Biochemistry (Moscow)

, Volume 82, Issue 4, pp 458–464 | Cite as

Triosephosphates as intermediates of the Crabtree effect

  • S. S. Sokolov
  • O. V. Markova
  • K. D. Nikolaeva
  • I. A. Fedorov
  • F. F. SeverinEmail author


An increase in glucose concentration in the medium rapidly decreases respiration rate in many cell types, including tumor cells. The molecular mechanism of this phenomenon, the Crabtree effect, is still unclear. It was shown earlier that adding the intermediate product of glycolysis fructose-1,6-bisphosphate to isolated mitochondria suppresses their respiration. To study possible roles of glycolytic intermediates in the Crabtree effect, we used a model organism, the yeast Saccharomyces cerevisiae. To have the option to rapidly increase intracellular concentrations of certain glycolytic intermediates, we used mutant cells with glycolysis blocked at different stages. We studied fast effects of glucose addition on the respiration rate in such cells. We found that addition of glucose affected cells with deleted phosphoglycerate mutase (strain gpm1-delta) more strongly than ones with inactivated aldolase or phosphofructokinase. In the case of preincubation of gpm1-delta cells with 2-deoxyglucose, which blocks glycolysis at the stage of 2-deoxyglucosephosphate formation, the effect of glucose addition was absent. This suggests that triosephosphates are intermediates of the Crabtree effect. Apart from this, the incubation of gpm1-delta cells in galactose-containing medium appeared to cause a large increase in their size. It was previously shown that galactose addition did not have any short-term effect on respiration rate of gpm1-delta cells and, at the same time, strongly suppressed their growth rate. Apparently, the influence of increasing triosephosphate concentration on yeast physiology is not limited to the activation of the Crabtree effect.


gpm1 glycolysis yeast inhibition of respiration Crabtree effect 





carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone


yeast extract + peptone


yeast extract + peptone + glucose


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sokolov, S. S., Balakireva, A. V., Markova, O. V., and Severin, F. F. (2015) Negative feedback of glycolysis and oxidative phosphorylation: mechanisms of and reasons for it, Biochemistry, 80, 559–564.PubMedGoogle Scholar
  2. 2.
    Warburg, O. (1956) On the origin of cancer cells, Science, 123, 309–314.CrossRefPubMedGoogle Scholar
  3. 3.
    Krisher, R. L., and Prather, R. S. (2012) A role for the Warburg effect in preimplantation embryo development: metabolic modification to support rapid cell proliferation, Mol. Reprod. Dev., 79, 311–320.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Harvey, A. J., Kind, K. L., and Thompson, J. G. (2002) REDOX regulation of early embryo development, Reproduction, 123, 479–486.CrossRefPubMedGoogle Scholar
  5. 5.
    Kayikci, O., and Nielsen, J. (2015) Glucose repression in Saccharomyces cerevisiae, FEMS Yeast Res., 15.Google Scholar
  6. 6.
    Knorre, D. A., Markova, O. V., Smirnova, E. A., Karavaeva, I. E., Sokolov, S. S., and Severin, F. F. (2014) Dodecyltriphenylphosphonium inhibits multiple drug resistance in the yeast Saccharomyces cerevisiae, Biochim. Biophys. Acta, 450, 1481–1484.Google Scholar
  7. 7.
    Mills, E. L., Kelly, B., Logan, A., Costa, A. S., Varma, M., Bryant, C. E., Tourlomousis, P., Dabritz, J. H., Gottlieb, E., Latorre, I., Corr, S. C., McManus, G., Ryan, D., Jacobs, H. T., Szibor, M., Xavier, R. J., Braun, T., Frezza, C., Murphy, M. P., and O’Neill, L. A. (2016) Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages, Cell, 167, 457–470.CrossRefPubMedGoogle Scholar
  8. 8.
    Formentini, L., Sanchez-Arago, M., Sanchez-Cenizo, L., and Cuezva, J. M. (2012) The mitochondrial ATPase inhibitory factor 1 triggers a ROS-mediated retrograde prosurvival and proliferative response, Mol. Cell, 45, 731–742.CrossRefPubMedGoogle Scholar
  9. 9.
    Korshunov, S. S., Skulachev, V. P., and Starkov, A. A. (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria, FEBS Lett., 416, 15–18.CrossRefPubMedGoogle Scholar
  10. 10.
    Crabtree, H. G. (1928) The carbohydrate metabolism of certain pathological overgrowths, Biochem. J., 22, 1289–1298.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Diaz-Ruiz, R., Rigoulet, M., and Devin, A. (2011) The Warburg and Crabtree effects: on the origin of cancer cell energy metabolism and of yeast glucose repression, Biochim. Biophys. Acta, 1807, 568–576.CrossRefPubMedGoogle Scholar
  12. 12.
    Postma, E., Verduyn, C., Scheffers, W. A., and Van Dijken, J. P. (1989) Enzymic analysis of the Crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae, Appl. Environ. Microbiol., 55, 468–477.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Van Urk, H., Voll, W. S., Scheffers, W. A., and Van Dijken, J. P. (1990) Transient-state analysis of metabolic fluxes in Crabtree-positive and Crabtree-negative yeasts, Appl. Environ. Microbiol., 56, 281–287.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Marc, J., Feria-Gervasio, D., Mouret, J. R., and Guillouet, S. E. (2013) Impact of oleic acid as co-substrate of glucose on “short” and “long-term” Crabtree effect in Saccharomyces cerevisiae, Microb. Cell Factories, 23, 83.CrossRefGoogle Scholar
  15. 15.
    Diaz-Ruiz, R., Averet, N., Araiza, D., Pinson, B., UribeCarvajal, S., Devin, A., and Rigoulet, M. (2008) Mitochondrial oxidative phosphorylation is regulated by fructose 1,6-bisphosphate. A possible role in Crabtree effect induction? J. Biol. Chem., 283, 26948–26955.CrossRefPubMedGoogle Scholar
  16. 16.
    Longtine, M. S., McKenzie, A., 3rd, Demarini, D. J., Shah, N. G., Wach, A., Brachat, A., Philippsen, P., and Pringle, J. R. (1998) Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae, Yeast, 14, 953–961.CrossRefPubMedGoogle Scholar
  17. 17.
    Kembro, J. M., Aon, M. A., Winslow, R. L., O’Rourke, B., and Cortassa, S. (2013) Integrating mitochondrial energet-ics, redox and ROS metabolic networks: a two-compartment model, Biophys. J., 104, 332–343.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Klingenberg, M. (2008) The ADP and ATP transport in mitochondria and its carrier, Biochim. Biophys. Acta, 1778, 1978–2021.CrossRefPubMedGoogle Scholar
  19. 19.
    Hampp, R. (1985) Triosephosphates modulate leaf mitochondrial phosphorylation by inhibition and uncoupling of electron transport, Plant Physiol., 79, 690–694.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    McCashin, B. G., Cossins, E. A., and Canvin, D. T. (1988) Dark respiration during photosynthesis in wheat leaf slices, Plant Physiol., 87, 155–161.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Reddy, M. M., Vani, T., and Raghavendra, A. S. (1991) Light-enhanced dark respiration in mesophyll protoplasts from leaves of pea, Plant Physiol., 96, 1368–1371.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Agrimi, G., Brambilla, L., Frascotti, G., Pisano, I., Porro, D., Vai, M., and Palmieri, L. (2011) Deletion or overexpression of mitochondrial NAD+ carriers in Saccharomyces cerevisiae alters cellular NAD and ATP contents and affects mitochondrial metabolism and the rate of glycolysis, Appl. Environ. Microbiol., 77, 2239–2246.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Sanchez, N. S., Calahorra, M., Gonzalez-Hernandez, J. C., and Pena, A. (2006) Glycolytic sequence and respiration of Debaryomyces hansenii as compared to Saccharomyces cerevisiae, Yeast, 23, 361–374.CrossRefPubMedGoogle Scholar
  24. 24.
    Papini, M., Nookaew, I., Scalcinati, G., Siewers, V., and Nielsen, J. (2010) Phosphoglycerate mutase knock-out mutant Saccharomyces cerevisiae: physiological investigation and transcriptome analysis, Biotechnol. J., 10, 1016–1027.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • S. S. Sokolov
    • 1
  • O. V. Markova
    • 1
  • K. D. Nikolaeva
    • 1
  • I. A. Fedorov
    • 1
  • F. F. Severin
    • 1
    Email author
  1. 1.Lomonosov Moscow State UniversityBelozersky Institute of Physico-Chemical BiologyMoscowRussia

Personalised recommendations