Biochemistry (Moscow)

, Volume 82, Issue 4, pp 510–520 | Cite as

Trastuzumab and pertuzumab plant biosimilars: Modification of Asn297-linked glycan of the mAbs produced in a plant with fucosyltransferase and xylosyltransferase gene knockouts

  • T. V. Komarova
  • E. V. Sheshukova
  • E. N. Kosobokova
  • M. V. Serebryakova
  • V. S. Kosorukov
  • V. N. Tashlitsky
  • Y. L. DorokhovEmail author


Plant biosimilars of anticancer therapeutic antibodies are of interest not only because of the prospects of their practical use, but also as an instrument and object for study of plant protein glycosylation. In this work, we first designed a pertuzumab plant biosimilar (PPB) and investigated the composition of its Asn297-linked glycan in comparison with trastuzumab plant biosimilar (TPB). Both biosimilars were produced in wild-type (WT) Nicotiana benthamiana plant (PPBWT and TPB-WT) and transgenic ΔXTFT N. benthamiana plant with XT and FT genes knockout (PPB-ΔXTFT and TPBΔXTFT). Western blot analysis with anti-α1,3-fucose and anti-xylose antibodies, as well as a test with peptide-N-glycosidase F, confirmed the absence of α1,3-fucose and xylose in the Asn297-linked glycan of PPB-ΔXTFT and TPB-ΔXTFT. Peptide analysis followed by the identification of glycomodified peptides using MALDI-TOF/TOF showed that PPB-WT and TPB-WT Asn297-linked glycans are mainly of complex type GnGnXF. The core of PPB-WT and TPB-WT Asn297linked GnGn-type glycan contains α1,3-fucose and β1,2-xylose, which, along with the absence of terminal galactose and sialic acid, distinguishes these plant biosimilars from human IgG. Analysis of TPB-ΔXTFT total carbohydrate content indicates the possibility of changing the composition of the carbohydrate profile not only of the Fc, but also of the Fab portion of an antibody produced in transgenic ΔXTFT N. benthamiana plants. Nevertheless, study of the antigen-binding capacity of the biosimilars showed that absence of xylose and fucose residues in the Asn297-linked glycans does not affect the ability of the glycomodified antibodies to interact with HER2/neu positive cancer cells.


plant monoclonal antibody immunoglobulin G trastuzumab pertuzumab glycosylation ΔXTFT N. benthamiana with knockout of XT and FT genes immunotherapy biosimilars 



endoplasmic reticulum


fragment antigen-binding


fragment crystallizable






antibody heavy chain

HER2 and HER3

human epidermal growth factor receptors 2 and 3


immunoglobulin G


antibody light chain


matrix-assisted laser desorption/ionization-timeof-flight/time-of-flight tandem mass spectrometry


monoclonal antibody produced in plants

PNGase F

peptide-N-glycosidase F


pertuzumab plant biosimilar


pertuzumab plant biosimilar obtained from N. benthamiana ΔXTFT


trifluoroacetic acid


therapeutic monoclonal antibody


trastuzumab plant biosimilar


trastuzumab plant biosimilar obtained from N. benthamiana ΔXTFT




transgenic N. benthamiana plants with knockout of α1,3-fucosyltransferase (FT) and β1,2-xylosyltransferase (XT) genes


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sheshukova, E. V., Komarova T. V., and Dorokhov, Y. L. (2016) Plant factories for the production of monoclonal antibodies, Biochemistry (Moscow), 81, 1118–1135.CrossRefGoogle Scholar
  2. 2.
    Dorokhov, Y. L., Sheshukova, E. V., Kosobokova, E. N., Shindyapina, A. V., Kosorukov, V. S., and Komarova, T. V. (2016) Functional role of carbohydrate residues in human immunoglobulin G and therapeutic monoclonal antibodies, Biochemistry (Moscow), 81, 835–857.CrossRefGoogle Scholar
  3. 3.
    Loos, A., and Steinkellner, H. (2014) Plant glyco-biotechnology on the way to synthetic biology, Front. Plant Sci., 5, 523.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Gronski, P., Seiler, F. R., and Schwick, H. G. (1991) Discovery of antitoxins and development of antibody preparations for clinical uses from 1890 to 1990, Mol. Immunol., 28, 1321–1332.CrossRefPubMedGoogle Scholar
  5. 5.
    Kunert, R., and Casanova, E. (2013) Recent advances in recombinant protein production: BAC-based expression vectors, the bigger the better, Bioengineered, 4, 258–261.CrossRefPubMedGoogle Scholar
  6. 6.
    Walsh, G. (2014) Biopharmaceutical benchmarks 2014, Nat. Biotechnol., 32, 992–1000.CrossRefPubMedGoogle Scholar
  7. 7.
    Niwa, R., and Satoh, M. (2015) The current status and prospects of antibody engineering for therapeutic use: focus on glycoengineering technology, J. Pharm. Sci., 104, 930–941.CrossRefPubMedGoogle Scholar
  8. 8.
    Hiatt, A., Whaley, K. J., and Zeitlin, L. (2014) Plantderived monoclonal antibodies for prevention and treatment of infectious disease, Microbiol. Spectr., 2, AID-0004–2012.Google Scholar
  9. 9.
    Holtz, B. R., Berquist, B. R., Bennett, L. D., Kommineni, V. J. M., Munigunti, R. K., White, E. L., Wilkerson, D. C., Wong, K.-Y. I., Ly, L. H., and Marcel, S. (2015) Commercial-scale biotherapeutics manufacturing facility for plant-made pharmaceuticals, Plant Biotechnol. J., 13, 1180–1190.CrossRefPubMedGoogle Scholar
  10. 10.
    Gleba, Y. Y., Tuse, D., and Giritch, A. (2014) Plant viral vectors for delivery by Agrobacterium, Curr. Top. Microbiol. Immunol., 375, 155–192.PubMedGoogle Scholar
  11. 11.
    Komarova, T. V., Baschieri, S., Donini, M., Marusic, C., Benvenuto, E., and Dorokhov, Y. L. (2010) Transient expression systems for plant-derived biopharmaceuticals, Expert Rev. Vaccines, 9, 859–876.CrossRefPubMedGoogle Scholar
  12. 12.
    Komarova, T. V., Kosorukov, V. S., Frolova, O. Y., Petrunia, I. V., Skrypnik, K. A., Gleba, Y. Y., and Dorokhov, Y. L. (2011) Plant-made trastuzumab (Herceptin) inhibits HER2/Neu+ cell proliferation and retards tumor growth, PLoS One, 6, e17541.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Stoger, E., Fischer, R., Moloney, M., and Ma, J. K.-C. (2014) Plant molecular pharming for the treatment of chronic and infectious diseases, Annu. Rev. Plant Biol., 65, 743–768.CrossRefPubMedGoogle Scholar
  14. 14.
    Rimawi, M. F., Schiff, R., and Osborne, C. K. (2015) Targeting HER2 for the treatment of breast cancer, Annu. Rev. Med., 66, 111–128.CrossRefPubMedGoogle Scholar
  15. 15.
    Barthelemy, P., Leblanc, J., Wendling, F., Wissler, M.-P., and Bergerat, J.-P. (2014) Pertuzumab and solid tumors: perspectives, Bull. Cancer (Paris), 101, 1114–1121.Google Scholar
  16. 16.
    Chung, C., and Lam, M. S. H. (2013) Pertuzumab for the treatment of human epidermal growth factor receptor type 2-positive metastatic breast cancer, Am. J. Health Syst. Pharm., 70, 1579–1587.CrossRefPubMedGoogle Scholar
  17. 17.
    Strasser, R., Stadlmann, J., Schahs, M., Stiegler, G., Quendler, H., Mach, L., Glossl, J., Weterings, K., Pabst, M., and Steinkellner, H. (2008) Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure, Plant Biotechnol. J., 6, 392–402.CrossRefPubMedGoogle Scholar
  18. 18.
    Arce, A. L., Cabello, J. V., and Chan, R. L. (2008) Patents on plant transcription factors, Recent Pat. Biotechnol., 2, 209–217.CrossRefPubMedGoogle Scholar
  19. 19.
    Dorokhov, Y. L., Frolova, O. Y., Skurat, E. V., Ivanov, P. A., Gasanova, T. V., Sheveleva, A. A., Ravin, N. V., Makinen, K. M., Klimyuk, V. I., Skryabin, K. G., Gleba, Y. Y., and Atabekov, J. G. (2006) A novel function for a ubiquitous plant enzyme pectin methylesterase: the enhancer of RNA silencing, FEBS Lett., 580, 3872–3878.CrossRefPubMedGoogle Scholar
  20. 20.
    Tretter, V., Altmann, F., and Marz, L. (1991) Peptide-N4(N-acetyl-beta-glucosaminyl)asparagine amidase F cannot release glycans with fucose attached alpha 1–3 to the asparagine-linked N-acetylglucosamine residue, Eur. J. Biochem. FEBS, 199, 647–652.CrossRefGoogle Scholar
  21. 21.
    Kute, T., Lack, C. M., Willingham, M., Bishwokama, B., Williams, H., Barrett, K., Mitchell, T., and Vaughn, J. P. (2004) Development of Herceptin resistance in breast cancer cells, Cytom. Part J. Int. Soc. Anal. Cytol., 57, 86–93.Google Scholar
  22. 22.
    Garabagi, F., McLean, M. D., and Hall, J. C. (2012) Transient and stable expression of antibodies in Nicotiana species, Methods Mol. Biol. Clifton NJ, 907, 389–408.CrossRefGoogle Scholar
  23. 23.
    Grohs, B. M., Niu, Y., Veldhuis, L. J., Trabelsi, S., Garabagi, F., Hassell, J. A., McLean, M. D., and Hall, J. C. (2010) Plant-produced trastuzumab inhibits the growth of HER2 positive cancer cells, J. Agric. Food Chem., 58, 10056–10063.CrossRefPubMedGoogle Scholar
  24. 24.
    Castilho, A., Gruber, C., Thader, A., Oostenbrink, C., Pechlaner, M., Steinkellner, H., and Altmann, F. (2015) Processing of complex N-glycans in IgG Fc-region is affected by core fucosylation, mAbs, 7, 863–870.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Tuse, D., Ku, N., Bendandi, M., Becerra, C., Collins, R., Langford, N., Sancho, S. I., Lopez-Diaz de Cerio, A., Pastor, F., Kandzia, R., Thieme, F., Jarczowski, F., Krause, D., Ma, J. K.-C., Pandya, S., Klimyuk, V., Gleba, Y., and Butler-Ransohoff, J. E. (2015) Clinical safety and immunogenicity of tumor-targeted, plant-made Id–KLH conjugate vaccines for follicular lymphoma, BioMed Res. Int., 2015, 648143.PubMedGoogle Scholar
  26. 26.
    Franklin, M. C., Carey, K. D., Vajdos, F. F., Leahy, D. J., De Vos, A. M., and Sliwkowski, M. X. (2004) Insights into ErbB signaling from the structure of the ErbB2–pertuzumab complex, Cancer Cell, 5, 317–328.CrossRefPubMedGoogle Scholar
  27. 27.
    Garabagi, F., Gilbert, E., Loos, A., McLean, M. D., and Hall, J. C. (2012) Utility of the P19 suppressor of gene-silencing protein for production of therapeutic antibodies in Nicotiana expression hosts, Plant Biotechnol. J., 10, 1118–1128.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • T. V. Komarova
    • 1
    • 2
  • E. V. Sheshukova
    • 1
  • E. N. Kosobokova
    • 1
    • 3
  • M. V. Serebryakova
    • 2
  • V. S. Kosorukov
    • 1
    • 3
  • V. N. Tashlitsky
    • 2
  • Y. L. Dorokhov
    • 1
    • 2
    Email author
  1. 1.Vavilov Institute of General GeneticsRussian Academy of SciencesMoscowRussia
  2. 2.Lomonosov Moscow State UniversityMoscowRussia
  3. 3.Blokhin Cancer Research CenterMoscowRussia

Personalised recommendations