E. S., Sukhanova, M. V., Kutuzov, M. M., Liu, Y., Hou, E. W., Wilson, S. H., and Lavrik, O. I. (2010) Apurinic/apyrimidinic (AP) site recognition by the 5′-dRP/AP lyase in poly(ADP-ribose) polymerase-1 (PARP-1), Proc. Natl. Acad. Sci. USA, 107, 22090–22095.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Kosova, A. A., Khodyreva, S. N., and Lavrik, O. I. (2014) Ku80 interaction with apurinic/apyrimidinic sites depends on the structure of DNA ends, Biopolym. Cell, 30, 42–46.CrossRefGoogle Scholar
  73. 73.
    Nakajima, H., Kubo, T., Ihara, H., Hikida, T., Danjo, T., Nakatsuji, M., Shahani, N., Itakura, M., Ono, Y., Azuma, Y. T., Inui, T., Kamiya, A., Sawa, A., and Takeuchi, T. (2015) Nuclear-translocated glyceraldehyde-3-phosphate dehydrogenase promotes poly(ADP-ribose) polymerase-1 activation during oxidative/nitrosative stress in stroke, J. Biol. Chem., 290, 14493–14503.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Krynetski, E. Y., Krynetskaia, N. F., Bianchi, M. E., and Evans, W. E. (2003) A nuclear protein complex containing high mobility group proteins B1 and B2, heat shock cognate protein 70, ERp60, and glyceraldehyde-3-phosphate dehydrogenase is involved in the cytotoxic response to DNA modified by incorporation of anticancer nucleoside analogues, Cancer Res., 63, 100–106.PubMedGoogle Scholar
  75. 75.
    Loecken, E. M., and Guengerich, F. P. (2008) Reactions of glyceraldehyde 3-phosphate dehydrogenase sulfhydryl groups with bis-electrophiles produce DNA–protein crosslinks but not mutations, Chem. Res. Toxicol., 21, 453–458.CrossRefPubMedGoogle Scholar
  76. 76.
    Azam, S., Jouvet, N., Jilani, A., Vongsamphanh, R., Yang, X., Yang, S., and Ramotar, D. (2008) Human glyceraldehyde-3-phosphate dehydrogenase plays a direct role in reactivating oxidized forms of the DNA repair enzyme APE1, J. Biol. Chem., 283, 30632–30641.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    D’Amours, D., Desnoyers, S., D’Silva, I., and Poirier, G. G. (1999) Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions, Biochem. J., 342, 249–268.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Du, X., Matsumura, T., Edelstein, D., Rossetti, L., Zsengeller, Z., Szabo, C., and Brownlee, M. (2003) Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells, J. Clin. Invest., 112, 1049–1057.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Devalaraja-Narashimha, K., and Padanilam, B. J. (2009) PARP-1 inhibits glycolysis in ischemic kidneys, J. Am. Soc. Nephrol., 20, 95–103.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Long, C. A., Boulom, V., Albadawi, H., Tsai, S., Yoo, H. J., Oklu, R., Goldman, M. H., and Watkins, M. T. (2013) Poly-ADP-ribose polymerase inhibition ameliorates hind limb ischemia reperfusion injury in a murine model of type 2 diabetes, Ann. Surg., 258, 1087–1095.CrossRefPubMedGoogle Scholar
  81. 81.
    Ferreira, E., Gimenez, R., Aguilera, L., Guzman, K., Aguilar, J., Badia, J., and Baldoma, L. (2013) Protein interaction studies point to new functions for Escherichia coli glyceraldehyde-3-phosphate dehydrogenase, Res. Microbiol., 164, 145–154.CrossRefPubMedGoogle Scholar
  82. 82.
    Ringel, A. E., Ryznar, R., Picariello, H., Huang, K. L., Lazarus, A. G., and Holmes, S. G. (2013) Yeast Tdh3 (glyceraldehyde 3-phosphate dehydrogenase) is a Sir2-interacting factor that regulates transcriptional silencing and rDNA recombination, PLoS Genet., 9, e1003871.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Holtgrefe, S., Gohlke, J., Starmann, J., Druce, S., Klocke, S., Altmann, B., Wojtera, J., Lindermayr, C., and Scheibe, R. (2008) Regulation of plant cytosolic glyceraldehyde 3-phosphate dehydrogenase isoforms by thiol modifications, Physiol. Plant., 133, 211–228.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. A. Kosova
    • 1
  • S. N. Khodyreva
    • 1
    • 2
  • O. I. Lavrik
    • 1
    • 2
  1. 1.Institute of Chemical Biology and Fundamental MedicineSiberian Branch of the Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations