Biochemistry (Moscow)

, Volume 82, Issue 5, pp 632–641 | Cite as

Role of Na+/K+-ATPase in natriuretic effect of prolactin in a model of cholestasis of pregnancy

  • P. A. AbramichevaEmail author
  • T. A. Balakina
  • O. A. Bulaeva
  • A. A. Guseva
  • O. D. Lopina
  • O. V. Smirnova


Participation of Na+/K+-ATPase in the natriuretic effect of prolactin in a cholestasis of pregnancy model was investigated. The Na+/K+-ATPase activity in rat kidney medulla, where active sodium reabsorption occurs, decreased in the model of cholestasis of pregnancy and other hyperprolactinemia types compared with intact animals. This effect was not connected with the protein level of α1- and β-subunits of Na+/K+-ATPase measured by Western blotting in the kidney medulla. Decrease in Na+/K+-ATPase activity in the kidney cortex was not significant, as well as decrease in the quantity of mRNA and proteins of the α1- and β-subunits of Na+/K+-ATPase. There were no correlations between the Na+/K+-ATPase activity and sodium clearance, although sodium clearance increased significantly in the model of cholestasis of pregnancy and other hyperprolactinemia groups under conditions of stable glomerular filtration rate measured by creatinine clearance. We conclude that the Na+/K+-ATPase is not the only mediator of the natriuretic effect of prolactin in the model of cholesta- sis of pregnancy.


Na+/K+-ATPase prolactin natriuresis cholestasis of pregnancy kidney rat 



glyceraldehyde 3-phosphate dehydrogenase


glomerular filtration rate


hypoxanthineguanine phosphoribosyltransferase


mitochondria rich cells


reverse transcription polymerase chain reaction


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boldyrev, A. A. (2008) Role of Na/K-pump in excitable tissues, J. Sib. Fed. Univ., 3, 206–225.Google Scholar
  2. 2.
    Staruschenko, A. (2012) Regulation of transport in the connecting tubule and cortical collecting duct, Comprehen. Physiol., 2, 1541–1584.Google Scholar
  3. 3.
    Smirnova, O. V. (2011) Osmoregulatory function of prolactin in fish and its projection on mammals, Usp. Fiziol. Nauk, 42, 59–75.PubMedGoogle Scholar
  4. 4.
    Sakamoto, T., Uchida, K., and Yokota, S. (2001) Regulation of the iontransporting mitochondrionrich cell during adaptation of teleost fishes to different salinities, Zool. Sci., 18, 1163–1174.CrossRefPubMedGoogle Scholar
  5. 5.
    Auperin, B., Rentier-Delrue, F., Martial, J. A., and Prunet, P. (1994) Characterization of single prolactin (PRL) receptor tilapia (Oreochromis niloticus) which binds both PRLI and PRLII, J. Mol. Endocrinol., 13, 241–251.CrossRefPubMedGoogle Scholar
  6. 6.
    Santos, C. R. A., Ingleton, P. M., Cavaco, J. E. B., Kelly, P. A., Edery, M., and Power, D. M. (2001) Cloning, characterization, and tissue distribution of prolactin receptor in the sea bream (Sparus aurata), Gen. Comp. Endocrinol., 47, 32–47.CrossRefGoogle Scholar
  7. 7.
    Lee, K. M., Kaneko, T., and Aida, K. (2006) Prolactin and prolactin receptor expressions in a marine teleost, pufferfish Takifugu rubripes, Gen. Comp. Endocrinol., 146, 318–328.CrossRefPubMedGoogle Scholar
  8. 8.
    Morrissey, S. E., Newth, T., Rees, R., Barr, A., Shora, F., and Laycock, J. F. (2001) Renal effects of recombinant prolactin in anaesthetized rats, Eur. J. Endocrinol., 145, 65–71.CrossRefPubMedGoogle Scholar
  9. 9.
    Nagano, M., and Kelly, P. A. (1994) Tissue distribution and regulation of rat prolactin receptor gene expression. Quantitative analysis by polymerase chain reaction, J. Biol. Chem., 269, 13337–13345.PubMedGoogle Scholar
  10. 10.
    Aleksandrova, M. I., Kushnareva, N. S., and Smirnova, O. V. (2012) Prolactin receptor expression in kidney tissue of female rats with cholestasis: the effect of hyperprolactinemia, Bull. Exp. Biol. Med., 153, 448–451.CrossRefPubMedGoogle Scholar
  11. 11.
    Ibarra, F., Crambert, S., Eklof, A.-C., Lundquist, A., Hansell, P., and Holtback, U. (2005) Prolactin, a natriuretic hormone, interacting with the renal dopamine system, Kidney Int., 68, 1700–1707.CrossRefPubMedGoogle Scholar
  12. 12.
    Narasaka, T., Moriya, T., Endoh, M., Suzuki, T., Shizawa, S., Mizokami, Y., Matsuoka, T., and Sasano, H. (2000) 17-Betahydroxysteroid dehydrogenase type 2 and dehydroepiandrosterone sulfotransferase in the human liver, Endocr. J., 47, 697–705.CrossRefPubMedGoogle Scholar
  13. 13.
    Ranta, T., Unnerus, H. A., Rossi, J., and Seppala, M. (1979) Elevated plasma prolactin concentration in cholestasis of pregnancy, Am. J. Obstet. Gynecol., 134, 1–3.CrossRefPubMedGoogle Scholar
  14. 14.
    Ranta, T., Stenman, U. H., Unnerus, H. A., Rossi, J., and Seppala, M. (1980) Maternal plasma prolactin levels in preeclampsia, Obstet. Gynecol., 55, 428–430.PubMedGoogle Scholar
  15. 15.
    Fidchenko, Yu. M., Kushnareva, N. S., and Smirnova, O. V. (2013) Effect of prolactin on watersalt balance in rat females in the model of cholestasis of pregnancy, Bull. Exp. Biol. Med., 156, 767–770.Google Scholar
  16. 16.
    Moreno-Carranza, B., Goya-Arce, M., Vega, C., Adan, N., Triebel, J., Lopez-Barrera, F., Quintanar-Stephano, A., Binart, N., Martinez de la Escalera, G., and Clapp, C. (2013) Prolactin promotes normal liver growth, survival, and regeneration in rodents: effects on hepatic IL-6, suppressor of cytokine signaling-3, and angiogenesis, Am. J. Physiol. Regul. Integr. Comp. Physiol., 305, R720–R726.CrossRefPubMedGoogle Scholar
  17. 17.
    Ose, K., Miyata, K., Yoshioka, K., and Okuno, Y. (2009) Effects of hyperprolactinemia on toxicological parameters and proliferation of islet cells in male rats, J. Toxicol. Sci., 34, 151–162.CrossRefPubMedGoogle Scholar
  18. 18.
    Asad, M., Shewade, D. G., Koumaravelou, K., Abraham, B. K., Balasinor, N., and Ramaswamy, S. (2001) Effect of hyperprolactinaemia as induced by pituitary homografts under kidney capsule on gastric and duodenal ulcers in rats, J. Pharm. Pharmacol., 53, 1541–1547.CrossRefPubMedGoogle Scholar
  19. 19.
    Feraille, E., and Doucet, A. (2001) Sodiumpotassiumadenosinetriphosphatasedependent sodium transport in the kidney: hormonal control, Physiol. Rev., 81, 345–419.PubMedGoogle Scholar
  20. 20.
    Crambert, S., Sjoberg, A., Eklof, A.-C., Ibarra, F., and Holtback, U. (2010) Prolactin and dopamine 1-like receptor interaction in renal proximal tubular cells, Am. J. Physiol. Renal Physiol., 299, F49–54.CrossRefPubMedGoogle Scholar
  21. 21.
    Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., and Speleman, F. (2002) Accurate normalization of realtime quantitative RT-PCR data by geometric averaging of multiple internal control genes, Genome Biol., 3, 1–12.CrossRefGoogle Scholar
  22. 22.
    Jшrgensen, P. L. (1988) Purification of Na+,K+-ATPase: enzyme sources, preparative problems, and preparation from mammalian kidney, Methods Enzymol., 156, 29–43.CrossRefGoogle Scholar
  23. 23.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) Protein measurement with the Folin phenol reagent, J. Biol. Chem., 193, 265–275.PubMedGoogle Scholar
  24. 24.
    Rathbun, W. B., and Betlach, M. V. (1969) Estimation of enzymically produced orthophosphate in the presence of cysteine and adenosine triphosphate, Anal. Biochem., 28, 436–446.CrossRefPubMedGoogle Scholar
  25. 25.
    Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680–685.CrossRefPubMedGoogle Scholar
  26. 26.
    Atherton, J. C., Dark, J. M., Garland, H. O., Morgan, M. R., Pidgeon, J., and Soni, S. (1982) Changes in water and electrolyte balance, plasma volume and composition during pregnancy in the rat, J. Physiol., 330, 81–93.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Adamson, A. D., Friedrichsen, S., Semprini, S., Harper, C. V., Mullins, J. J., White, M. R. H., and Davis, J. R. E. (2008) Human prolactin gene promoter regulation by estrogen: convergence with tumor necrosis factoralpha signaling, Endocrinology, 149, 687–694.CrossRefPubMedGoogle Scholar
  28. 28.
    Tsuchida, Y., Kaneko, Y., Otsuka, T., Goto, K., Saito, A., Yamamoto, K., Yamamoto, T., and Narita, I. (2014) Upregulation of prolactin receptor in proximal tubular cells was induced in cardiac dysfunction model mice, Clin. Exp. Nephrol., 18, 65–74.CrossRefPubMedGoogle Scholar
  29. 29.
    Geering, K. (2008) Functional roles of Na,K-ATPase subunits, Curr. Opin. Nephrol. Hypertens., 17, 526–532.CrossRefPubMedGoogle Scholar
  30. 30.
    Rajasekaran, S. A., Palmer, L. G., Moon, S. Y., Peralta Soler, A., Apodaca, G. L., Harper, J. F., Zheng, Y., and Rajasekaran, A. K. (2001) Na,K-ATPase activity is required for formation of tight junctions, desmosomes, and induction of polarity in epithelial cells, Mol. Biol. Cell, 12, 3717–3732.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Palmer, L. G., and Schnermann, J. (2015) Integrated control of Na transport along the nephron, Clin. J. Am. Soc. Nephrol., 10, 676–687.CrossRefPubMedGoogle Scholar
  32. 32.
    Merino, A., Moreno, G., Mercado, A., Bobadilla, N. A., and Gamba, G. (2001) Na+,K+-ATPase mRNA expression in the kidney during adaptation to sodium intake and furosemide treatment, Arch. Med. Res., 31, 486–492.CrossRefGoogle Scholar
  33. 33.
    Greenlee, M. M., Mitzelfelt, J. D., Duke, B. J., Al-Khalili, O., Bao, H.-F., and Eaton, D. C. (2015) Prolactin stimulates sodium and chloride ion channels in A6 renal epithelial cells, Am. J. Physiol. Renal Physiol., 308, F697-705.CrossRefGoogle Scholar
  34. 34.
    Breves, J. P., Watanabe, S., Kaneko, T., Hirano, T., and Grau, E. G. (2010) Prolactin restores branchial mitochondrionrich cells expressing Na+/Cl cotransporter in hypophysectomized Mozambique tilapia, Am. J. Physiol. Regul. Integr. Comp. Physiol., 299, 702–710.CrossRefGoogle Scholar
  35. 35.
    Moorman, B. P., Inokuchi, M., Yamaguchi, Y., Lerner, D. T., Grau, E. G., and Seale, A. P. (2014) The osmoregulatory effects of rearing Mozambique tilapia in a tidally changing salinity, Gen. Comp. Endocrinol., 207, 94–102.CrossRefPubMedGoogle Scholar
  36. 36.
    Guh, Y.-J., Lin, C.-H., and Hwang, P.-P. (2015) Osmoregulation in zebrafish: ion transport mechanisms and functional regulation, EXCLI J., 14, 627–659.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Rojas-Vega, L., Reyes-Castro, L. A., Ramirez, V., Bautista-Perez, R., Rafael, C., Castaneda-Bueno, M., Meade, P., de Los Heros, P., Arroyo-Garza, I., Bernard, V., Binart, N., Bobadilla, N. A., Hadchouel, J., Zambrano, E., and Gamba, G. (2015) Ovarian hormones and prolactin increase renal NaCl cotransporter phosphorylation, Am. J. Physiol. Renal Physiol., 308, F799-808.CrossRefGoogle Scholar
  38. 38.
    Seale, A. P., Stagg, J. J., Yamaguchi, Y., Breves, J. P., Soma, S., Watanabe, S., Kaneko, T., Cnaani, A., Harpaz, S., Lerner, D. T., and Grau, E. G. (2014) Effects of salinity and prolactin on gene transcript levels of ion transporters, ion pumps and prolactin receptors in Mozambique tilapia intestine, Gen. Comp. Endocrinol., 206, 146–154.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • P. A. Abramicheva
    • 1
    Email author
  • T. A. Balakina
    • 1
  • O. A. Bulaeva
    • 1
  • A. A. Guseva
    • 1
  • O. D. Lopina
    • 1
  • O. V. Smirnova
    • 1
  1. 1.Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations