Advertisement

Biochemistry (Moscow)

, Volume 82, Issue 5, pp 625–631 | Cite as

Intermediate states of apomyoglobin: Are they parts of the same area of conformations diagram?

  • V. A. BalobanovEmail author
  • N. S. Katina
  • A. V. Finkelstein
  • V. E. Bychkova
Article

Abstract

Several research teams have reported detection and characterization of various apomyoglobin intermediate states different in their accumulation mode, thus putting a natural question as to proportions of these intermediates. The current report presents spectral properties of sperm whale apomyoglobin studied over a wide range of conditions with the use of circular dichroism and fluorescence techniques. Based on the experimental data, a diagram of apomyoglobin conformational states has been constructed. It shows that though induced by various denaturants, all the observed intermediates belong to one and the same area in the diagram.

Keywords

apomyoglobin conformational transitions conformations diagram intermediate state 

Abbreviations

ApoMb

apomyoglobin

CD

circular dichroism

DSC

differential scanning calorimetry

I

protein intermediate state

N

protein native state

U

protein unfolded state

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sarkar, S. S., Udgaonkar, J. B., and Krishnamoorthy, G. (2013) Unfolding of a small protein proceeds via dry and wet globules and a solvated transition state, Biophys. J., 105, 2392–2402.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bonetti, D., Camilloni, C., Visconti, L., Longhi, S., Brunori, M., Vendruscolo, M., and Gianni, S. (2016) Identification and structural characterization of an intermediate in the folding of the measles virus X domain, J. Biol. Chem., 291, 10886–10892.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ptitsyn, O. B. (1995) Molten globule and protein folding, Adv. Protein Chem., 47, 83–229.CrossRefPubMedGoogle Scholar
  4. 4.
    Barrick, D., and Baldwin, R. L. (1993) The molten globule intermediate of apomyoglobin and the process of protein folding, Protein Sci., 2, 869–876.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kay, M. S., and Baldwin, R. L. (1996) Packing interactions in the apomyoglobin folding intermediate, Nature Struct. Biol., 3, 439–445.CrossRefPubMedGoogle Scholar
  6. 6.
    Kay, M. S., and Baldwin, R. L. (1998) Alternative models for describing the acid unfolding of the apomyoglobin folding intermediate, Biochemistry, 37, 7859–7868.CrossRefPubMedGoogle Scholar
  7. 7.
    Eliezer, D., Yao, J., Dyson, H. J., and Wright, P. E. (1998) Structural and dynamic characterization of partially folded states of apomyoglobin and implications for protein folding, Nature Struct. Biol., 5, 148–155.CrossRefPubMedGoogle Scholar
  8. 8.
    Bertagna, A. M., and Barrick, D. (2004) Nonspecific hydrophobic interactions stabilize an equilibrium intermediate of apomyoglobin at a key position within the AGH region, Proc. Natl. Acad. Sci. USA, 101, 12514–12519.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Nishiguchi, S., Goto, Y., and Takahashi, S. (2007) Solvation and desolvation dynamics in apomyoglobin folding monitored by timeresolved infrared spectroscopy, J. Mol. Biol., 373, 491–502.CrossRefPubMedGoogle Scholar
  10. 10.
    Samatova, E. N., Katina, N. S., Balobanov, V. A., Melnik, B. S., Dolgikh, D. A., Bychkova, V. E., and Finkelstein, A. V. (2009) How strong are side chain interactions in the folding intermediate? Protein Sci., 18, 2152–2159.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Griko, Y. V., Privalov, P. L., Veniaminov, V. P., and Kutyshenko, V. P. (1988) Thermodynamic study of the apomyoglobin structure, J. Mol. Biol., 202, 27–35.CrossRefGoogle Scholar
  12. 12.
    Singh, N., Kumar, R., Jagannadham, M. V., and Kayastha, A. M. (2013) Evidence for a molten globule state in Cicer α-galactosidase induced by pH, temperature, and guanidine hydrochloride, Appl. Biochem. Biotechnol., 169, 2315–2325.CrossRefPubMedGoogle Scholar
  13. 13.
    Tanford, C. (1968) Protein denaturation, Adv. Protein Chem., 23, 121–282.CrossRefPubMedGoogle Scholar
  14. 14.
    Goto, Y., and Fink, A. L. (1990) Phase diagram for acidic conformational states of apomyoglobin, J. Mol. Biol., 20, 803–805.CrossRefGoogle Scholar
  15. 15.
    Kamatari, Y. O., Ohji, S., Konno, T., Seki, Y., Soda, K., Kataoka, M., and Akasaka, K. (1999) The compact and expanded denatured conformations of apomyoglobin in the methanol–water solvent, Protein Sci., 8, 873–882.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Bychkova, V. E., Dujsekina, A. E., Klenin, S. I., Tiktopulo, E. I., Uversky, V. N., and Ptitsyn, O. B. (1996) Molten globulelike state of cytochrome c under conditions simulating those near the membrane surface, Biochemistry, 35, 6058–6063.CrossRefPubMedGoogle Scholar
  17. 17.
    Cocco, M. J., and Lecomte, J. T. (1996) The native state of apomyoglobin described by proton NMR spectroscopy: the A-B-G-H interface of wildtype sperm whale apomyoglobin, Proteins, 25, 267–285.CrossRefPubMedGoogle Scholar
  18. 18.
    Eliezer, D., and Wright, P. E. (1996) Is apomyoglobin a molten globule? Structural characterization by NMR, J. Mol. Biol., 263, 531–538.CrossRefPubMedGoogle Scholar
  19. 19.
    Griko, Y. V., and Privalov, P. L. (1994) Thermodynamic puzzle of apomyoglobin unfolding, J. Mol. Biol., 235, 1318–1325.CrossRefPubMedGoogle Scholar
  20. 20.
    Harrison, S. C., and Blout, E. R. (1965) Reversible conformational changes of myoglobin and apomyoglobin, J. Biol. Chem., 61, 623–627.Google Scholar
  21. 21.
    Yao, J., Chung, J., Eliezer, D., Wright, P. E., and Dyson, H. J. (2001) NMR structural and dynamic characterization of the acidunfolded state of apomyoglobin provides insights into the early events in protein folding, Biochemistry, 27, 3561–3571.CrossRefGoogle Scholar
  22. 22.
    Mohana-Borges, R., Goto, N. K., Kroon, G. J., Dyson, H. J., and Wright, P. E. (2004) Structural characterization of unfolded states of apomyoglobin using residual dipolar couplings, J. Mol. Biol., 340, 1131–1142.CrossRefPubMedGoogle Scholar
  23. 23.
    Schwarzinger, S., Wright, P. E., and Dyson, H. J. (2002) Molecular hinges in protein folding: the ureadenatured state of apomyoglobin, Biochemistry, 41, 12681–12686.CrossRefPubMedGoogle Scholar
  24. 24.
    Jennings, P. A., Stone, M. J., and Wright, P. E. (1995) Overexpression of myoglobin and assignment of the amid, Cα and Cβ resonances, J. Biomol. NMR, 6, 271–276.CrossRefPubMedGoogle Scholar
  25. 25.
    Tischer, A., and Auton, M. (2013) Urea–temperature phase diagrams capture the thermodynamics of denatured state expansion that accompany protein unfolding, Protein Sci., 22, 1147–1160.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Serrano, A. L., Waegele, M. M., and Gai, F. (2012) Spectroscopic studies of protein folding: linear and nonlinear methods, Protein Sci., 21, 157–170.CrossRefPubMedGoogle Scholar
  27. 27.
    Baryshnikova, E. N., Melnik, B. S., Finkelstein, A. V., Semisotnov, G. V., and Bychkova, V. E. (2005) Threestate protein folding: experimental determination of freeenergy profile, Protein Sci., 14, 2658–2667.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Uzawa, T., Nishimura, C., Akiyama, S., Ishimori, K., Takahashi, S., Dyson, H. J., and Wright, P. E. (2008) Hierarchical folding mechanism of apomyoglobin revealed by ultrafast H/D exchange coupled with 2D NMR, Proc. Natl. Acad. Sci. USA, 105, 13859–13864.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. A. Balobanov
    • 1
    Email author
  • N. S. Katina
    • 1
  • A. V. Finkelstein
    • 1
  • V. E. Bychkova
    • 1
  1. 1.Institute of Protein ResearchRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations