Advertisement

Biochemistry (Moscow)

, Volume 82, Issue 5, pp 587–605 | Cite as

Acetate metabolism in the purple non-sulfur bacterium Rhodobacter capsulatus

  • E. P. Petushkova
  • A. A. TsygankovEmail author
Article

Abstract

The purple non-sulfur bacterium Rhodobacter capsulatus B10 can grow on acetate as the sole carbon source under photoheterotrophic conditions. It is known that the bacterium can use the glyoxylate cycle and, in addition to it, or alternatively to it, an unknown pathway for acetate assimilation. We analyzed the genetic potential for functioning of additional metabolic pathways of oxaloacetic acid (OAA) pool replenishment in R. capsulatus. Using published microarray data of more than 4000 transcripts of genes for R. capsulatus, the genes necessary for acetate assimilation were analyzed. The results of the analysis showed the presence of all genes necessary for functioning of the ethylmalonyl-CoA pathway, and also a combination of pathways of formation of pyruvic acid/phosphoenol pyruvate (PA/PEP) (from acetyl-CoA and formate, from acetyl-CoA and CO2, as well as from 3-phosphoglyceric acid formed in the Calvin–Benson cycle) with their subsequent carboxylation. Using expression analysis, we showed that OAA pool replenishment on acetate medium could be achieved via a combination of PA/PEP synthesis from Calvin–Benson cycle intermediates and their carboxylation (with participation of pyruvate carboxylase, two reversible malate dehydrogenases (decarboxylating) and PEP-carboxykinase) to tricarboxylic acid cycle intermediates, the glyoxylate cycle, and a modified ethylmalonyl-CoA pathway in R. capsulatus under these experimental conditions. It was found that analogs of ethylmalonyl-CoA pathway enzymes exist. These enzymes differ in their specificity for S-enantiomers.

Keywords

Rhodobacter capsulatus acetate assimilation glyoxylate cycle Calvin–Benson cycle pyruvate oxidoreductase ethylmalonyl-CoA pathway methylcitrate cycle 

Abbreviations

ICL

isocitrate lyase

OAA

oxaloacetic acid

PA

pyruvic acid

PEP

phosphoenol pyruvate

PGA

phosphoglyceric acid

TCA cycle

tricarboxylic acid cycle (Krebs cycle)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kornberg, H. L., and Krebs, H. A. (1957) Synthesis of cell constituents from C2-units by a modified tricarboxylic acid cycle, Nature, 179, 988–991.CrossRefPubMedGoogle Scholar
  2. 2.
    Filatova, L. V., Berg, I. A., Krasil’nikova, E. N., Tsygankov, A. A., Laurinavichene, T. V., and Ivanovsky, R. N. (2005) A study of the mechanism of acetate assimilation in purple nonsulfur bacteria lacking the glyoxylate shunt: acetate assimilation in Rhodobacter sphaeroides, Microbiology, 74, 265–269.CrossRefGoogle Scholar
  3. 3.
    Shimizu, S., Ueda, S., and Sato, K. (1984) in Microbial Growth on C1 Compounds (Crawford, R. L., and Hanson, R. S., eds.) American Society for Microbiology, Washington, DC, pp. 113–117.Google Scholar
  4. 4.
    Khomyakova, M., Bukmez, O., Thomas, L. K., Erb, T. J., and Berg, I. A. (2011) A methylaspartate cycle in Haloarchaea, Science, 331, 334–337.CrossRefPubMedGoogle Scholar
  5. 5.
    Ivanovsky, R. N., Krasilnikova, E. N., and Berg, I. A. (1997) A proposed citramalate cycle for acetate assimilation in the purple nonsulfur bacterium Rhodospirillum rubrum, FEMS Microbiol. Lett., 153, 399–404.CrossRefGoogle Scholar
  6. 6.
    Filatova, L. V., Berg, I. A., Krasil’nikova, E. N., and Ivanovsky, R. N. (2005) A study of the mechanism of acetate assimilation in purple nonsulfur bacteria lacking the glyoxylate shunt: enzymes of the citramalate cycle in Rhodobacter sphaeroides, Microbiology, 74, 270–278.CrossRefGoogle Scholar
  7. 7.
    Korotkova, N., Chistoserdova, L., Kuksa, V., and Lidstrom, M. E. (2002) Glyoxylate regeneration pathway in the methylotroph Methylobacterium extorquens AM1, J. Bacteriol., 184, 1750–1758.CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Erb, T. J., Berg, I. A., Brecht, V., Müller, M., Fuchs, G., and Alber, B. E. (2007) Synthesis of C5-dicarboxylic acids from C2-units involving crotonyl-CoA carboxylase/reductase: the ethylmalonyl-CoA pathway, Proc. Natl. Acad. Sci. USA, 104, 10631–10636.CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Alber, B. E., Spanheimer, R., Ebenau-Jehle, C., and Fuchs, G. (2006) Study of an alternate glyoxylate cycle for acetate assimilation by Rhodobacter sphaeroides, Mol. Microbiol., 61, 297–309.CrossRefPubMedGoogle Scholar
  10. 10.
    Zarzycki, J., Brecht, V., Müller, M., and Fuchs, G. (2009) Identifying the missing steps of the autotrophic 3-hydroxypropionate CO2 fixation cycle in Chloroflexus aurantiacus, Proc. Natl. Acad. Sci. USA, 106, 21317–21322.CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Evans, M. C. W., Buchanan, B. B., and Arnon, D. I. (1966) A new ferredoxindependent carbon reduction cycle in a photosynthetic bacterium, Proc. Natl. Acad. Sci. USA, 55, 928–934.CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Kondratieva, E. N., Ivanovsky, R. N., and Krasilnikova, E. N. (1981) in Soviet Science Review (Skulachev, V. P., ed.) IPC Science and Technology Press, Guilford, England, N. Y., pp. 325–364.Google Scholar
  13. 13.
    McKinlay, J. B., and Harwood, C. S. (2010) Carbon dioxide fixation as a central redox cofactor recycling mechanism in bacteria, Proc. Natl. Acad. Sci. USA, 107, 11669–11675.CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Berg, I. A., Kockelkorn, D., Buckel, W., and Fuchs, G. (2007) A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in archaea, Science, 318, 1782–1786.CrossRefPubMedGoogle Scholar
  15. 15.
    Huber, H., Gallenberger, M., Jahn, U., Eylert, E., Berg, I. A., Kockelkorn, D., Eisenreich, W., and Fuchs, G. (2008) A dicarboxylate/4-hydroxybutyrate autotrophic carbon assimilation cycle in the hyperthermophilic archaeon Ignicoccus hospitalis, Proc. Natl. Acad. Sci. USA, 105, 7851–7856.CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Utter, M. F., and Kolenbrander, H. M. (1972) in The Enzymes (Boyer, P. D., ed.) Vol. VI, Academic Press, N. Y., pp. 117–170.Google Scholar
  17. 17.
    Tsygankov, A. A., and Khusnutdinova, A. N. (2015) Hydrogen in metabolism of purple bacteria and prospects of practical application, Microbiology, 84, 3–26.CrossRefPubMedGoogle Scholar
  18. 18.
    Tsygankov, A. A., Fedorov, A. S., Laurinavichene, T. V., Gogotov, I. N., Rao, K. K., and Hall, D. O. (1998) Actual and potential rates of hydrogen photoproduction by continuous culture of the purple nonsulphur bacterium Rhodobacter capsulatus, Appl. Microbiol. Biotechnol., 49, 102–107.CrossRefGoogle Scholar
  19. 19.
    Laurinavichene, T. V., Tekucheva, D. N., Laurinavichius, K. S., Ghirardi, M. L., Seibert, M., and Tsygankov, A. A. (2008) Towards the integration of dark and photo fermentative waste treatment. 1. Hydrogen photoproduction by purple bacterium Rhodobacter capsulatus using potential products of starch fermentation, Int. J. Hydrogen Energy, 33, 7020–7026.CrossRefGoogle Scholar
  20. 20.
    Yen, H. C., and Marrs, B. (1976) Map of genes for carotenoid bacteriochlorophyll biosynthesis in Rhodopseudomonas capsulata, J. Bacteriol., 126, 619–629.PubMedCentralPubMedGoogle Scholar
  21. 21.
    Strnad, H., Lapidus, A., Paces, J., Ulbrich, P., Vlcek, C., Paces, V., and Haselkorn, R. (2010) Complete genome sequence of the photosynthetic purple nonsulfur bacterium Rhodobacter capsulatus SB 1003, J. Bacteriol., 192, 3545–3546.CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Albers, H., and Gottschalk, G. (1976) Acetate metabolism in Rhodopseudomonas gelatinosa and several other Rhodospirillaceae, Arch. Microbiol., 111, 45–49.CrossRefPubMedGoogle Scholar
  23. 23.
    Meister, M., Saum, S., Alber, B. E., and Fuchs, G. (2005) L-malylcoenzyme A/β-methylmalylcoenzyme a lyase is involved in acetate assimilation of the isocitrate lyasenegative bacterium Rhodobacter capsulatus, J. Bacteriol., 187, 1415–1425.CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Lavrinenko, E. P. (2007) Materials of 12 Int. Pushchino School Conf. of Young Scientists “Biology Is a Science of XXI Century”, p. 150.Google Scholar
  25. 25.
    Petushkova, E. P., and Tsygankov, A. A. (2011) Major factors affecting isocitrate lyase activity in Rhodobacter capsulatus B10 under phototrophic conditions, Microbiology, 80, 619–623.CrossRefGoogle Scholar
  26. 26.
    Shi, L., Perkins, R. G., and Tong, W. (2009) in Microarrays: Preparation, Microfluidics, Detection Methods, and Biological Applications (Dill, K., Liu, R., and Grodzinsky, P., eds.) Vol. 1, Springer, N. Y., pp. 3–24.CrossRefGoogle Scholar
  27. 27.
    Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., and Tanabe, M. (2012) KEGG for integration and interpretation of largescale molecular data sets, Nucleic Acids Res., 40, D109–114.CrossRefPubMedGoogle Scholar
  28. 28.
    The UniProt Consortium (2015) UniProt: a hub for protein information, Nucleic Acids Res., 43, D204–212.CrossRefGoogle Scholar
  29. 29.
    Morgulis, A., Coulouris, G., Raytselis, Y., Madden, T. L., Agarwala, R., and Schaffer, A. A. (2008) Database indexing for production MegaBLAST searches, Bioinformatics, 24, 1757–1764.CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res., 25, 3389–3402.CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Heider, J. (2001) Minireview: A new family of CoA-transferases, FEBS Lett., 509, 345–349.CrossRefPubMedGoogle Scholar
  32. 32.
    Risso, C., Van Dien, S. J., Orloff, A., Lovley, D. R., and Coppi, M. V. (2008) Elucidation of an alternate isoleucine biosynthesis pathway in Geobacter sulfurreducens, J. Bacteriol., 190, 2266–2274.CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Feng, X., Bandyopadhyay, A., Berla, B., Page, L., Wu, B., Pakrasi, H. B., and Tang, Y. J. (2010) The citramalate pathway in isoleucine biosynthesis, Microbiology, 156, 596–602.CrossRefPubMedGoogle Scholar
  34. 34.
    Kato, Y., and Asano, Y. (1997) 3-Methylaspartate ammonialyase as a marker enzyme of the mesaconate pathway for (S)-glutamate fermentation in Enterobacteriaceae, Arch. Microbiol., 168, 457–463.CrossRefPubMedGoogle Scholar
  35. 35.
    Kronen, M., and Berg, I. A. (2015) Mesaconase/fumarase FumD in Escherichia coli O157:H7 and promiscuity of Escherichia coli class I fumarases FumA and FumB, PLoS One, 10, e0145098.CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Suzuki, S., Osumi, T., and Katsuki, H. (1977) Properties and metabolic role of mesaconate hydratase of an aerobic bacterium, J. Biochem., 81, 1917–1925.CrossRefPubMedGoogle Scholar
  37. 37.
    Herter, S., Busch, A., and Fuchs, G. (2002) L-malylcoenzyme A lyase/betamethylmalylcoenzyme A lyase from Chloroflexus aurantiacus, a bifunctional enzyme involved in autotrophic CO2 fixation, J. Bacteriol., 184, 5999–6006.CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Hsieh, Y. J., and Kolattukudy, P. E. (1994) Inhibition of erythromycin synthesis by disruption of malonylcoenzyme A decarboxylase gene eryM in Saccharopolyspora erythraea, J. Bacteriol., 176, 714–724.CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Zhang, Y., Rodionov, D. A., Gelfand, M. S., and Gladyshev, V. N. (2009) Comparative genomic analyses of nickel, cobalt and vitamin B12 utilization, BMC Genomics, 10, 78.CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Brock, M., Maerker, C., Schutz, A., Volker, U., and Buckel, W. (2002) Oxidation of propionate to pyruvate in Escherichia coli. Involvement of methylcitrate dehydratase and aconitase, Eur. J. Biochem., 269, 6184–6194.CrossRefPubMedGoogle Scholar
  41. 41.
    Gould, T. A., Van De Langemheen, H., Munoz-Elias, E. J., McKinney, J. D., and Sacchettini, J. C. (2006) Dual role of isocitrate lyase 1 in the glyoxylate and methylcitrate cycles in Mycobacterium tuberculosis, Mol. Microbiol., 61, 940–947.CrossRefPubMedGoogle Scholar
  42. 42.
    Horswill, A. R., and Escalante-Semerena, J. (2001) In vitro conversion of propionate to pyruvate by Salmonella enterica enzymes: 2-methylcitrate dehydratase (PrpD) and aconitase enzymes catalyze the conversion of 2-methylcitrate to 2-methylisocitrate, Biochemistry, 40, 4703–4713.CrossRefPubMedGoogle Scholar
  43. 43.
    Willison, J. C. (1993) Biochemical genetics revisited: the use of mutants to study carbon and nitrogen metabolism in the photosynthetic bacteria, FEMS Microbiol. Rev., 104, 1–38.CrossRefGoogle Scholar
  44. 44.
    McFadden, B. A., and Shively, L. M. (1991) in Variations in Autotrophic Life (Shively, L. M., and Barton, L. L., eds.) Academic Press, London, pp. 25–49.Google Scholar
  45. 45.
    Tsygankov, A. A., and Laurinavichene, T. V. (1996) Influence of the degree and mode of light limitation on growth characteristics of the Rhodobacter capsulatus continuous cultures, Biotechnol. Bioeng., 51, 605–612.CrossRefPubMedGoogle Scholar
  46. 46.
    Nuiry, I. I., and Cook, P. F. (1985) The pH dependence of the reductive carboxylation of pyruvate by malic enzyme, Biochim. Biophys. Acta, 829, 295–298.CrossRefPubMedGoogle Scholar
  47. 47.
    Bricker, T. M., Zhang, S., Laborde, S. M., Mayer, P. R., Frankel, L. K., and Moroney, J. V. (2004) The malic enzyme is required for optimal photoautotrophic growth of Synechocystis sp. strain PCC 6803 under continuous light but not under a diurnal light regimen, J. Bacteriol., 186, 8144–8148.CrossRefPubMedCentralPubMedGoogle Scholar
  48. 48.
    Bologna, F. P., Andreo, C. S., and Drincovich, M. F. (2007) Escherichia coli malic enzymes: two isoforms with substantial differences in kinetic properties, metabolic regulation, and structure, J. Bacteriol., 189, 5937–5946.CrossRefPubMedCentralPubMedGoogle Scholar
  49. 49.
    Schobert, P., and Bowien, B. (1984) Unusual C3 and C4 metabolism in the chemoautotroph Alcaligenes eutrophus, J. Bacteriol., 159, 167–172.PubMedCentralPubMedGoogle Scholar
  50. 50.
    Bramer, C. O., and Steinbuchel, A. (2002) The malate dehydrogenase of Ralstonia eutropha and functionality of the C3/C4 metabolism in a Tn5-induced mdh mutant, FEMS Microbiol. Lett., 212, 159–164.CrossRefPubMedGoogle Scholar
  51. 51.
    Modakt, H. V., and Kelly, D. J. (1995) Acetyl-CoA-dependent pyruvate carboxylase from the photosynthetic bacterium Rhodobacter capsulatus: rapid and efficient purification using dyeligand affinity chromatography, Microbiology, 141, 2619–2628.CrossRefGoogle Scholar
  52. 52.
    Erb, T. J., Frerichs-Revermann, L., Fuchs, G., and Alber, B. E. (2010) The apparent malate synthase activity of Rhodobacter sphaeroides is due to two paralogous enzymes, (3S)-malylcoenzyme A (CoA)/β-methylmalyl-CoA lyase and (3S)-malyl-CoA thioesterase, J. Bacteriol., 192, 1249–1258.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Institute of Basic Biological ProblemsRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations