Advertisement

Biochemistry (Moscow)

, Volume 82, Issue 4, pp 446–453 | Cite as

Attenuation of focal adhesion kinase reduces lipopolysaccharide-induced inflammation injury through inactivation of the Wnt and NF-κB pathways in A549 cells

  • D. Bai
  • S. Cong
  • L. P. ZhuEmail author
Article

Abstract

Overall analysis and understanding of mechanisms are of great importance for treatment of infantile pneumonia due to its high morbidity and mortality worldwide. In this study, we preliminarily explored the function and mechanism of focal adhesion kinase (FAK) in regulation of inflammatory response induced by lipopolysaccharides in A549 cells. Flow cytometry, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, quantitative reverse transcription polymerase chain reaction, and Western blot analysis were used to explore the correlation of FAK expression with cell apoptosis, viability, and the inflammatory cytokine activity in A549 cells. The results showed that knockdown of FAK enhanced cell viability, suppressed apoptosis, and decreased inflammatory cytokine activity. In addition, downregulation of FAK could activate the Wnt and nuclear factor κB signaling pathways. These findings suggest that FAK might be involved in progression of infantile pneumonia and could be a new therapeutic target for this disease.

Keywords

infantile pneumonia lipopolysaccharides focal adhesion kinase Wnt and NF-κB pathways new therapeutic target 

Abbreviations

FAK

focal adhesion kinase

IP

infantile pneumonia

LPS

lipopolysaccharide

MTT

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (assay)

NF-κB

nuclear factor κB

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wysocki, J., Sluzewski, W., Gutterman, E., Jouve, S., Moscariello, M., and Balter, I. (2016) Active hospitalbased surveillance of invasive pneumococcal disease and clinical pneumonia in infants and young children in two Polish counties, Arch. Med. Sci., 3, 629–638.CrossRefGoogle Scholar
  2. 2.
    Shu, L. H., Jiang-Jiang, X. U., Wang, S., Zhong, H. Q., Dong, X. Y., Jiang, K., Zhang, H. Y., Xiong, Q., Wang, C., and Sun, T. (2015) Distribution of pathogenic microorganisms and its relationship with clinical features in children with community-acquired pneumonia, Chinese J. Contemp. Pediatr., 17, 1056–1061.Google Scholar
  3. 3.
    Chisti, M. J., Salam, M. A., Bardhan, P. K., Faruque, A. S., Shahid, A. S., Shahunja, K. M., Das, S. K., Hossain, M. I., and Ahmed, T. (2015) Treatment failure and mortality amongst children with severe acute malnutrition presenting with cough or respiratory difficulty and radiological pneumonia, PLoS One, 10.Google Scholar
  4. 4.
    Leung, D. T., Das, S. K., Malek, M. A., Qadri, F., Faruque, A. S., Chisti, M. J., and Ryan, E. T. (2015) Concurrent pneumonia in children under 5 years of age presenting to a diarrheal hospital in Dhaka, Bangladesh, Am. J. Trop. Med. Hyg., 93, 895–903.Google Scholar
  5. 5.
    Yu, Z. W., Qian, J., Gu, X. H., Zhang, X. J., Pan, J. R., and Ju, H. L. (2015) Changes in serum inflammatory factors in wheezing infants with community-acquired pneumonia, Chinese J. Contemp. Pediatr., 17, 815–818.Google Scholar
  6. 6.
    Zhang, X., Wu, J., Zhang, B., and Dong, L. (2015) Potassium dehydroandrographolide succinate injection for treatment of infantile pneumonia: a systematic review and Meta-analysis, J. Trad. Chinese Med., 35, 125–133.CrossRefGoogle Scholar
  7. 7.
    Zhu, R., Lei, L., Zhao, L., Jie, D., Fang, W., Yu, S., Song, Q., Ding, Y., and Yuan, Q. (2015) Characteristics of the mosaic genome of a human parechovirus type 1 strain isolated from an infant with pneumonia in China, Infect. Genet. Evol., 29, 91–98.CrossRefPubMedGoogle Scholar
  8. 8.
    Gomez Del Pulgar, T., Cebrian, A., Fernandez-Acenero, M. J., Borrero-Palacios, A., Puerto-Nevado, L. D., Martinez-Useros, J., Marin-Arango, J. P., Carames, C., Vega-Bravo, R., and Rodriguez-Remirez, M. (2016) Focal adhesion kinase: predictor of tumour response and risk factor for recurrence after neoadjuvant chemoradiation in rectal cancer, J. Cell. Mol. Med., 20, 1729–1736.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Uehara, K., and Uehara, A. (2016) Differentiated localizations of phosphorylated focal adhesion kinase in endothelial cells of rat splenic sinus, Cell Tissue Res., 83, 1–12.Google Scholar
  10. 10.
    Zheng, X., Bao, W., Yang, J., Zhang, T., Sun, D., Liang, Y., Li, S., Wang, Y., Feng, X., and Hao, H. (2016) Focal adhesion kinase directly interacts with TSC2 through its FAT domain and regulates cell proliferation in cashmere goat fetal fibroblasts, DNA Cell Biol., 9, 480–488.CrossRefGoogle Scholar
  11. 11.
    Troutman, S., Moleirinho, S., Kota, S., Nettles, K., Fallahi, M., Johnson, G. L., and Kissil, J. L. (2016) Crizotinib inhibits NF2-associated schwannoma through inhibition of focal adhesion kinase 1, Oncotarget, doi: 10.18632/oncotarget.10248.Google Scholar
  12. 12.
    Hao, Z., Shao, H., Golubovskaya, V. M., Chen, H., Cance, W., Adjei, A. A., and Dy, G. K. (2016) Efficacy of focal adhesion kinase inhibition in non-small cell lung cancer with oncogenically activated MAPK pathways, Br. J. Cancer, 2, 203–211.Google Scholar
  13. 13.
    Heffler, M., Golubovskaya, V. M., Dunn, K. M. B., and Cance, W. (2013) Focal adhesion kinase autophosphorylation inhibition decreases colon cancer cell growth and enhances the efficacy of chemotherapy, Cancer Biol. Ther., 14, 761–772.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Woo, J. K., Jang, Y. S., Kang, J. H., Hwang, J. I., Seong, J. K., Lee, S. J., Jeon, S., Oh, G. T., Lee, H. Y., and Oh, S. H. (2016) Ninjurin1 inhibits colitis-mediated colon cancer development and growth by suppression of macrophage infiltration through repression of FAK signaling, Oncotarget, 20, 29592–29604.Google Scholar
  15. 15.
    Feng, R., and Yang, S. (2016) Effects of combining erlotinib and RNA-interfered downregulation of focal adhesion kinase expression on gastric cancer, J. Int. Med. Res., 44.Google Scholar
  16. 16.
    Shi, R., Wang, Q., Ouyang, Y., Wang, Q., and Xiong, X. (2016) Picfeltarraenin IA inhibits lipopolysaccharideinduced inflammatory cytokine production by the nuclear factor-κB pathway in human pulmonary epithelial A549 cells, Oncol. Lett., 11, 1195–1200.PubMedGoogle Scholar
  17. 17.
    Buck, C., Gallati, H., Pohlandt, F., and Bartmann, P. (1994) Increased levels of tumor necrosis factor a (TNF-a) and interleukin 1a (IL-1a) in tracheal aspirates of newborns with pneumonia, Infection, 22, 238–241.CrossRefPubMedGoogle Scholar
  18. 18.
    Jodal, M., Fihn, B. M., and Sun, Y. (1990) Correlations and interactions in the production of interleukin-6 (IL-6), IL-1, and tumor necrosis factor (TNF) in human blood mononuclear cells: IL-6 suppresses IL-1 and TNF, Blood, 75, 40–47.Google Scholar
  19. 19.
    You, D., Xin, J., Volk, A., Wei, W., Schmidt, R., Scurti, G., Nand, S., Breuer, E. K., Kuo, P., and Breslin, P. (2015) FAK mediates a compensatory survival signal parallel to PI3K-AKT in PTEN-null T-ALL cells, Cell Rep., 10, 2055–2068.CrossRefPubMedGoogle Scholar
  20. 20.
    Sun, C., Yuan, H., Wang, L., Wei, X., Williams, L., Krebsbach, P. H., Guan, J. L., and Liu, F. (2016) FAK promotes osteoblast progenitor cell proliferation and differentiation by enhancing Wnt signaling, J. Bone Min. Res., doi: 10.1002/jbmr.2908.Google Scholar
  21. 21.
    Harvey, R. D., Silberman, J., and Lonial, S. (2015) The PI3 kinase/Akt pathway as a therapeutic target in multiple myeloma, Fut. Oncol., 3, 639–647.CrossRefGoogle Scholar
  22. 22.
    Foster, K. A., Oster, C. G., Mayer, M. M., Avery, M. L., and Audus, K. L. (1998) Characterization of the A549 cell line as a type II pulmonary epithelial cell model for drug metabolism, Exp. Cell Res., 243, 359–366.CrossRefPubMedGoogle Scholar
  23. 23.
    Uboldi, C., Bonacchi, D., Lorenzi, G., Hermanns, M. I., Pohl, C., Baldi, G., Unger, R. E., and Kirkpatrick, C. J. (2009) Gold nanoparticles induce cytotoxicity in the alveolar type-II cell lines A549 and NCIH441, Part. Fibre Toxicol., 6, 1–12.CrossRefGoogle Scholar
  24. 24.
    Wu, J., Zhao, J., Yu, J., Zhang, W., and Huang, Y. (2015) Cylindromatosis (CYLD) inhibits Streptococcus pneumonia-induced plasminogen activator inhibitor-1 expression via interacting with TRAF-6, Biochem. Biophys. Res. Commun., 463, 942–947.CrossRefPubMedGoogle Scholar
  25. 25.
    Zhao, X., Li, H., Wang, J., Guo, Y., Liu, B., Deng, X., and Niu, X. (2015) Verbascoside alleviates pneumococcal pneumonia by reducing pneumolysin oligomers, Mol. Pharmacol., 89, 376–387.CrossRefPubMedGoogle Scholar
  26. 26.
    Cantais, A., Mory, O., Pillet, S., Verhoeven, P. O., Bonneau, J., Patural, H., and Pozzetto, B. (2014) Epidemiology and microbiological investigations of community-acquired pneumonia in children admitted at the emergency department of a university hospital, J. Clin. Virol., 60, 402–407.CrossRefPubMedGoogle Scholar
  27. 27.
    Li, Q., Liu, L., Zhang, Q., Liu, S., Ge, D., and You, Z. (2014) Interleukin-17 indirectly promotes M2 macrophage differentiation through stimulation of COX-2/PGE2 pathway in the cancer cells, Cancer Res. Treat. Offic. J. Korean Cancer Assoc., 46, 297–306.Google Scholar
  28. 28.
    Ali, A., Akhund, T., Warraich, G. J., Aziz, F., Rahman, N., Urmani, F. A., Qureshi, S., Petri, W. A., Bhutta, Z., Zaidi, A. K., and Hughes, M. A. (2016) Respiratory viruses associated with severe pneumonia in children under two years old in a rural community in Pakistan, J. Med. Virol., 88, 1882–1890.CrossRefPubMedGoogle Scholar
  29. 29.
    Dop, D., Gheonea, C., Stanescu, G. L., Morosanu, A. E., Diaconu, R., Niculescu, E. C., Ognean, M. L., and Niculescu, D. (2015) Aspiration pneumonia in an infant with neurological sequelae–case report, Roman. J. Morphol. Embryol., 56, 1191–1194.Google Scholar
  30. 30.
    Wang, L. L., Zheng, S. Y., Ren, L., Xiao, Q. Y., Long, X. R., Luo, J., Qu-Bei, L. I., Deng, Y., Xie, X. H., and Liu, E. M. (2016) Levels of surfactant proteins A and D in bronchoalveolar lavage fluid of children with pneumonia and their relationships with clinical characteristics, Chinese J. Contemp. Pediatr., 18.Google Scholar
  31. 31.
    Kessler, B. E., Sharma, V., Zhou, Q., Jing, X., Pike, L. A., Kerege, A. A., Sams, S. B., and Schweppe, R. E. (2016) FAK expression, not kinase activity, is a key mediator of thyroid tumorigenesis and pro-tumorigenic processes, Mol. Cancer Res., 14, 869–882.Google Scholar
  32. 32.
    Zaidi, A. (2015) FAK kinase activity is required for the progreßsion of c-Met/ß-catenin-driven HCC, Gene Express., 17, 79–88.CrossRefGoogle Scholar
  33. 33.
    Serrels, A., and Frame, M. C. (2016) FAK goes nuclear to control anti-tumor immunity–a new target in cancer immunotherapy, Oncoimmunology, 5, e1119356.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Thiyagarajan, V., Lin, S. H., Chang, Y. C., and Weng, C. F. (2016) Identification of novel FAK and S6K1 dual inhibitors from natural compounds via ADMET screening and molecular docking, Biomed. Pharmacother., 80, 52–62.CrossRefPubMedGoogle Scholar
  35. 35.
    Hutchinson, L. (2016) Ovarian cancer: FAK–new target for antiangiogenic therapy, Nature Rev. Clin. Oncol., 13, 328.Google Scholar
  36. 36.
    Ding, L., Wang, L., Sui, L., Zhao, H., Xu, X., Li, T., Wang, X., Li, W., Zhou, P., and Kong, L. (2016) Claudin-7 indirectly regulates the integrin/FAK signaling pathway in human colon cancer tissue, J. Human Genet., 61, 711–720.CrossRefGoogle Scholar
  37. 37.
    Zhang, R., Li, L., Yuan, L., and Zhao, M. (2015) Hypoxic preconditioning protects cardiomyocytes against hypoxia/reoxygenation-induced cell apoptosis via sphingosine kinase 2 and FAK/AKT pathway, Exp. Mol. Pathol., 100, 51–58.CrossRefPubMedGoogle Scholar
  38. 38.
    Liu, F., Kohlmeier, S., and Wang, C. (2008) Wnt signaling and skeletal development, Cell. Signal., 20, 999–1009.CrossRefPubMedGoogle Scholar
  39. 39.
    Topol, L., Jiang, X., Choi, H., Garrettbeal, L., Carolan, P. J., and Yang, Y. (2003) Wnt-5a inhibits the canonical Wnt pathway by promoting GSK-3-independent ß-catenin degradation, J. Cell Biol., 162, 899–908.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Oeckinghaus, A., Hayden, M. S., and Ghosh, S. (2011) Crosstalk in NF-κB signaling pathways, Nature Immunol., 12, 695–708.CrossRefGoogle Scholar
  41. 41.
    Mulero, M. C., Bigas, A., and Espinosa, L. (2013) I?Ba beyond the NF-κB dogma, Oncotarget, 4, 1550–1551.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Jining No. 1 People’s HospitalDepartment of PediatricsJiningChina

Personalised recommendations