Advertisement

Biochemistry (Moscow)

, Volume 82, Issue 4, pp 521–528 | Cite as

Short exogenous peptides regulate expression of CLE, KNOX1, and GRF family genes in Nicotiana tabacum

  • L. I. Fedoreyeva
  • T. A. Dilovarova
  • V. V. AshapkinEmail author
  • Yu. Ts. Martirosyan
  • V. Kh. Khavinson
  • P. N. Kharchenko
  • B. F. VanyushinEmail author
Article

Abstract

Exogenous short biologically active peptides epitalon (Ala-Glu-Asp-Gly), bronchogen (Ala-Glu-Asp-Leu), and vilon (Lys-Glu) at concentrations 10–7-10–9 M significantly influence growth, development, and differentiation of tobacco (Nicotiana tabacum) callus cultures. Epitalon and bronchogen, in particular, both increase growth of calluses and stimulate formation and growth of leaves in plant regenerants. Because the regulatory activity of the short peptides appears at low peptide concentrations, their action to some extent is like that of the activity of phytohormones, and it seems to have signaling character and epigenetic nature. The investigated peptides modulate in tobacco cells the expression of genes including genes responsible for tissue formation and cell differentiation. These peptides differently modulate expression of CLE family genes coding for known endogenous regulatory peptides, the KNOX1 genes (transcription factor genes) and GRF (growth regulatory factor) genes coding for respective DNA-binding proteins such as topoisomerases, nucleases, and others. Thus, at the level of transcription, plants have a system of short peptide regulation of formation of long-known peptide regulators of growth and development. The peptides studied here may be related to a new generation of plant growth regulators. They can be used in the experimental botany, plant molecular biology, biotechnology, and practical agronomy.

Keywords

cell differentiation Nicotiana tabacum gene expression short peptides plant growth regulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Khavinson, V. Kh., and Malinin, V. V. (2005) Gerontological Aspects of Genome Peptide Regulation, Karger AG, Basel, p. 104.CrossRefGoogle Scholar
  2. 2.
    Khavinson, V. Kh., Tendler, S. M., Vanyushin, B. F., Kasyanenko, N. A., Kvetnoy, I. M., Linkova, N. S., Ashapkin, V. V., Polyakova, V. O., Basharina, V. S., and Bernadotte, A. (2014) Peptide regulation of gene expression and protein synthesis in bronchial epithelium, Lung, 192, 781–791.CrossRefPubMedGoogle Scholar
  3. 3.
    Khavinson, V. Kh., Tendler, S. M., Kasyanenko, N. A., Tarnovskaya, S. I., Linkova, N. S., Ashapkin, V. V., Yakutseni, P. P., and Vanyushin, B. F. (2015) Tetrapeptide KEDW interacts with DNA and regulates gene expression, Am. J. Biomed. Sci., 7, 156–169.CrossRefGoogle Scholar
  4. 4.
    Khavinson, V. Kh., Fedoreyeva, L. I., and Vanyushin, B. F. (2011) Short peptides modulate action of eukaryotic endonucleases from wheat seedlings, Dokl. Russ. Acad. Sci., 437, 124–127.Google Scholar
  5. 5.
    Motomitsu, A., Sawa, S., and Ishida, T. (2015) Plant peptide hormone signaling, Essays Biochem., 58, 115–131.CrossRefPubMedGoogle Scholar
  6. 6.
    Czyzewicz, N., Yue, K., Beeckman, T., and De Smet, I. (2013) Message in a bottle: small signaling peptide outputs during growth and development, J. Exp. Bot., 64, 52815–296.CrossRefGoogle Scholar
  7. 7.
    Tavormina, P., De Coninck, B., Nikonorova, N., De Smet, I., and Cammue, B. (2015) The plant peptidome: an expanding repertoire of structural features and biological functions, Plant Cell, 27, 2095–2118.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Murphy, E., Smith, S., and De Smet, I. (2012) Small signaling peptides in Arabidopsis development: how cells communicate over a short distance, Plant Cell, 24, 3198–3217.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Wang, G., Zhang, G., and Wu, M. (2016) CLE peptide signaling and crosstalk with phytohormones and environmental stimuli, Front. Plant Sci., 6, 1211.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Fedoreyeva, L. I., Kireev, I. I., Khavinson, V. Kh., and Vanyushin, B. F. (2011) Penetration of short fluorescently labeled peptides into the nucleus in the HeLa cells and specific in vitro interaction of peptides with deoxyribooligonucleotides and DNA, Biochemistry (Moscow), 76, 1505–1516.Google Scholar
  11. 11.
    Srinivasan, C., Liu, Z., and Scorza, R. (2011). Ectopic expression of class 1KNOX genes induce adventitious shoot regeneration and alter growth and development of tobacco (Nicotiana tabacum L.) and European plum (Prunus domestica L.), Plant Cell Rep., 30, 655–664.CrossRefPubMedGoogle Scholar
  12. 12.
    Wenjin Zhang and Rongming Yu (2014) Molecular mechanism of stem cells in Arabidopsis thaliana, Pharmacogn. Rev., 8, 105–112.CrossRefGoogle Scholar
  13. 13.
    Kuijt, S. J. H., Greco, R., Agolou, A., Shao, J., ‘t Hoen, C. C., Overnas, E., Osnato, M., Curiale, S., Meynard, D., Van Gulik, R., De Faria Maraschin, S., Atallah, M., De Kam, R. J., Lamers, G. E., Guiderdoni, E., Rossini, L., Meijer, A. H., and Ouwerkerk, P. B. (2014) Interaction between the growthregulating factor and KNOTTED1-like homeobox families of transcription factors, Plant Physiol., 164, 1952–1996.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Fedoreyeva, L. I., Smirnova, T. A., Kolomijtseva, G. Ya., Khavinson, V. Kh., and Vanyushin, B. F. (2013) Interaction of short biologically active peptides with FITC-labeled wheat histones and their complexes with deoxyribooligonucleotides, Biochemistry (Moscow), 78, 230–242.Google Scholar
  15. 15.
    Omidbakhsfar, M. A., Proost, S., Fujikura, U., and Mueller-Roeber, B. (2015) Growth-regulating factors (GRFs): a small transcription factor family with important functions in plant biology, Mol. Plant, 8, 998–1010.CrossRefGoogle Scholar
  16. 16.
    Kim, J. S., Mizoi, J., Kidokoro, S., Maruyama, K., Nakajima, J., Nakashima, K., Mitsuda, N., Takiguchi, Y., Ohme-Takagi, M., Kondou, Y., Yoshizumi, T., Matsui, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2012) Arabidopsis growth-regulating factor7 functions as a transcriptional repressor of abscisic acidand osmotic stressresponsive genes, including DREB2A, Plant Cell, 24, 33933–405.Google Scholar
  17. 17.
    Kirnos, M. D., Aleksandrushkina, N. I., and Vanyushin, B. F. (1981) 5-Methylcytosine in pyrimidine sequences of animal and plant DNA: methylation specificity, Biochemistry (Moscow), 46, 1458–1474.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • L. I. Fedoreyeva
    • 1
    • 2
  • T. A. Dilovarova
    • 1
  • V. V. Ashapkin
    • 2
    Email author
  • Yu. Ts. Martirosyan
    • 1
  • V. Kh. Khavinson
    • 3
  • P. N. Kharchenko
    • 1
  • B. F. Vanyushin
    • 1
    • 2
    Email author
  1. 1.All-Russia Research Institute of Agricultural BiotechnologyRussian Academy of SciencesMoscowRussia
  2. 2.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
  3. 3.St. Petersburg Institute of Bioregulation and GerontologyRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations