Biochemistry (Moscow)

, Volume 82, Issue 5, pp 579–586 | Cite as

Prevalence of autoantibodies against 3-DG-glycated H2A protein in type 2 diabetes

  • J. M. AshrafEmail author
  • S. M. S. Abdullah
  • S. Ahmad
  • S. Fatma
  • M. H. Baig
  • J. Iqbal
  • A. M. Madkhali
  • A. B. A. Jerah


Advanced glycation end-products (AGEs) have been found to be critically involved in initiation or progression of diabetes secondary complications (nephropathy, retinopathy, neuropathy, and angiopathy). Various hyper-glycating carbonyl compounds such as 3-deoxyglucosone (3-DG) are produced in pathophysiological conditions that form AGEs in high quantity both in vivo and in vitro. In the first stage of this study, we glycated histone H2A protein by 3-DG, and the results showed the formation of various intermediates and AGEs as well as structural changes in the protein. In the second stage, we studied the immunogenicity of native and 3-DG-glycated H2A protein in female rabbits. The modified H2A was highly immunogenic, eliciting high titer immunogen-specific antibodies, while the unmodified form was almost nonimmunogenic. Antibodies against standard carboxymethyllysine (CML) and pentosidine were detected in the immunized female rabbits, which demonstrates the immunogenic nature of AGEs (CML and pentosidine) as well. The results show both structural perturbation and AGEs have the capacity of triggering the immune system due to the generation of neoepitopes that render the molecule immunogenic. This study shows the presence of autoantibodies against 3-DG-modified H2A, CML, and pentosidine in the sera of type 2 diabetes patients having secondary complications. Autoantibodies against damaged H2A and AGEs may be significant in the assessment of initiation/progression of secondary complications in type 2 diabetes mellitus patients or may be used as a marker for early detection of secondary complications in diabetes.


advanced glycation end-products anti-AGE antibodies ELISA autoantibodies immunogenicity type 2 diabetes 



advanced glycation end-products






Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Singh, R., Barden, A., Mori, T., and Beilin, L. (2001) Advanced glycation endproducts: a review, Diabetologia, 44, 129–146.CrossRefPubMedGoogle Scholar
  2. 2.
    Njoroge, F. G., and Monnier, V. M. (1989) The chemistry of the Maillard reaction under physiological conditions: a review, Prog. Clin. Biol. Res., 304, 85–107.PubMedGoogle Scholar
  3. 3.
    Ahmad, S., Moinuddin, Dixit, K., Shahab, U., Alam, K., and Ali, A. (2011) Genotoxicity and immunogenicity of DNA-advanced glycation end products formed by methylglyoxal and lysine in presence of Cu2+, Biochem. Biophys. Res. Commun., 407, 568–574.CrossRefPubMedGoogle Scholar
  4. 4.
    Brownlee, M. (1992) Glycation products and pathogenesis of diabetic complications, Diabetes Care, 15, 1835–1843.CrossRefPubMedGoogle Scholar
  5. 5.
    Bucala, R., Cerami, A., and Vlassara, H. (1995) Advanced glycosylation end products in diabetic complications, Diabetes Rev., 3, 258–268.Google Scholar
  6. 6.
    Chappey, O., Dosquet, C., Wautier, M. P., and Wautier, J. L. (1997) Advanced glycation endproducts, oxidant stress and vascular lesions, Eur. J. Clin. Invest., 27, 97–108.CrossRefPubMedGoogle Scholar
  7. 7.
    Uribarri, J., Cai, W., Peppa, M., Goodman, S., Ferucci, L., Striker, G., and Vlassara, H. (2007) Circulating glycotoxins and dietary advanced glycation end products: two links to inflammatory response, oxidative stress and aging, J. Gerontol. A Biol. Sci. Med. Sci., 62, 427–433.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Park, L., Raman, K. G., Lee, K. J., Lu, Y., Ferran, L. J., Jr., Chow, W. S., Stern, D., and Schmidt, A. M. (1998) Suppression of accelerated diabetic atherosclerosis by the soluble receptor for advanced glycation end products, Nat. Med., 4, 1025–1031.CrossRefPubMedGoogle Scholar
  9. 9.
    McLellan, A. C., Thornalley, P. J., Benn, J., and Sonksen, P. H. (1994) Glyoxalase system in clinical diabetes mellitus and correlation with diabetic complications, Clin. Sci., 87, 21–29.CrossRefPubMedGoogle Scholar
  10. 10.
    Oya, T., Hattori, N., Mizuno, Y., Miyata, S., Maeda, S., Osawa, T., and Uchida, K. (1999) Methylglyoxal modification of protein. Chemical and immunochemical characterization of methylglyoxalarginine adducts, J. Biol. Chem., 274, 18492–18502.CrossRefPubMedGoogle Scholar
  11. 11.
    Frye, E. B., Degenhardt, T. P., Thorpe, S. P., and Baynes, J. B. (1998) Role of the Maillard reaction in aging of tissue proteins. Advanced glycation end productdependent increase in imidazolium crosslinks in human lens proteins, J. Biol. Chem., 273, 18714–18719.CrossRefPubMedGoogle Scholar
  12. 12.
    Thornalley, P. J., Langborg, A., and Minhas, H. S. (1999) Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose, Biochem. J., 344, 109–116.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Choudhary, D., Chandra, D., and Kale, R. K. (1997) Influence of methylglyoxal on antioxidant enzymes and oxidative damage, Toxicol. Lett., 93, 141–152.CrossRefPubMedGoogle Scholar
  14. 14.
    Ashraf, J. M., Arif, B., Dixit, K., Moinuddin, and Alam, K. (2012) Physicochemical analysis of structural changes in DNA modified with glucose, Int. J. Biol. Macromol., 51, 604–611.CrossRefPubMedGoogle Scholar
  15. 15.
    Festa, A., Schmolzer, B., Schernthaner, G., and Menzel, E. J. (1998) Differential expression of receptors for advanced glycation endproducts on monocytes in patients with IDDM, Diabetologia, 41, 674–680.CrossRefPubMedGoogle Scholar
  16. 16.
    Wolffe, A. (1998) Chromatin. Structure and Function, Academic Press, San Diego, p. 447.Google Scholar
  17. 17.
    Liebich, H. M., Gesele, E., Wirth, C., Woll, J., Jobst, K., and Lakatos, A. (1992) Nonenzymatic glycation of histones, Biol. Mass Spectrom., 22, 121–123.CrossRefGoogle Scholar
  18. 18.
    Gugliucci, A. (1994) Advanced glycation of rat liver histone octamers: an in vitro study, Biochem. Biophys. Res. Commun., 203, 588–593.CrossRefPubMedGoogle Scholar
  19. 19.
    Cervantes-Laurean, D., Jacobson, E. L., and Jacobson, M. K. (1996) Glycation and glycoxidation of histones by ADP-ribose, J. Biol. Chem., 271, 10461–10469.CrossRefPubMedGoogle Scholar
  20. 20.
    Gugliucci, A., and Bendayan, M. (1995) Histones from diabetic rats contain increased levels of advanced glycation end products, Biochem. Biophys. Res. Commun., 212, 56–62.CrossRefPubMedGoogle Scholar
  21. 21.
    Bojanovic, J. J., Jevtovic, A. D., Pantic, V. S., Dugandzic, S. M., and Jovanovic, D. S. (1970) Thymus nucleoproteins. Thymus histones in young and adult rats, Gerontologia (Basel), 16, 304–312.CrossRefGoogle Scholar
  22. 22.
    Turk, Z., Ljubica, S., Turk, N., and Benko, B. (2001) Detection of autoantibodies against advanced glycation end products and AGE-immune complexes in serum of patients with diabetes mellitus, Clin. Chim. Acta, 303, 105–115.CrossRefPubMedGoogle Scholar
  23. 23.
    Makino, H., Shikata, K., Hironaka, K., Kushiro, M., Yamasaki, Y., Sugimoto, H., Ota, Z., Araki, N., and Horiuchi, S. (1995) Ultrastructure of nonenzymatically glycated mesangial matrix in diabetic nephropathy, Kid. Int., 48, 517–526.CrossRefGoogle Scholar
  24. 24.
    Ansari, N. A., Moinuddin, Alam, K., and Ali, A. (2009) Preferential recognition of Amadoririch lysine residues by serum antibodies in diabetes mellitus: role of protein glycation in the disease process, Hum. Immunol., 70, 417–424.CrossRefPubMedGoogle Scholar
  25. 25.
    Ansari, N. A., and Dash, D. (2013) Biochemical studies on methylglyoxal mediated glycated histones: implications for presence of serum antibodies against the glycated histones in patients with type 1 diabetes mellitus, ISRN Biochem., 198065.Google Scholar
  26. 26.
    Ashraf, J. M., Ahmad, S., Rabbani, G., Jan, A. T., Lee, E. J., Khan, R. H., and Choi, I. (2014) Physicochemical analysis of structural alteration and advanced glycation end products generation during glycation of H2A histone by 3-deoxyglucosone, IUBMB Life, 66, 686–693.CrossRefPubMedGoogle Scholar
  27. 27.
    Ashraf, J. M., Arfat, M. Y., Arif, Z., Ahmad, J., Moinuddin, and Alam, K. (2015) A clinical correlation of anti-DNA-AGE autoantibodies in type 2 diabetes mellitus with disease duration, Cell Immunol., 293, 74–79.CrossRefPubMedGoogle Scholar
  28. 28.
    Shahab, U., Moinuddin, Ahmad, S., Dixit, K., and Ali, A. (2013) Genotoxic effect of N-hydroxy-4-acetylaminobiphenyl on human DNA: implications in bladder cancer, PLoS One, 8, e53205.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Moinuddin, Dixit, K., Ahmad, S., Shahab, U., Alam, K., and Ali, A. (2014) Human DNA damage by the synergistic action of 4-aminobiphenyl and nitric oxide: an immunochemical study, Environ. Toxicol., 29, 568–576.CrossRefPubMedGoogle Scholar
  30. 30.
    Alam, K., Moinuddin, and Jabeen, S. (2007) Immunogenicity of mitochondrial DNA modified by hydroxyl radical, Cell Immunol., 247, 12–17.CrossRefPubMedGoogle Scholar
  31. 31.
    Ashraf, J. M., Rabbani, G., Ahmad, S., Hasan, Q., Khan, R. H., Alam, K., and Choi, I. (2015) Glycation of H1 histone by 3-deoxyglucosone: effects on protein structure and generation of different advanced glycation end products, PLoS One, 10, e0130630.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Ashraf, J. M., Ahmad, S., Rabbani, G., Hasan, Q., Jan, A. T., Lee, E. J., and Choi, I. (2015) 3-Deoxyglucosone: a potential glycating agent accountable for structural alteration in H3 histone protein through generation of different AGEs, PLoS One, 10, e0116804.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Arfat, M. Y., Ashraf, J. M., Arif, Z., Moinuddin, and Alam, K. (2014) Fine characterization of glucosylated human IgG by biochemical and biophysical methods, Int. J. Biol. Macromol., 69, 408–415.CrossRefPubMedGoogle Scholar
  34. 34.
    Akhter, F., Khan, M. S., Singh, S., and Ahmad, S. (2014) An immunohistochemical analysis to validate the rationale behind the enhanced immunogenicity of D-ribosylated lowdensity lipoprotein, PLoS One, 9, e113144.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Turk, Z., Ljubica, S., Turk, N., and Benko, B. (2001) Detection of autoantibodies against advanced glycation end products and AGE-immune complexes in serum of patients with diabetes mellitus, Clin. Chim. Acta, 303, 105–115.CrossRefPubMedGoogle Scholar
  36. 36.
    Mustafa, I., Ahmad, S., Dixit, K., Moinuddin, Ahmad, J., and Ali, A. (2012) Glycated human DNA is a preferred antigen for anti-DNA antibodies in diabetes mellitus patients, Diabetes Res. Clin. Prac., 95, 98–104.CrossRefGoogle Scholar
  37. 37.
    Nagai, R., Fujiwara, Y., Mera, K., Yamagata, K., Sakashita, N., and Takeya, M. (2008) Immunochemical detection of N epsilon-(carboxyethyl)lysine using a specific antibody, J. Immunol. Methods, 332, 112–120.CrossRefPubMedGoogle Scholar
  38. 38.
    Ikeda, K., Higashi, T., Sano, H., Jinnouchi, Y., Yoshida, M., Araki, T., Ueda, S., and Horiuchi, S. (1996) Nε-(carboxymethyl)lysine protein adduct is a major immunological epitope in proteins modified with advanced glycation end products of the Maillard reaction, Biochemistry, 35, 8075–8083.CrossRefPubMedGoogle Scholar
  39. 39.
    Reddy, S., Bichler, J., Wells-Knecht, K. J., Thorpe, S. R., and Baynes, J. W. (1995) Nε-(carboxymethyl)lysine is a dominant advanced glycation end product (AGE) antigen in tissue proteins, Biochemistry, 34, 10872–10878.CrossRefPubMedGoogle Scholar
  40. 40.
    Shibayama, R., Araki, N., Nagai, R., and Horiuchi, S. (1999) Autoantibody against Nε-carboxymethyllysine: an advanced glycation end product of the Maillard reaction, Diabetes, 48, 1842–1829.CrossRefPubMedGoogle Scholar
  41. 41.
    Ahmad, S., Moinuddin, Habib, S., Shahab, U., Alam, K., and Ali, A. (2014) Autoimmune response to AGE modified human DNA: implications in type 1 diabetes mellitus, J. Clin. Trans Endo, 1, 66–72.Google Scholar
  42. 42.
    Ahmad, S. (2014) Immunogenicity of DNA damage by free radicals and carbonyls: a probable biomarker for the autoimmune diseases, J. Immun. Res., 1, 2.Google Scholar
  43. 43.
    Shahab, U., Tabrez, S., Khan, M. S., Akhter, F., Khan, M. S., Saeed, M., Ahmad, K., Srivastava, A. K., and Ahmad, S. (2014) Immunogenicity of DNA-advanced glycation end product fashioned through glyoxal and arginine in the presence of Fe3+: its potential role in prompt recognition of diabetes mellitus autoantibodies, Chem. Biol. Int., 219, 229–240.CrossRefGoogle Scholar
  44. 44.
    Ahmad, S., Moinuddin, Shahab, U., Khan, M. S., Habeeb, S., Alam, K., and Ali, A. (2014) Glycooxidative damage to human DNA-neoantigenic epitopes on DNA molecule could be a possible reason for autoimmune response in type 1 diabetes, Glycobiology, 24, 281–291.CrossRefPubMedGoogle Scholar
  45. 45.
    Akhter, F., Khan, M. S., Abdulrahman, A. A., Faisal, M., and Ahmad, S. (2016) Antigenic role of the adaptive immune response to D-ribose glycated LDL in diabetes, atherosclerosis and diabetic atherosclerosis patients, Life Sci., 151, 139–146.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • J. M. Ashraf
    • 1
    Email author
  • S. M. S. Abdullah
    • 1
  • S. Ahmad
    • 2
  • S. Fatma
    • 3
  • M. H. Baig
    • 4
  • J. Iqbal
    • 5
  • A. M. Madkhali
    • 1
  • A. B. A. Jerah
    • 1
  1. 1.Faculty of Applied Medical SciencesJazan UniversityJazanSaudi Arabia
  2. 2.Department of BiotechnologyIntegral UniversityLucknowIndia
  3. 3.Faculty of ScienceBanaras Hindu UniversityVaranasiIndia
  4. 4.Department of Medical BiotechnologyYeungnam UniversityGyeongsanRepublic of Korea
  5. 5.Faculty of MedicineJazan UniversityJazanSaudi Arabia

Personalised recommendations