Biochemistry (Moscow)

, Volume 82, Issue 4, pp 501–509 | Cite as

Studying factors involved in biogenesis of Lysobacter sp. XL1 outer membrane vesicles

  • I. V. KudryakovaEmail author
  • N. E. Suzina
  • N. G. Vinokurova
  • N. A. Shishkova
  • N. V. Vasilyeva


The Gram-negative bacterium Lysobacter sp. XL1 produces outer membrane vesicles that are heterogeneous in size, density, and protein composition. One of the subpopulations is secretory vesicles for lytic protease L5 of Lysobacter sp. XL1 (Kudryakova et al. (2015) FEMS Microbiol. Lett., 362, fnv137). Protein L5 was assumed to influence biogenesis of these secretory vesicles that contain it. Using a Pseudomonas fluorescens Q2-87/B expression system, it was shown that the recombinant L5 protein may act as a factor of vesicle biogenesis. This points to a possible involvement of L5 protein in Lysobacter sp. XL1 vesicle biogenesis. Furthermore, it was established that the main phospholipid of Lysobacter sp. XL1 vesicles is cardiolipin, and vesicles are formed predominantly of outer membrane regions enriched with this phospholipid. This indicates that cardiolipin participates in biogenesis of all vesicle subpopulations in Lysobacter sp. XL1.


factors of outer membrane vesicle biogenesis bacteriolytic protease L5 cardiolipin Lysobacter sp. XL1 lytic effect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chatterjee, S. N., and Das, J. (1967) Electron microscopic observations on the excretion of cell-wall material by Vibrio cholera, J. Gen. Microbiol., 49, 1–11.CrossRefPubMedGoogle Scholar
  2. 2.
    Mayrand, D., and Grenier, D. (1989) Biological activities of outer membrane vesicles, Can. J. Microbiol., 35, 607–613.CrossRefPubMedGoogle Scholar
  3. 3.
    Kuehn, M. J., and Kesty, N. C. (2005) Bacterial outer membrane vesicles and the host–pathogen interaction, Genes Dev., 19, 2645–2655.CrossRefPubMedGoogle Scholar
  4. 4.
    Amano, A., Takeuchi, H., and Furuta, N. (2010) Outer membrane vesicles function as offensive weapons in host–parasite interactions, Microbes Infect., 12, 791–798.CrossRefPubMedGoogle Scholar
  5. 5.
    Tashiro, Y., Uchiyama, H., and Nomura, N. (2012) Multifunctional membrane vesicles in Pseudomonas aeruginosa, Environ. Microbiol., 14, 1349–1362.CrossRefPubMedGoogle Scholar
  6. 6.
    Kulkarni, H. M., and Jagannadham, M. V. (2014) Biogenesis and multifaceted roles of outer membrane vesicles from Gram-negative bacteria, Microbiology, 160, 2109–2121.CrossRefPubMedGoogle Scholar
  7. 7.
    Avila-Calderon, E. D., Araiza-Villanueva, M. G., CancinoDiaz, J. C., Lopez-Villegas, E. O., Sriranganathan, N., Boyle, S. M., and Contreras-Rodriguez, A. (2015) Roles of bacterial membrane vesicles, Arch. Microbiol., 197, 1–10.CrossRefPubMedGoogle Scholar
  8. 8.
    Kadurugamuwa, J. L., and Beveridge, T. J. (1995) Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion, J. Bacteriol., 177, 3998–4008.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Horstman, A. L., and Kuehn, M. J. (2000) Enterotoxigenic Escherichia coli secretes active heat-labile enterotoxin via outer membrane vesicles, J. Biol. Chem., 275, 12489–12496.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Roier, S., Blume, T., Klug, L., Wagner, G. E., Elhenawy, W., Zangger, K., Prassl, R., Reidl, J., Daum, G., Feldman, M. F., and Schild, S. (2015) A basis for vaccine development: comparative characterization of Haemophilus influenzae outer membrane vesicles, Int. J. Med. Microbiol., 305, 298–309.CrossRefPubMedGoogle Scholar
  11. 11.
    Olofsson, A., Vallstrom, A., Petzold, K., Tegtmeyer, N., Schleucher, J., Carlsson, S., Haas, R., Backert, S., Wai, S. N., Grobner, G., and Arnqvist, A. (2010) Biochemical and functional characterization of Helicobacter pylori vesicles, Mol. Microbiol., 77, 1539–1555.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Perez-Cruz, C., Delgado, L., Lopez-Iglesias, C., and Mercade, E. (2015) Outer-inner membrane vesicles naturally secreted by gram-negative pathogenic bacteria, PLoS One, 10, e0116896.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Lee, E. Y., Choi, D. S., Kim, K. P., and Gho, Y. S. (2008) Proteomics in gram-negative bacterial outer membrane vesicles, Mass Spectrom. Rev., 27, 535–555.CrossRefPubMedGoogle Scholar
  14. 14.
    Li, Z., Clarke, A. J., and Beveridge, T. J. (1996) A major autolysin of Pseudomonas aeruginosa: subcellular distribution, potential role in cell growth and division and secretion in surface membrane vesicles, J. Bacteriol., 178, 2479–2488.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ciofu, O., Beveridge, T. J., Kadurugamuwa, J., WaltherRasmußsen, J., and Hoiby, N. (2000) Chromosomal ß-lactamase is packaged into membrane vesicles and secreted from Pseudomonas aeruginosa, J. Antimicrob. Chemother., 45, 9–13.CrossRefPubMedGoogle Scholar
  16. 16.
    Kobayashi, H., Uematsu, K., Hirayama, H., and Horikoshi, K. (2000) Novel toluene elimination system in a toluenetolerant microorganism, J. Bacteriol., 182, 6451–6455.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kunsmann, L., Ruter, C., Bauwens, A., Greune, L., Gluder, M., Kemper, B., Fruth, A., Wai, S. N., He, X., Lloubes, R., Schmidt, M. A., Dobrindt, U., Mellmann, A., Karch, H., and Bielaszewska, M. (2015) Virulence from vesicles: novel mechanisms of host cell injury by Escherichia coli O104:H4 outbreak strain, Sci. Rep., 5, 13252.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Olsen, I., and Amano, A. (2015) Outer membrane vesicles–offensive weapons or good Samaritans? J. Oral Microbiol., 7, 27468.CrossRefPubMedGoogle Scholar
  19. 19.
    Gujrati, V., Kim, S., Kim, S. H., Min, J. J., Choy, H. E., Kim, S. C., and Jon, S. (2014) Bioengineered bacterial outer membrane vesicles as cell-specific drug-delivery vehicles for cancer therapy, ACS Nano, 8, 1525–1537.CrossRefPubMedGoogle Scholar
  20. 20.
    Mashburn-Warren, L. M., and Whiteley, M. (2006) Special delivery: vesicle trafficking in prokaryotes, Mol. Microbiol., 61, 839–846.CrossRefPubMedGoogle Scholar
  21. 21.
    Kulp, A., and Kuehn, M. J. (2010) Biological functions and biogenesis of secreted bacterial outer membrane vesicles, Annu. Rev. Microbiol., 64, 163–184.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Schwechheimer, C., Kulp, A., and Kuehn, M. J. (2014) Modulation of bacterial outer membrane vesicle production by envelope structure and content, BMC Microbiol., 14, 324.Google Scholar
  23. 23.
    Schwechheimer, C., and Kuehn, M. J. (2015) Outer membrane vesicles from Gram-negative bacteria: biogenesis and functions, Nat. Rev. Microbiol., 13, 605–619.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hoekstra, D., Van der Laan, J. W., De Leij, L., and Witholt, B. (1976) Release of outer membrane fragments from normally growing Escherichia coli, Biochim. Biophys. Acta, 455, 889–899.CrossRefPubMedGoogle Scholar
  25. 25.
    Wensink, J., and Witholt, B. (1981) Outer membrane vesicles released by normally growing Escherichia coli contain very little lipoprotein, Eur. J. Biochem., 116, 331–335.CrossRefPubMedGoogle Scholar
  26. 26.
    Schertzer, J. W., and Whiteley, M. (2012) A bilayer-couple model of bacterial outer membrane vesicle biogenesis, MBio, 3, e00297–11.Google Scholar
  27. 27.
    Zhou, L., Srisatjaluk, R., Justus, D. E., and Doyle, R. J. (1998) On the origin of membrane vesicles in gram-negative bacteria, FEMS Microbiol. Lett., 163, 223–228.CrossRefPubMedGoogle Scholar
  28. 28.
    Hayashi, J., Hamada, N., and Kuramitsu, H. K. (2002) The autolysin of Porphyromonas gingivalis is involved in outer membrane vesicle release, FEMS Microbiol. Lett., 216, 217–222.CrossRefPubMedGoogle Scholar
  29. 29.
    Balsalobre, C., Silvan, J. M., Berglund, S., Mizunoe, Y., Uhlin, B. E., and Wai, S. N. (2006) Release of the type I secreted a-haemolysin via outer membrane vesicles from Escherichia coli, Mol. Microbiol., 59, 99–112.CrossRefPubMedGoogle Scholar
  30. 30.
    Rompikuntal, P. K., Thay, B., Khan, M. K., Alanko, J., Penttinen, A. M., Asikainen, S., Wai, S. N., and Oscarsson, J. (2012) Perinuclear localization of internalized outer membrane vesicles carrying active cytolethal distending toxin from Aggregatibacter actinomycetemcomitans, Infect. Immun., 80, 31–42.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Stepnaia, O. A., Severin, A. I., Kudryavtseva, A. I., Krupyanko, V. I., Kozlovsky, A. G., and Kulaev, I. S. (1992) Enzymes of bacteriolytic preparation lysoamidase. Some properties of bacteriolytic proteinase L2, Prikl. Biokhim. Mikrobiol., 28, 666–673.Google Scholar
  32. 32.
    Stepnaya, O. A., Begunova, E. A., Tsfasman, I. M., and Kulaev, I. S. (1996) Bacteriolytic enzyme preparation lysoamidase: isolation and some physicochemical properties of extracellular muramidase from Xanthomonas sp. bacteria, Biochemistry (Moscow), 61, 471–476.Google Scholar
  33. 33.
    Muranova, T. A., Krasovskaya, L. A., Tsfasman, I. M., Stepnaya, O. A., and Kulaev, I. S. (2004) Structural investigations and identification of the extracellular bacteriolytic endopeptidase L1 from Lysobacter sp., Biochemistry (Moscow), 69, 501–505.CrossRefGoogle Scholar
  34. 34.
    Stepnaya, O. A., Tsfasman, I. M., Logvina, I. A., Ryazanova, L. P., Muranova, T. A., and Kulaev, I. S. (2005) Isolation and characterization of a new extracellular bacteriolytic endopeptidase of Lysobacter sp. XL1, Biochemistry (Moscow), 70, 1031–1037.CrossRefGoogle Scholar
  35. 35.
    Vasilyeva, N. V., Tsfasman, I. M., Suzina, N. E., Stepnaya, O. A., and Kulaev, I. S. (2008) Secretion of bacteriolytic endopeptidase L5 of Lysobacter sp. XL1 into the medium by means of outer membrane vesicles, FEBS J., 275, 3827–3835.CrossRefPubMedGoogle Scholar
  36. 36.
    Vasilyeva, N. V., Shishkova, N. A., Marinin, L. I., Ledova, L. A., Tsfasman, I. M., Muranova, T. A., Stepnaya, O. A., and Kulaev, I. S. (2014) Lytic peptidase L5 of Lysobacter sp. XL1 with broad antimicrobial spectrum, J. Mol. Microbiol. Biotechnol., 24, 59–66.CrossRefPubMedGoogle Scholar
  37. 37.
    Granovsky, I. E., Kalinin, A. E., Lapteva, Y. S., Latypov, O. R., Vasilyeva, N. V., Tsfasman, I. M., Stepnaya, O. A., Kulaev, I. S., Muranova, T. A., and Krasovskaia, L. A. (2011) Lytic Enzyme AlpB of Bacteria Lysobacter sp. XLI, DNA Fragment Encoding the Lytic Enzyme AlpB of Bacteria Lysobacter sp. XLI, and Purification of the Lytic Enzyme AlpB of Bacteria Lysobacter sp. XLI, RFPatent No. 2408725 [in Russian].Google Scholar
  38. 38.
    Kudryakova, I. V., Suzina, N. E., and Vasilyeva, N. V. (2015) Biogenesis of Lysobacter sp. XL1 vesicles, FEMS Microbiol. Lett., 362, fnv137.Google Scholar
  39. 39.
    Lapteva, Y. S., Zolova, O. E., Shlyapnikov, M. G., Tsfasman, I. M., Muranova, T. A., Stepnaya, O. A., Kulaev, I. S., and Granovsky, I. E. (2012) Cloning and expression analysis of genes encoding lytic endopeptidases L1 and L5 from Lysobacter sp. strain XL1, Appl. Environ. Microbiol., 78, 7082–7089.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Tsfasman, I. M., Lapteva, Y. S., Krasovskaya, L. A., Kudryakova, I. V., Vasilyeva, N. V., Granovsky, I. E., and Stepnaya, O. A. (2015) Gene expression of lytic endopeptidases AlpA and AlpB from Lysobacter sp. XL1 in Pseudomonads, J. Mol. Microbiol. Biotechnol., 25, 244–252.CrossRefPubMedGoogle Scholar
  41. 41.
    Grenier, D., and Mayrand, D. (1987) Functional characterization of extracellular vesicles produced by Bacteroides gingivalis, Infect. Immun., 55, 111–117.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Osborn, M. J., Gander, J. E., Parisi, E., and Carson, J. (1972) Mechanism of assembly of the outer membrane of Salmonella typhimurium. Isolation and characterization of cytoplasmic and outer membrane, J. Biol. Chem., 247, 3962–3972.PubMedGoogle Scholar
  43. 43.
    Ames, G. F. (1968) Lipids of Salmonella typhimurium and Escherichia coli: structure and metabolism, J. Bacteriol., 95, 833–843.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) Protein measurement with the Folin phenol reagent, J. Biol. Chem., 193, 265–275.PubMedGoogle Scholar
  45. 45.
    Karkhanis, Y. D., Zeltner, J. Y., Jackson, J. J., and Carlo, D. J. (1978) A new and improved microassay to determine 2-keto-3-deoxyoctonate in lipopolysaccharide of Gramnegative bacteria, Anal. Biochem., 85, 595–601.CrossRefPubMedGoogle Scholar
  46. 46.
    Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680–685.CrossRefPubMedGoogle Scholar
  47. 47.
    Choi, D. S., Kim, D. K., Choi, S. J., Lee, J., Choi, J. P., Rho, S., Park, S. H., Kim, Y. K., Hwang, D., and Gho, Y. S. (2011) Proteomic analysis of outer membrane vesicles derived from Pseudomonas aeruginosa, Proteomics, 11, 3424–3429.CrossRefPubMedGoogle Scholar
  48. 48.
    Bauman, S. J., and Kuehn, M. J. (2006) Purification of outer membrane vesicles from Pseudomonas aeruginosa and their activation of an IL-8 response, Microbes Infect., 8, 2400–2408.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Tashiro, Y., Ichikawa, S., Shimizu, M., Toyofuku, M., Takaya, N., Nakajima-Kambe, T., Uchiyama, H., and Nomura, N. (2010) Variation of physiochemical properties and cell association activity of membrane vesicles with growth phase in Pseudomonas aeruginosa, Appl. Environ. Microbiol., 76, 3732–3739.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Lappann, M., Otto, A., Becher, D., and Vogel, U. (2013) Comparative proteome analysis of spontaneous outer membrane vesicles and purified outer membranes of Neisseria meningitides, J. Bacteriol., 195, 4425–4435.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Chowdhury, C., and Jagannadham, M. V. (2013) Virulence factors are released in association with outer membrane vesicles of Pseudomonas syringae pv. tomato T1 during normal growth, Biochim. Biophys. Acta, 1834, 231–239.CrossRefPubMedGoogle Scholar
  52. 52.
    Kulkarni, H. M., Swamy, Ch. V., and Jagannadham, M. V. (2014) Molecular characterization and functional analysis of outer membrane vesicles from the Antarctic bacterium Pseudomonas syringae suggest a possible response to environmental conditions, J. Proteome Res., 13, 1345–1358.CrossRefPubMedGoogle Scholar
  53. 53.
    Tashiro, Y., Inagaki, A., Shimizu, M., Ichikawa, S., Takaya, N., Nakajima-Kambe, T., Uchiyama, H., and Nomura, N. (2011) Characterization of phospholipids in membrane vesicles derived from Pseudomonas aeruginosa, Biosci. Biotechnol. Biochem., 75, 605–607.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • I. V. Kudryakova
    • 1
    Email author
  • N. E. Suzina
    • 1
  • N. G. Vinokurova
    • 1
  • N. A. Shishkova
    • 2
  • N. V. Vasilyeva
    • 1
  1. 1.G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences (IBPM RAS)Pushchino, Moscow RegionRussia
  2. 2.State Research Center for Applied Microbiology and BiotechnologyObolensk, Moscow RegionRussia

Personalised recommendations