Biochemistry (Moscow)

, Volume 82, Issue 3, pp 351–365 | Cite as

Mechanisms of brain glucocorticoid resistance in stress-induced psychopathologies

  • V. M. Merkulov
  • T. I. Merkulova
  • N. P. Bondar


Exposure to stress activates the hypothalamic–pituitary–adrenal axis and leads to increased levels of glucocorticoid (GC) hormones. Prolonged elevation of GC levels causes neuronal dysfunction, decreases the density of synapses, and impairs neuronal plasticity. Decreased sensitivity to glucocorticoids (glucocorticoid resistance) that develops as a result of chronic stress is one of the characteristic features of stress-induced psychopathologies. In this article, we reviewed the published data on proposed molecular mechanisms that contribute to the development of glucocorticoid resistance in brain, including changes in the expression of the glucocorticoid receptor (GR) gene, biosynthesis of GR isoforms, and GR posttranslational modifications. We also present data on alterations in the expression of the FKBP5 gene encoding the main component of cell ultra-short negative feedback loop of GC signaling regulation. Recent discoveries on stressand GRinduced changes in epigenetic modification patterns as well as normalizing action of antidepressants are discussed. GR and FKBP5 gene polymorphisms associated with stress-induced psychopathologies are described, and their role in glucocorticoid resistance is discussed.


glucocorticoid resistance stress-induced psychopathologies glucocorticoid receptor FK506 binding protein 5 (FKBP5) epigenetic modifications 



adrenocorticotropic hormone (corticotropin)


DNA methyltransferase


FK506 binding protein 4 (immunophilin)


FK506 binding protein 5 (immunophilin)


glucocorticoid hormones (glucocorticoids)


glucocorticoid receptors


glucocorticoid-responsive element


hypothalamic–pituitary–adrenal axis


interleukin 1


tumor necrosis factor


untranslated region


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pittenger, C., and Duman, R. S. (2008) Stress, depression, and neuroplasticity: a convergence of mechanisms, Neuropsychopharmacology, 33, 88–109.PubMedCrossRefGoogle Scholar
  2. 2.
    Miklowitz, D. J. (2011) Functional impairment, stress, and psychosocial intervention in bipolar disorder, Curr. Psychiatry Rep., 13, 504–512.PubMedCrossRefGoogle Scholar
  3. 3.
    McEwen, B. S. (2007) Physiology and neurobiology of stress and adaptation: central role of the brain, Physiol. Rev., 87, 873–904.PubMedCrossRefGoogle Scholar
  4. 4.
    Kumar, R., and Thompson, E. B. (2005) Gene regulation by the glucocorticoid receptor: structure-function relationship, J. Steroid Biochem. Mol. Biol., 94, 383–394.PubMedCrossRefGoogle Scholar
  5. 5.
    Merkulov, V. M., and Merkulova, T. I. (2009) Structural variants of glucocorticoid receptor binding sites and different versions of positive glucocorticoid responsive elements: analysis of GR-TRRD database, J. Steroid Biochem. Mol. Biol., 115, 1–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Meijsing, S. H. (2015) Mechanisms of glucocorticoid-regulated gene transcription, Adv. Exp. Med. Biol., 872, 59–81.PubMedCrossRefGoogle Scholar
  7. 7.
    Cattaneo, A., and Riva, M. A. (2016) Stress-induced mechanisms in mental illness: a role for glucocorticoid signalling, J. Steroid Biochem. Mol. Biol., 160, 169–174.PubMedCrossRefGoogle Scholar
  8. 8.
    Drouin, J., Sun, Y. L., Chamberland, M., Gauthier, Y., De Lean, A., Nemer, M., and Schmidt, T. J. (1993) Novel glucocorticoid receptor complex with DNA element of the hormone-repressed POMC gene, EMBO J., 12, 145–156.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Malkoski, S. P., and Dorin, R. I. (1999) Composite glucocorticoid regulation at a functionally defined negative glucocorticoid response element of the human corticotropinreleasing hormone gene, Mol. Endocrinol., 13, 1629–1644.PubMedCrossRefGoogle Scholar
  10. 10.
    Cohen, S., Janicki-Deverts, D., Doyle, W. J., Miller, G. E., Frank, E., Rabin, B. S., and Turner, R. B. (2012) Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk, Proc. Natl. Acad. Sci. USA, 109, 5995–5999.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Holsboer, F. (2000) The corticosteroid receptor hypothesis of depression, Neuropsychopharmacology, 23, 477–501.PubMedCrossRefGoogle Scholar
  12. 12.
    Jarcho, M. R., Slavich, G. M., Tylova-Stein, H., Wolkowitz, O. M., and Burke, H. M. (2013) Dysregulated diurnal cortisol pattern is associated with glucocorticoid resistance in women with major depressive disorder, Biol. Psychol., 93, 150–158.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Pariante, C. M. (2009) Risk factors for development of depression and psychosis. Glucocorticoid receptors and pituitary implications for treatment with antidepressant and glucocorticoids, Ann. NY Acad. Sci., 1179, 144–152.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Pariante, C. M., and Miller, A. H. (2001) Glucocorticoid receptors in major depression: relevance to pathophysiology and treatment, Biol. Psychiatry, 49, 391–404.PubMedCrossRefGoogle Scholar
  15. 15.
    Naughton, M., Dinan, T. G., and Scott, L. V. (2014) Corticotropin-releasing hormone and the hypothalamicpituitary-adrenal axis in psychiatric disease, Handbook Clin. Neurol., 124, 69–91.CrossRefGoogle Scholar
  16. 16.
    Watson, S., Gallagher, P., Del-Estal, D., Hearn, A., Ferrier, I. N., and Young, A. H. (2002) Hypothalamic-pituitary-adrenal axis function in patients with chronic depression, Psychol. Med., 32, 1021–1028.PubMedCrossRefGoogle Scholar
  17. 17.
    Zobel, A. W., Nickel, T., Sonntag, A., Uhr, M., Holsboer, F., and Ising, M. (2001) Cortisol response in the combined dexamethasone/CRH test as predictor of relapse in patients with remitted depression. A prospective study, J. Psychiatr. Res., 35, 83–94.PubMedCrossRefGoogle Scholar
  18. 18.
    Binder, E. B. (2009) The role of FKBP5, a co-chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders, Psychoneuroendocrinology, 34, Suppl. 1, S186–195.PubMedCrossRefGoogle Scholar
  19. 19.
    Pariante, C. M., and Lightman, S. L. (2008) The HPA axis in major depression: classical theories and new developments, Trends Neurosci., 31, 464–468.PubMedCrossRefGoogle Scholar
  20. 20.
    Hall, B. S., Moda, R. N., and Liston, C. (2015) Glucocorticoid mechanisms of functional connectivity changes in stress-related neuropsychiatric disorders, Neurobiol. Stress, 1, 174–183.PubMedCrossRefGoogle Scholar
  21. 21.
    Jacobson, L., and Sapolsky, R. (1991) The role of the hippocampus in feedback regulation of the hypothalamicpituitary-adrenocortical axis, Endocr. Rev., 12, 118–134.PubMedCrossRefGoogle Scholar
  22. 22.
    Sousa, N., Lukoyanov, N. V., Madeira, M. D., Almeida, O. F., and Paula-Barbosa, M. M. (2000) Reorganization of the morphology of hippocampal neurites and synapses after stress-induced damage correlates with behavioral improvement, Neuroscience, 97, 253–266.PubMedCrossRefGoogle Scholar
  23. 23.
    Vyas, A., Mitra, R., Shankaranarayana Rao, B. S., and Chattarji, S. (2002) Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons, J. Neurosci., 22, 6810–6818.PubMedGoogle Scholar
  24. 24.
    Vyas, S., Rodrigues, A. J., Silva, J. M., Tronche, F., Almeida, O. F., Sousa, N., and Sotiropoulos, I. (2016) Chronic stress and glucocorticoids: from neuronal plasticity to neurodegeneration, Neural Plast., 2016, 6391686.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Gould, E., McEwen, B. S., Tanapat, P., Galea, L. A., and Fuchs, E. (1997) Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation, J. Neurosci., 17, 2492–2498.PubMedGoogle Scholar
  26. 26.
    Shors, T. J. (2006) Significant life events and the shape of memories to come: a hypothesis, Neurobiol. Learn. Mem., 85, 103–115.PubMedCrossRefGoogle Scholar
  27. 27.
    Anacker, C., Zunszain, P. A., Carvalho, L. A., and Pariante, C. M. (2011) The glucocorticoid receptor: pivot of depression and of antidepressant treatment? Psychoneuroendocrinology, 36, 415–425.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Pariante, C. M. (2006) The glucocorticoid receptor: part of the solution or part of the problem? J. Psychopharmacol., 20, 79–84.PubMedCrossRefGoogle Scholar
  29. 29.
    Lopez, J. F., Chalmers, D. T., Little, K. Y., and Watson, S. J. (1998) A. E. Bennett Research Award. Regulation of serotonin 1A, glucocorticoid, and mineralocorticoid receptor in rat and human hippocampus: implications for the neurobiology of depression, Biol. Psychiatry, 43, 547–573.PubMedCrossRefGoogle Scholar
  30. 30.
    Alt, S. R., Turner, J. D., Klok, M. D., Meijer, O. C., Lakke, E. A., Derijk, R. H., and Muller, C. P. (2010) Differential expression of glucocorticoid receptor transcripts in major depressive disorder is not epigenetically programmed, Psychoneuroendocrinology, 35, 544–556.PubMedCrossRefGoogle Scholar
  31. 31.
    Webster, M. J., Knable, M. B., O’Grady, J., Orthmann, J., and Weickert, C. S. (2002) Regional specificity of brain glucocorticoid receptor mRNA alterations in subjects with schizophrenia and mood disorders, Mol. Psychiatry, 7, 924, 985–994.CrossRefGoogle Scholar
  32. 32.
    Perlman, W. R., Webster, M. J., Kleinman, J. E., and Weickert, C. S. (2004) Reduced glucocorticoid and estrogen receptor alpha messenger ribonucleic acid levels in the amygdala of patients with major mental illness, Biol. Psychiatry, 56, 844–852.PubMedCrossRefGoogle Scholar
  33. 33.
    Chang, L. C., Jamain, S., Lin, C. W., Rujescu, D., Tseng, G. C., and Sibille, E. (2014) A conserved BDNF, glutamateand GABA-enriched gene module related to human depression identified by coexpression meta-analysis and DNA variant genome-wide association studies, PLoS One, 9, e90980.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Akula, N., Barb, J., Jiang, X., Wendland, J. R., Choi, K. H., Sen, S. K., Hou, L., Chen, D. T., Laje, G., Johnson, K., Lipska, B. K., Kleinman, J. E., Corrada-Bravo, H., Detera-Wadleigh, S., Munson, P. J., and McMahon, F. J. (2014) RNA-sequencing of the brain transcriptome implicates dysregulation of neuroplasticity, circadian rhythms and GTPase binding in bipolar disorder, Mol. Psychiatry, 19, 1179–1185.PubMedCrossRefGoogle Scholar
  35. 35.
    Oakley, R. H., and Cidlowski, J. A. (2011) Cellular processing of the glucocorticoid receptor gene and protein: new mechanisms for generating tissue-specific actions of glucocorticoids, J. Biol. Chem., 286, 3177–3184.PubMedCrossRefGoogle Scholar
  36. 36.
    Merkulov, V. M., and Merkulova, T. I. (2011) Isoforms of glucocorticoid receptor formed by alternative splicing and usage of alternative mRNA translation starts, Vavilov Zh. Genet. Selekt., 4, 621–632.Google Scholar
  37. 37.
    Oakley, R. H., Sar, M., and Cidlowski, J. A. (1996) The human glucocorticoid receptor beta isoform. Expression, biochemical properties, and putative function, J. Biol. Chem., 271, 9550–9559.PubMedCrossRefGoogle Scholar
  38. 38.
    Kino, T., Manoli, I., Kelkar, S., Wang, Y., Su, Y. A., and Chrousos, G. P. (2009) Glucocorticoid receptor (GR) beta has intrinsic, GRalpha-independent transcriptional activity, Biochem. Biophys. Res. Commun., 381, 671–675.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Lewis-Tuffin, L. J., Jewell, C. M., Bienstock, R. J., Collins, J. B., and Cidlowski, J. A. (2007) Human glucocorticoid receptor beta binds RU-486 and is transcriptionally active, Mol. Cell Biol., 27, 2266–2282.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Pujols, L., Mullol, J., Roca-Ferrer, J., Torrego, A., Xaubet, A., Cidlowski, J. A., and Picado, C. (2002) Expression of glucocorticoid receptor alphaand beta-isoforms in human cells and tissues, Am. J. Physiol. Cell Physiol., 283, 1324–1331.CrossRefGoogle Scholar
  41. 41.
    Webster, J. C., Oakley, R. H., Jewell, C. M., and Cidlowski, J. A. (2001) Proinflammatory cytokines regulate human glucocorticoid receptor gene expression and lead to the accumulation of the dominant negative beta isoform: a mechanism for the generation of glucocorticoid resistance, Proc. Natl. Acad. Sci. USA, 98, 6865–6870.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Lewis-Tuffin, L. J., and Cidlowski, J. A. (2006) The physiology of human glucocorticoid receptor beta (hGRbeta) and glucocorticoid resistance, Ann. NY Acad. Sci., 1069, 1–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Moalli, P. A., Pillay, S., Krett, N. L., and Rosen, S. T. (1993) Alternatively spliced glucocorticoid receptor messenger RNAs in glucocorticoid-resistant human multiple myeloma cells, Cancer Res., 53, 3877–3879.PubMedGoogle Scholar
  44. 44.
    Pandey, G. N., Rizavi, H. S., Ren, X., Dwivedi, Y., and Palkovits, M. (2013) Region-specific alterations in glucocorticoid receptor expression in the postmortem brain of teenage suicide victims, Psychoneuroendocrinology, 38, 2628–2639.PubMedCrossRefGoogle Scholar
  45. 45.
    Szczepankiewicz, A., Leszczynska-Rodziewicz, A., Pawlak, J., Rajewska-Rager, A., Dmitrzak-Weglarz, M., Wilkosc, M., Skibinska, M., and Hauser, J. (2011) Glucocorticoid receptor polymorphism is associated with major depression and predominance of depression in the course of bipolar disorder, J. Affect. Disord., 134, 138–144.PubMedCrossRefGoogle Scholar
  46. 46.
    Derijk, R. H., Schaaf, M. J., Turner, G., Datson, N. A., Vreugdenhil, E., Cidlowski, J., De Kloet, E. R., Emery, P., Sternberg, E. M., and Detera-Wadleigh, S. D. (2001) A human glucocorticoid receptor gene variant that increases the stability of the glucocorticoid receptor beta-isoform mRNA is associated with rheumatoid arthritis, J. Rheumatol., 28, 2383–2388.PubMedGoogle Scholar
  47. 47.
    Van Rossum, E. F., Binder, E. B., Majer, M., Koper, J. W., Ising, M., Modell, S., Salyakina, D., Lamberts, S. W., and Holsboer, F. (2006) Polymorphisms of the glucocorticoid receptor gene and major depression, Biol. Psychiatry, 59, 681–688.PubMedCrossRefGoogle Scholar
  48. 48.
    Van Rossum, E. F., and Lamberts, S. W. (2004) Polymorphisms in the glucocorticoid receptor gene and their associations with metabolic parameters and body composition, Recent Prog. Horm. Res., 59, 333–357.PubMedCrossRefGoogle Scholar
  49. 49.
    Russcher, H., Van Rossum, E. F., De Jong, F. H., Brinkmann, A. O., Lamberts, S. W., and Koper, J. W. (2005) Increased expression of the glucocorticoid receptorA translational isoform as a result of the ER22/23EK polymorphism, Mol. Endocrinol., 19, 1687–1696.PubMedCrossRefGoogle Scholar
  50. 50.
    Kochetov, A. V., Merkulova, T. I., and Merkulov, V. M. (2012) Possible link between the synthesis of GR alpha isoforms and eIF2 alpha phosphorylation state, Med. Hypotheses, 79, 709–712.PubMedCrossRefGoogle Scholar
  51. 51.
    Cao-Lei, L., Leija, S. C., Kumsta, R., Wust, S., Meyer, J., Turner, J. D., and Muller, C. P. (2011) Transcriptional control of the human glucocorticoid receptor: identification and analysis of alternative promoter regions, Hum. Genet., 129, 533–543.PubMedCrossRefGoogle Scholar
  52. 52.
    Turner, J. D., Vernocchi, S., Schmitz, S., and Muller, C. P. (2014) Role of the 5'-untranslated regions in post-transcriptional regulation of the human glucocorticoid receptor, Biochim. Biophys. Acta, 1839, 1051–1061.PubMedCrossRefGoogle Scholar
  53. 53.
    Weaver, I. C., Cervoni, N., Champagne, F. A., D’Alessio, A. C., Sharma, S., Seckl, J. R., Dymov, S., Szyf, M., and Meaney, M. J. (2004) Epigenetic programming by maternal behavior, Nat. Neurosci., 7, 847–854.PubMedCrossRefGoogle Scholar
  54. 54.
    Mueller, B. R., and Bale, T. L. (2008) Sex-specific programming of offspring emotionality after stress early in pregnancy, J. Neurosci., 28, 9055–9065.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    DeRijk, R. H., Schaaf, M., and De Kloet, E. R. (2002) Glucocorticoid receptor variants: clinical implications, J. Steroid Biochem. Mol. Biol., 81, 103–122.PubMedCrossRefGoogle Scholar
  56. 56.
    Ismaili, N., and Garabedian, M. J. (2004) Modulation of glucocorticoid receptor function via phosphorylation, Ann. NY Acad. Sci., 1024, 86–101.PubMedCrossRefGoogle Scholar
  57. 57.
    Ford, J., McEwan, I. J., Wright, A. P., and Gustafsson, J. A. (1997) Involvement of the transcription factor IID protein complex in gene activation by the N-terminal transactivation domain of the glucocorticoid receptor in vitro, Mol. Endocrinol., 11, 1467–1475.PubMedCrossRefGoogle Scholar
  58. 58.
    Robyr, D., Wolffe, A. P., and Wahli, W. (2000) Nuclear hormone receptor coregulators in action: diversity for shared tasks, Mol. Endocrinol., 14, 329–347.PubMedCrossRefGoogle Scholar
  59. 59.
    Chen, W., Dang, T., Blind, R. D., Wang, Z., Cavasotto, C. N., Hittelman, A. B., Rogatsky, I., Logan, S. K., and Garabedian, M. J. (2008) Glucocorticoid receptor phosphorylation differentially affects target gene expression, Mol. Endocrinol., 22, 1754–1766.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Anacker, C., Cattaneo, A., Musaelyan, K., Zunszain, P. A., Horowitz, M., Molteni, R., Luoni, A., Calabrese, F., Tansey, K., Gennarelli, M., Thuret, S., Price, J., Uher, R., Riva, M. A., and Pariante, C. M. (2013) Role for the kinase SGK1 in stress, depression, and glucocorticoid effects on hippocampal neurogenesis, Proc. Natl. Acad. Sci. USA, 110, 8708–8713.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Itoh, M., Adachi, M., Yasui, H., Takekawa, M., Tanaka, H., and Imai, K. (2002) Nuclear export of glucocorticoid receptor is enhanced by c-Jun N-terminal kinase-mediated phosphorylation, Mol. Endocrinol., 16, 2382–2392.PubMedCrossRefGoogle Scholar
  62. 62.
    Miller, A. L., Webb, M. S., Copik, A. J., Wang, Y., Johnson, B. H., Kumar, R., and Thompson, E. B. (2005) p38 mitogen-activated protein kinase (MAPK) is a key mediator in glucocorticoid-induced apoptosis of lymphoid cells: correlation between p38 MAPK activation and site-specific phosphorylation of the human glucocorticoid receptor at serine 211, Mol. Endocrinol., 19, 1569–1583.PubMedCrossRefGoogle Scholar
  63. 63.
    Jovicic, M. J., Lukic, I., Radojcic, M., Adzic, M., and Maric, N. P. (2015) Modulation of c-Jun N-terminal kinase signaling and specific glucocorticoid receptor phosphorylation in the treatment of major depression, Med. Hypotheses, 85, 291–294.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Mitic, M., Simic, I., Djordjevic, J., Radojcic, M. B., and Adzic, M. (2013) Gender-specific effects of fluoxetine on hippocampal glucocorticoid receptor phosphorylation and behavior in chronically stressed rats, Neuropharmacology, 70, 100–111.PubMedCrossRefGoogle Scholar
  65. 65.
    Lee, M. S., Park, W. S., Kim, Y. H., Kwon, S. H., Jang, Y. J., Han, D., Morita, K., and Her, S. (2013) Antidepressantlike effects of cortex mori radicis extract via bidirectional phosphorylation of glucocorticoid receptors in the hippocampus, Behav. Brain Res., 236, 56–61.PubMedCrossRefGoogle Scholar
  66. 66.
    Simic, I., Maric, N. P., Mitic, M., Soldatovic, I., Pavlovic, Z., Mihaljevic, M., Andric, S., Radojcic, M. B., and Adzic, M. (2013) Phosphorylation of leukocyte glucocorticoid receptor in patients with current episode of major depressive disorder, Prog. Neuropsychopharmacol. Biol. Psychiatry, 40, 281–285.PubMedCrossRefGoogle Scholar
  67. 67.
    Echeverria, P. C., and Picard, D. (2010) Molecular chaperones, essential partners of steroid hormone receptors for activity and mobility, Biochim. Biophys. Acta, 1803, 641–649.PubMedCrossRefGoogle Scholar
  68. 68.
    Cheung, J., and Smith, D. F. (2000) Molecular chaperone interactions with steroid receptors: an update, Mol. Endocrinol., 14, 939–946.PubMedCrossRefGoogle Scholar
  69. 69.
    Pratt, W. B., Galigniana, M. D., Morishima, Y., and Murphy, P. J. (2004) Role of molecular chaperones in steroid receptor action, Essays Biochem., 40, 41–58.PubMedCrossRefGoogle Scholar
  70. 70.
    Davies, T. H., Ning, Y. M., and Sanchez, E. R. (2002) A new first step in activation of steroid receptors: hormoneinduced switching of FKBP51 and FKBP52 immunophilins, J. Biol. Chem., 277, 4597–4600.PubMedCrossRefGoogle Scholar
  71. 71.
    Harrell, J. M., Murphy, P. J., Morishima, Y., Chen, H., Mansfield, J. F., Galigniana, M. D., and Pratt, W. B. (2004) Evidence for glucocorticoid receptor transport on microtubules by dynein, J. Biol. Chem., 279, 54647–54654.PubMedCrossRefGoogle Scholar
  72. 72.
    Billing, A. M., Fack, F., Renaut, J., Olinger, C. M., Schote, A. B., Turner, J. D., and Muller, C. P. (2007) Proteomic analysis of the cortisol-mediated stress response in THP-1 monocytes using DIGE technology, J. Mass Spectrom., 42, 1433–1444.PubMedCrossRefGoogle Scholar
  73. 73.
    U, M., Shen, L., Oshida, T., Miyauchi, J., Yamada, M., and Miyashita, T. (2004) Identification of novel direct transcriptional targets of glucocorticoid receptor, Leukemia, 18, 1850–1856.PubMedCrossRefGoogle Scholar
  74. 74.
    Vermeer, H., Hendriks-Stegeman, B. I., Van der Burg, B., Van Buul-Offers, S. C., and Jansen, M. (2003) Glucocorticoid-induced increase in lymphocytic FKBP51 messenger ribonucleic acid expression: a potential marker for glucocorticoid sensitivity, potency, and bioavailability, J. Clin. Endocrinol. Metab., 88, 277–284.PubMedCrossRefGoogle Scholar
  75. 75.
    Woodruff, P. G., Boushey, H. A., Dolganov, G. M., Barker, C. S., Yang, Y. H., Donnelly, S., Ellwanger, A., Sidhu, S. S., Dao-Pick, T. P., Pantoja, C., Erle, D. J., Yamamoto, K. R., and Fahy, J. V. (2007) Genome-wide profiling identifies epithelial cell genes associated with asthma and with treatment response to corticosteroids, Proc. Natl. Acad. Sci. USA, 104, 15858–15863.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Lee, R. S., Tamashiro, K. L., Yang, X., Purcell, R. H., Harvey, A., Willour, V. L., Huo, Y., Rongione, M., Wand, G. S., and Potash, J. B. (2010) Chronic corticosterone exposure increases expression and decreases deoxyribonucleic acid methylation of Fkbp5 in mice, Endocrinology, 151, 4332–4343.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Scharf, S. H., Liebl, C., Binder, E. B., Schmidt, M. V., and Muller, M. B. (2011) Expression and regulation of the Fkbp5 gene in the adult mouse brain, PLoS One, 6, e16883.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Hubler, T. R., and Scammell, J. G. (2004) Intronic hormone response elements mediate regulation of FKBP5 by progestins and glucocorticoids, Cell Stress Chaperones, 9, 243–252.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Reddy, T. E., Pauli, F., Sprouse, R. O., Neff, N. F., Newberry, K. M., Garabedian, M. J., and Myers, R. M. (2009) Genomic determination of the glucocorticoid response reveals unexpected mechanisms of gene regulation, Genome Res., 19, 2163–2171.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Denny, W. B., Prapapanich, V., Smith, D. F., and Scammell, J. G. (2005) Structure-function analysis of squirrel monkey FK506-binding protein 51, a potent inhibitor of glucocorticoid receptor activity, Endocrinology, 146, 3194–3201.PubMedCrossRefGoogle Scholar
  81. 81.
    Klengel, T., Mehta, D., Anacker, C., Rex-Haffner, M., Pruessner, J. C., Pariante, C. M., Pace, T. W., Mercer, K. B., Mayberg, H. S., Bradley, B., Nemeroff, C. B., Holsboer, F., Heim, C. M., Ressler, K. J., Rein, T., and Binder, E. B. (2013) Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions, Nat. Neurosci., 16, 33–41.PubMedCrossRefGoogle Scholar
  82. 82.
    Chrousos, G. P., Renquist, D., Brandon, D., Eil, C., Pugeat, M., Vigersky, R., Cutler, G. B., Jr., Loriaux, D. L., and Lipsett, M. B. (1982) Glucocorticoid hormone resistance during primate evolution: receptor-mediated mechanisms, Proc. Natl. Acad. Sci. USA, 79, 2036–2040.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Reynolds, P. D., Ruan, Y., Smith, D. F., and Scammell, J. G. (1999) Glucocorticoid resistance in the squirrel monkey is associated with overexpression of the immunophilin FKBP51, J. Clin. Endocrinol. Metab., 84, 663–669.PubMedGoogle Scholar
  84. 84.
    Scammell, J. G., Denny, W. B., Valentine, D. L., and Smith, D. F. (2001) Overexpression of the FK506-binding immunophilin FKBP51 is the common cause of glucocorticoid resistance in three New World primates, Gen. Comp. Endocrinol., 124, 152–165.PubMedCrossRefGoogle Scholar
  85. 85.
    Denny, W. B., Valentine, D. L., Reynolds, P. D., Smith, D. F., and Scammell, J. G. (2000) Squirrel monkey immunophilin FKBP51 is a potent inhibitor of glucocorticoid receptor binding, Endocrinology, 141, 4107–4113.Google Scholar
  86. 86.
    Guidotti, G., Calabrese, F., Anacker, C., Racagni, G., Pariante, C. M., and Riva, M. A. (2013) Glucocorticoid receptor and FKBP5 expression is altered following exposure to chronic stress: modulation by antidepressant treatment, Neuropsychopharmacology, 38, 616–627.PubMedCrossRefGoogle Scholar
  87. 87.
    Xing, Y., Hou, J., Meng, Q., Yang, M., Kurihara, H., and Tian, J. (2015) Novel antidepressant candidate RO-05 modulated glucocorticoid receptors activation and FKBP5 expression in chronic mild stress model in rats, Neuroscience, 290, 255–265.PubMedCrossRefGoogle Scholar
  88. 88.
    Pei, H., Li, L., Fridley, B. L., Jenkins, G. D., Kalari, K. R., Lingle, W., Petersen, G., Lou, Z., and Wang, L. (2009) FKBP51 affects cancer cell response to chemotherapy by negatively regulating Akt, Cancer Cell, 16, 259–266.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Beaulieu, J. M., Gainetdinov, R. R., and Caron, M. G. (2009) Akt/GSK3 signaling in the action of psychotropic drugs, Annu. Rev. Pharmacol. Toxicol., 49, 327–347.PubMedCrossRefGoogle Scholar
  90. 90.
    Charney, D. S., and Manji, H. K. (2004) Life stress, genes, and depression: multiple pathways lead to increased risk and new opportunities for intervention, Science’s STKE, 2004, re5.Google Scholar
  91. 91.
    Duman, R. S., and Voleti, B. (2012) Signaling pathways underlying the pathophysiology and treatment of depression: novel mechanisms for rapid-acting agents, Trends Neurosci., 35, 47–56.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Binder, E. B., Salyakina, D., Lichtner, P., Wochnik, G. M., Ising, M., Putz, B., Papiol, S., Seaman, S., Lucae, S., Kohli, M. A., Nickel, T., Kunzel, H. E., Fuchs, B., Majer, M., Pfennig, A., Kern, N., Brunner, J., Modell, S., Baghai, T., Deiml, T., Zill, P., Bondy, B., Rupprecht, R., Messer, T., Kohnlein, O., Dabitz, H., Bruckl, T., Muller, N., Pfister, H., Lieb, R., Mueller, J. C., Lohmussaar, E., Strom, T. M., Bettecken, T., Meitinger, T., Uhr, M., Rein, T., Holsboer, F., and Muller-Myhsok, B. (2004) Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment, Nat. Genet., 36, 1319–1325.PubMedCrossRefGoogle Scholar
  93. 93.
    Brent, D., Melhem, N., Ferrell, R., Emslie, G., Wagner, K. D., Ryan, N., Vitiello, B., Birmaher, B., Mayes, T., Zelazny, J., Onorato, M., Devlin, B., Clarke, G., DeBar, L., and Keller, M. (2010) Association of FKBP5 polymorphisms with suicidal events in the Treatment of Resistant Depression in Adolescents (TORDIA) study, Am. J. Psychiatry, 167, 190–197.PubMedCrossRefGoogle Scholar
  94. 94.
    Lavebratt, C., Aberg, E., Sjoholm, L. K., and Forsell, Y. (2010) Variations in FKBP5 and BDNF genes are suggestively associated with depression in a Swedish populationbased cohort, J. Affect. Disord., 125, 249–255.PubMedCrossRefGoogle Scholar
  95. 95.
    Lekman, M., Laje, G., Charney, D., Rush, A. J., Wilson, A. F., Sorant, A. J., Lipsky, R., Wisniewski, S. R., Manji, H., McMahon, F. J., and Paddock, S. (2008) The FKBP5 gene in depression and treatment response–an association study in the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) cohort, Biol. Psychiatry, 63, 1103–1110.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Papiol, S., Arias, B., Gasto, C., Gutierrez, B., Catalan, R., and Fananas, L. (2007) Genetic variability at HPA axis in major depression and clinical response to antidepressant treatment, J. Affect. Disord., 104, 83–90.PubMedCrossRefGoogle Scholar
  97. 97.
    Ising, M., Depping, A. M., Siebertz, A., Lucae, S., Unschuld, P. G., Kloiber, S., Horstmann, S., Uhr, M., Muller-Myhsok, B., and Holsboer, F. (2008) Polymorphisms in the FKBP5 gene region modulate recovery from psychosocial stress in healthy controls, Eur. J. Neurosci., 28, 389–398.PubMedCrossRefGoogle Scholar
  98. 98.
    Stamm, T. J., Rampp, C., Wiethoff, K., Stingl, J., Mossner, R., O’Malley, G., Ricken, R., Seemuller, F., Keck, M., Fisher, R., Gaebel, W., Maier, W., Moller, H. J., Bauer, M., and Adli, M. (2016) The FKBP5 polymorphism rs1360780 influences the effect of an algorithmbased antidepressant treatment and is associated with remission in patients with major depression, J. Psychopharmacol., 30, 40–47.PubMedCrossRefGoogle Scholar
  99. 99.
    Menke, A., Klengel, T., Rubel, J., Bruckl, T., Pfister, H., Lucae, S., Uhr, M., Holsboer, F., and Binder, E. B. (2013) Genetic variation in FKBP5 associated with the extent of stress hormone dysregulation in major depression, Genes Brain Behav., 12, 289–296.PubMedCrossRefGoogle Scholar
  100. 100.
    Hohne, N., Poidinger, M., Merz, F., Pfister, H., Bruckl, T., Zimmermann, P., Uhr, M., Holsboer, F., and Ising, M. (2015) FKBP5 genotype-dependent DNA methylation and mRNA regulation after psychosocial stress in remitted depression and healthy controls, Int. J. Neuropsychopharmacol., 18.Google Scholar
  101. 101.
    Abramovitz, L., Shapira, T., Ben-Dror, I., Dror, V., Granot, L., Rousso, T., Landoy, E., Blau, L., Thiel, G., and Vardimon, L. (2008) Dual role of NRSF/REST in activation and repression of the glucocorticoid response, J. Biol. Chem., 283, 110–119.PubMedCrossRefGoogle Scholar
  102. 102.
    Merkulova, T. I., Ananko, E. A., Ignat’eva, E. V., and Kolchanov, N. A. (2013) Regulatory transcription codes in eukaryotic genomes, Genetika, 49, 37–54.PubMedGoogle Scholar
  103. 103.
    Gaali, S., Kirschner, A., Cuboni, S., Hartmann, J., Kozany, C., Balsevich, G., Namendorf, C., FernandezVizarra, P., Sippel, C., Zannas, A. S., Draenert, R., Binder, E. B., Almeida, O. F., Ruhter, G., Uhr, M., Schmidt, M. V., Touma, C., Bracher, A., and Hausch, F. (2015) Selective inhibitors of the FK506-binding protein 51 by induced fit, Nat. Chem. Biol., 11, 33–37.PubMedCrossRefGoogle Scholar
  104. 104.
    Nicolaides, N. C., Galata, Z., Kino, T., Chrousos, G. P., and Charmandari, E. (2010) The human glucocorticoid receptor: molecular basis of biologic function, Steroids, 75, 1–12.PubMedCrossRefGoogle Scholar
  105. 105.
    King, H. A., Trotter, K. W., and Archer, T. K. (2012) Chromatin remodeling during glucocorticoid receptor regulated transactivation, Biochim. Biophys. Acta, 1819, 716–726.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Wu, J. N., Pinello, L., Yissachar, E., Wischhusen, J. W., Yuan, G. C., and Roberts, C. W. (2015) Functionally distinct patterns of nucleosome remodeling at enhancers in glucocorticoid-treated acute lymphoblastic leukemia, Epigenetics Chromatin, 8, 53.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Swinstead, E. E., Paakinaho, V., Presman, D. M., and Hager, G. L. (2016) Pioneer factors and ATP-dependent chromatin remodeling factors interact dynamically: a new perspective–multiple transcription factors can effect chromatin pioneer functions through dynamic interactions with ATP-dependent chromatin remodeling factors, Bioessays, 38, 1150–1157.PubMedCrossRefGoogle Scholar
  108. 108.
    Hervouet, E., Vallette, F. M., and Cartron, P. F. (2010) Dnmt1/transcription factor interactions: an alternative mechanism of DNA methylation inheritance, Genes Cancer, 1, 434–443.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Burkhart, B. A., Ivey, M. L., and Archer, T. K. (2009) Long-term low level glucocorticoid exposure induces persistent repression in chromatin, Mol. Cell Endocrinol., 298, 66–75.PubMedCrossRefGoogle Scholar
  110. 110.
    Nestler, E. J., Pena, C. J., Kundakovic, M., Mitchell, A., and Akbarian, S. (2016) Epigenetic basis of mental illness, Neuroscientist, 22, 447–463.PubMedCrossRefGoogle Scholar
  111. 111.
    Pena, C. J., Bagot, R. C., Labonte, B., and Nestler, E. J. (2014) Epigenetic signaling in psychiatric disorders, J. Mol. Biol., 426, 3389–3412.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Kundakovic, M., and Champagne, F. A. (2015) Early-life experience, epigenetics, and the developing brain, Neuropsychopharmacology, 40, 141–153.PubMedCrossRefGoogle Scholar
  113. 113.
    McGowan, P. O., Suderman, M., Sasaki, A., Huang, T. C., Hallett, M., Meaney, M. J., and Szyf, M. (2011) Broad epigenetic signature of maternal care in the brain of adult rats, PLoS One, 6, e14739.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Lo, P. K., and Sukumar, S. (2008) Epigenomics and breast cancer, Pharmacogenomics, 9, 1879–1902.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    LaPlant, Q., Vialou, V., Covington, H. E., 3rd, Dumitriu, D., Feng, J., Warren, B. L., Maze, I., Dietz, D. M., Watts, E. L., Iniguez, S. D., Koo, J. W., Mouzon, E., Renthal, W., Hollis, F., Wang, H., Noonan, M. A., Ren, Y., Eisch, A. J., Bolanos, C. A., Kabbaj, M., Xiao, G., Neve, R. L., Hurd, Y. L., Oosting, R. S., Fan, G., Morrison, J. H., and Nestler, E. J. (2010) Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens, Nat. Neurosci., 13, 1137–1143.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Sales, A. J., Biojone, C., Terceti, M. S., Guimaraes, F. S., Gomes, M. V., and Joca, S. R. (2011) Antidepressant-like effect induced by systemic and intra-hippocampal administration of DNA methylation inhibitors, Br. J. Pharmacol., 164, 1711–1721.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Xing, B., Liu, P., Xu, W. J., Xu, F. Y., and Dang, Y. H. (2014) Effect of microinjecting of 5-aza-2-deoxycytidine into ventrolateral orbital cortex on depressive-like behavior in rats, Neurosci. Lett., 574, 11–14.PubMedCrossRefGoogle Scholar
  118. 118.
    Poulter, M. O., Du, L., Weaver, I. C., Palkovits, M., Faludi, G., Merali, Z., Szyf, M., and Anisman, H. (2008) GABAA receptor promoter hypermethylation in suicide brain: implications for the involvement of epigenetic processes, Biol. Psychiatry, 64, 645–652.PubMedCrossRefGoogle Scholar
  119. 119.
    Higuchi, F., Uchida, S., Yamagata, H., Otsuki, K., Hobara, T., Abe, N., Shibata, T., and Watanabe, Y. (2011) State-dependent changes in the expression of DNA methyltransferases in mood disorder patients, J. Psychiatr. Res., 45, 1295–1300.PubMedCrossRefGoogle Scholar
  120. 120.
    Bose, R., Spulber, S., Kilian, P., Heldring, N., Lonnerberg, P., Johnsson, A., Conti, M., Hermanson, O., and Ceccatelli, S. (2015) Tet3 mediates stable glucocorticoid-induced alterations in DNA methylation and Dnmt3a/Dkk1 expression in neural progenitors, Cell Death Dis., 6, e1793.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Bose, R., Moors, M., Tofighi, R., Cascante, A., Hermanson, O., and Ceccatelli, S. (2010) Glucocorticoids induce long-lasting effects in neural stem cells resulting in senescence-related alterations, Cell Death Dis., 1, e92.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Covington, H. E., 3rd, Maze, I., Vialou, V., and Nestler, E. J. (2015) Antidepressant action of HDAC inhibition in the prefrontal cortex, Neuroscience, 298, 329–335.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Jenuwein, T., and Allis, C. D. (2001) Translating the histone code, Science, 293, 1074–1080.PubMedCrossRefGoogle Scholar
  124. 124.
    Hunter, R. G., McCarthy, K. J., Milne, T. A., Pfaff, D. W., and McEwen, B. S. (2009) Regulation of hippocampal H3 histone methylation by acute and chronic stress, Proc. Natl. Acad. Sci. USA, 106, 20912–20917.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Hunter, R. G., Murakami, G., Dewell, S., Seligsohn, M., Baker, M. E., Datson, N. A., McEwen, B. S., and Pfaff, D. W. (2012) Acute stress and hippocampal histone H3 lysine 9 trimethylation, a retrotransposon silencing response, Proc. Natl. Acad. Sci. USA, 109, 17657–17662.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Kenworthy, C. A., Sengupta, A., Luz, S. M., Ver Hoeve, E. S., Meda, K., Bhatnagar, S., and Abel, T. (2014) Social defeat induces changes in histone acetylation and expression of histone modifying enzymes in the ventral hippocampus, prefrontal cortex, and dorsal raphe nucleus, Neuroscience, 264, 88–98.PubMedCrossRefGoogle Scholar
  127. 127.
    Covington, H. E., 3rd, Maze, I., Sun, H., Bomze, H. M., DeMaio, K. D., Wu, E. Y., Dietz, D. M., Lobo, M. K., Ghose, S., Mouzon, E., Neve, R. L., Tamminga, C. A., and Nestler, E. J. (2011) A role for repressive histone methylation in cocaine-induced vulnerability to stress, Neuron, 71, 656–670.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Robison, A. J., Vialou, V., Sun, H. S., Labonte, B., Golden, S. A., Dias, C., Turecki, G., Tamminga, C., Russo, S., Mazei-Robison, M., and Nestler, E. J. (2014) Fluoxetine epigenetically alters the CaMKIIalpha promoter in nucleus accumbens to regulate DeltaFosB binding and antidepressant effects, Neuropsychopharmacology, 39, 1178–1186.PubMedCrossRefGoogle Scholar
  129. 129.
    Covington, H. E., 3rd, Maze, I., LaPlant, Q. C., Vialou, V. F., Ohnishi, Y. N., Berton, O., Fass, D. M., Renthal, W., Rush, A. J., 3rd, Wu, E. Y., Ghose, S., Krishnan, V., Russo, S. J., Tamminga, C., Haggarty, S. J., and Nestler, E. J. (2009) Antidepressant actions of histone deacetylase inhibitors, J. Neurosci., 29, 11451–11460.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Tsankova, N. M., Berton, O., Renthal, W., Kumar, A., Neve, R. L., and Nestler, E. J. (2006) Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action, Nat. Neurosci., 9, 519–525.PubMedCrossRefGoogle Scholar
  131. 131.
    Hierholzer, K., and Buhler, H. (1996) Metabolism of cortical steroid hormones and their general mode of action, in Comprehensive Human Physiology (Greger, R., and Windhorst, U., eds.) Springer-Verlag, Heidelberg, pp. 79–93.Google Scholar
  132. 132.
    Sapolsky, R. M., Romero, L. M., and Munck, A. U. (2000) How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions, Endocrin. Rev., 21, 55–89.Google Scholar
  133. 133.
    Charmandari, E., Tsigos, C., and Chrousos, G. (2005) Endocrinology of the stress response, Annu. Rev. Physiol., 67, 259–284.PubMedCrossRefGoogle Scholar
  134. 134.
    Smith, S. M., and Vale, W. W. (2006) The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress, Dialogues Clin. Neurosci., 8, 383–395.PubMedPubMedCentralGoogle Scholar
  135. 135.
    Holsboer, F., and Barden, N. (1996) Antidepressants and hypothalamic-pituitary-adrenocortical regulation, Endocrin. Rev., 17, 187–205.CrossRefGoogle Scholar
  136. 136.
    Arango-Lievano, M., and Jeanneteau, F. (2016) Timing and crosstalk of glucocorticoid signaling with cytokines, neurotransmitters and growth factors, Pharmacol. Res., 113, 1–17.PubMedCrossRefGoogle Scholar
  137. 137.
    Kim, Y. K., Na, K. S., Myint, A. M., and Leonard, B. E. (2016) The role of pro-inflammatory cytokines in neuroinflammation, neurogenesis and the neuroendocrine system in major depression, Prog. Neuropsychopharmacol. Biol. Psychiatry, 64, 277–284.PubMedCrossRefGoogle Scholar
  138. 138.
    Grigoryan, G. A., Dygalo, N. N., Gekht, A. B., Stepanichev, M. Yu., and Gulyaeva, N. V. (2014) Molecular and cellular mechanisms of depression: role of glucocorticoids, cytokines, nuerotransmitters, and trophic factors in genesis of depressive disorders, Usp. Fiziol. Nauk, 45, 3–19.Google Scholar
  139. 139.
    Jeon, S. W., and Kim, Y. K. (2016) Neuroinflammation and cytokine abnormality in major depression: cause or consequence in that illness? World J. Psychiatry, 6, 283–293.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Reus, G. Z., Fries, G. R., Stertz, L., Badawy, M., Passos, I. C., Barichello, T., Kapczinski, F., and Quevedo, J. (2015) The role of inflammation and microglial activation in the pathophysiology of psychiatric disorders, Neuroscience, 300, 141–154.PubMedCrossRefGoogle Scholar
  141. 141.
    Hong, H., Kim, B. S., and Im, H. I. (2016) Pathophysiological role of neuroinflammation in neurodegenerative diseases and psychiatric disorders, Int. Neurourol. J., 20, S2–7.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    De Kloet, E. R., De Jong, I. E., and Oitzl, M. S. (2008) Neuropharmacology of glucocorticoids: focus on emotion, cognition and cocaine, Eur. J. Pharmacol., 585, 473–482.PubMedCrossRefGoogle Scholar
  143. 143.
    Fietta, P., and Delsante, G. (2009) Central nervous system effects of natural and synthetic glucocorticoids, Psychiatry Clin. Neurosci., 63, 613–622.PubMedCrossRefGoogle Scholar
  144. 144.
    Finsterwald, C., and Alberini, C. M. (2014) Stress and glucocorticoid receptor-dependent mechanisms in long-term memory: from adaptive responses to psychopathologies, Neurobiol. Learn. Mem., 112, 17–29.PubMedCrossRefGoogle Scholar
  145. 145.
    Kino, T. (2015) Stress, glucocorticoid hormones, and hippocampal neural progenitor cells: implications to mood disorders, Front. Physiol., 6, 230.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. M. Merkulov
    • 1
  • T. I. Merkulova
    • 1
  • N. P. Bondar
    • 1
  1. 1.Institute of Cytology and GeneticsSiberian Branch of the Russian Academy of SciencesNovosibirskRussia

Personalised recommendations