Advertisement

Biochemistry (Moscow)

, Volume 82, Issue 2, pp 224–235 | Cite as

Strain-specific single-nucleotide polymorphisms in hypertensive ISIAH rats

  • N. I. Ershov
  • A. L. Markel
  • O. E. RedinaEmail author
Article

Abstract

Single-nucleotide polymorphisms (SNPs) in the coding and regulatory regions of genes can affect transcription rate and translation efficiency, modify protein function, and, in some cases, cause the development of diseases. In the current study, the RNA-Seq approach has been used to discover strain-specific SNPs in ISIAH (inherited stress-induced arterial hypertension) rats, which are known as a model of stress-induced arterial hypertension. The comparison of the ISIAH SNPs with genome sequencing data available for another 42 rat strains and substrains, 11 of them known as hypertensive, showed a considerable genetic distance between the genotypes of ISIAH and all other rat strains and substrains. The study revealed 1849 novel SNPs specific for ISIAH rats and 158 SNPs present only in the genotypes of hypertensive rats. Amino acid substitutions with possible deleterious effect on protein function were detected. Several of them were found in the genes associated with hypertension. These SNPs may be considered as novel molecular targets for further studies aimed at assessing their potential in the therapy of stress-induced hypertension.

Keywords

hypertension SNPs RNA-Seq ISIAH rat strain 

Abbreviations

BP

blood pressure

GATK

Genome Analysis Toolkit

ISIAH

inherited stress-induced arterial hypertension rats

PCR

polymerase chain reaction

RGD

Rat Genome Database

RGSC

Rat Genome Sequencing Consortium

RNA-Seq

whole transcriptome shotgun sequencing

SHR

spontaneously hypertensive rats

SIFT

sorting intolerant from tolerant

SNPs

single-nucleotide polymorphisms

WAG

Wistar Albino Glaxo rats

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dornas, W. C., and Silva, M. E. (2011) Animal models for the study of arterial hypertension, J. Biosci., 36, 731–737.CrossRefPubMedGoogle Scholar
  2. 2.
    Markel, A. L. (1992) Development of a new strain of rats with inherited stress-induced arterial hypertension, in Genetic Hypertension (Sassard, J., ed.) Vol. 218, Colloque INSERM, London, pp. 405–407.Google Scholar
  3. 3.
    Markel, A. L., Maslova, L. N., Shishkina, G. T., Bulygina, V. V., Machanova, N. A., and Jacobson, G. S. (1999) Developmental influences on blood pressure regulation in ISIAH rats, in Development of the Hypertensive Phenotype: Basic and Clinical Studies (McCarty, R., Blizard, D. A., and Chevalier, R. L., eds.) Vol. 19, Elsevier, AmsterdamLausanne-New York-Oxford-Shannon-Singapore-Tokyo, pp. 493–526.Google Scholar
  4. 4.
    Wang, Z., and Moult, J. (2001) SNPs, protein structure, and disease, Hum Mutat., 17, 263–270.CrossRefPubMedGoogle Scholar
  5. 5.
    Fattakhov, N. S., Vasilenko, M. A., Skuratovskaia, D. A., Kulikov, D. I., Kirienkova, E. V., Zatolokin, P. A., Beletskaya, M. A., and Litvinova, L. S. (2016) Pathogenetic significance of C774T single nucleotide polymorphism of the endothelial NO synthase gene in the development of metabolic syndrome, Biomed. Khim., 62, 447–452.CrossRefPubMedGoogle Scholar
  6. 6.
    Okuda, T., Fujioka, Y., Kamide, K., Kawano, Y., Goto, Y., Yoshimasa, Y., Tomoike, H., Iwai, N., Hanai, S., and Miyata, T. (2002) Verification of 525 coding SNPs in 179 hypertension candidate genes in the Japanese population: identification of 159 SNPs in 93 genes, J. Hum. Genet., 47, 387–394.CrossRefPubMedGoogle Scholar
  7. 7.
    Saar, K., Beck, A., Bihoreau, M. T., Birney, E., Brocklebank, D., Chen, Y., Cuppen, E., Demonchy, S., Dopazo, J., Flicek, P., Foglio, M., Fujiyama, A., Gut, I. G., Gauguier, D., Guigo, R., Guryev, V., Heinig, M., Hummel, O., Jahn, N., Klages, S., Kren, V., Kube, M., Kuhl, H., Kuramoto, T., Kuroki, Y., Lechner, D., Lee, Y. A., Lopez-Bigas, N., Lathrop, G. M., Mashimo, T., Medina, I., Mott, R., Patone, G., PerrierCornet, J. A., Platzer, M., Pravenec, M., Reinhardt, R., Sakaki, Y., Schilhabel, M., Schulz, H., Serikawa, T., Shikhagaie, M., Tatsumoto, S., Taudien, S., Toyoda, A., Voigt, B., Zelenika, D., Zimdahl, H., and Hubner, N. (2008) SNP and haplotype mapping for genetic analysis in the rat, Nat. Genet., 40, 560–566.CrossRefPubMedGoogle Scholar
  8. 8.
    Atanur, S. S., Birol, I., Guryev, V., Hirst, M., Hummel, O., Morrissey, C., Behmoaras, J., Fernandez-Suarez, X. M., Johnson, M. D., McLaren, W. M., Patone, G., Petretto, E., Plessy, C., Rockland, K. S., Rockland, C., Saar, K., Zhao, Y., Carninci, P., Flicek, P., Kurtz, T., Cuppen, E., Pravenec, M., Hubner, N., Jones, S. J., Birney, E., and Aitman, T. J. (2010) The genome sequence of the spontaneously hypertensive rat: analysis and functional significance, Genome Res., 20, 791–803.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ma, M. C., Atanur, S. S., Aitman, T. J., and Kwitek, A. E. (2014) Genomic structure of nucleotide diversity among Lyon rat models of metabolic syndrome, BMC Genomics, 15, 197.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hermsen, R., De Ligt, J., Spee, W., Blokzijl, F., Schafer, S., Adami, E., Boymans, S., Flink, S., Van Boxtel, R., Van der Weide, R. H., Aitman, T., Hubner, N., Simonis, M., Tabakoff, B., Guryev, V., and Cuppen, E. (2015) Genomic landscape of rat strain and substrain variation, BMC Genomics, 16, 357.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Jacob, H. J. (2010) The rat: a model used in biomedical research, Methods Mol. Biol., 597, 1–11.CrossRefPubMedGoogle Scholar
  12. 12.
    Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., and Salzberg, S. L. (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions, Genome Biol., 14, R36.Google Scholar
  13. 13.
    Gibbs, R. A., Weinstock, G. M., Metzker, M. L., Muzny, D. M., Sodergren, E. J., Scherer, S., Scott, G., Steffen, D., Worley, K. C., Burch, P. E., Okwuonu, G., Hines, S., Lewis, L., DeRamo, C., Delgado, O., Dugan- Rocha, S., Miner, G., Morgan, M., Hawes, A., Gill, R., Celera Holt, R. A., Adams, M. D., Amanatides, P. G., Baden- Tillson, H., Barnstead, M., Chin, S., Evans, C. A., Ferriera, S., Fosler, C., Glodek, A., Gu, Z., Jennings, D., Kraft, C. L., Nguyen, T., Pfannkoch, C. M., Sitter, C., Sutton, G. G., Venter, J. C., Woodage, T., Smith, D., Lee, H. M., Gustafson, E., Cahill, P., Kana, A., Doucette- Stamm, L., Weinstock, K., Fechtel, K., Weiss, R. B., Dunn, D. M., Green, E. D., Blakesley, R. W., Bouffard, G. G., De Jong, P. J., Osoegawa, K., Zhu, B., Marra, M., Schein, J., Bosdet, I., Fjell, C., Jones, S., Krzywinski, M., Mathewson, C., Siddiqui, A., Wye, N., McPherson, J., Zhao, S., Fraser, C. M., Shetty, J., Shatsman, S., Geer, K., Chen, Y., Abramzon, S., Nierman, W. C., Havlak, P. H., Chen, R., Durbin, K. J., Egan, A., Ren, Y., Song, X. Z., Li, B., Liu, Y., Qin, X., Cawley, S., Worley, K. C., Cooney, A. J., D’Souza, L. M., Martin, K., Wu, J. Q., GonzalezGaray, M. L., Jackson, A. R., Kalafus, K. J., McLeod, M. P., Milosavljevic, A., Virk, D., Volkov, A., Wheeler, D. A., Zhang, Z., Bailey, J. A., Eichler, E. E., Tuzun, E., Birney, E., Mongin, E., Ureta-Vidal, A., Woodwark, C., Zdobnov, E., Bork, P., Suyama, M., Torrents, D., Alexandersson, M., Trask, B. J., Young, J. M., Huang, H., Wang, H., Xing, H., Daniels, S., Gietzen, D., Schmidt, J., Stevens, K., Vitt, U., Wingrove, J., Camara, F., Mar Alba, M., Abril, J. F., Guigo, R., Smit, A., Dubchak, I., Rubin, E. M., Couronne, O., Poliakov, A., Hubner, N., Ganten, D., Goesele, C., Hummel, O., Kreitler, T., Lee, Y. A., Monti, J., Schulz, H., Zimdahl, H., Himmelbauer, H., Lehrach, H., Jacob, H. J., Bromberg, S., Gullings-Handley, J., Jensen-Seaman, M. I., Kwitek, A. E., Lazar, J., Pasko, D., Tonellato, P. J., Twigger, S., Ponting, C. P., Duarte, J. M., Rice, S., Goodstadt, L., Beatson, S. A., Emes, R. D., Winter, E. E., Webber, C., Brandt, P., Nyakatura, G., Adetobi, M., Chiaromonte, F., Elnitski, L., Eswara, P., Hardison, R. C., Hou, M., Kolbe, D., Makova, K., Miller, W., Nekrutenko, A., Riemer, C., Schwartz, S., Taylor, J., Yang, S., Zhang, Y., Lindpaintner, K., Andrews, T. D., Caccamo, M., Clamp, M., Clarke, L., Curwen, V., Durbin, R., Eyras, E., Searle, S. M., Cooper, G. M., Batzoglou, S., Brudno, M., Sidow, A., Stone, E. A., Venter, J. C., Payseur, B. A., Bourque, G., Lopez-Otin, C., Puente, X. S., Chakrabarti, K., Chatterji, S., Dewey, C., Pachter, L., Bray, N., Yap, V. B., Caspi, A., Tesler, G., Pevzner, P. A., Haussler, D., Roskin, K. M., Baertsch, R., Clawson, H., Furey, T. S., Hinrichs, A. S., Karolchik, D., Kent, W. J., Rosenbloom, K. R., Trumbower, H., Weirauch, M., Cooper, D. N., Stenson, P. D., Ma, B., Brent, M., Arumugam, M., Shteynberg, D., Copley, R. R., Taylor, M. S., Riethman, H., Mudunuri, U., Peterson, J., Guyer, M., Felsenfeld, A., Old, S., Mockrin, S., Collins, F., and Rat Genome Sequencing Project Consortium (2004) Genome sequence of the Brown Norway rat yields insights into mammalian evolution, Nature, 428, 493–521.CrossRefPubMedGoogle Scholar
  14. 14.
    McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., and DePristo, M. A. (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data, Genome Res., 20, 1297–1303.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kumar, P., Henikoff, S., and Ng, P. C. (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm, Nat. Protoc., 4, 1073–1081.CrossRefPubMedGoogle Scholar
  16. 16.
    Zheng, X., Levine, D., Shen, J., Gogarten, S. M., Laurie, C., and Weir, B. S. (2012) A high-performance computing toolset for relatedness and principal component analysis of SNP data, Bioinformatics, 28, 3326–3328.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    De Wardener, H. E. (2001) The hypothalamus and hypertension, Physiol. Rev., 81, 1599–1658.PubMedGoogle Scholar
  18. 18.
    Waki, H., Gouraud, S. S., Maeda, M., Raizada, M. K., and Paton, J. F. (2011) Contributions of vascular inflammation in the brainstem for neurogenic hypertension, Respir. Physiol. Neurobiol., 178, 422–428.CrossRefPubMedGoogle Scholar
  19. 19.
    Hall, J. E. (2003) The kidney, hypertension, and obesity, Hypertension, 41, 625–633.Google Scholar
  20. 20.
    Moneva, M. H., and Gomez-Sanchez, C. E. (2002) Pathophysiology of adrenal hypertension, Semin. Nephrol., 22, 44–53.PubMedGoogle Scholar
  21. 21.
    Mannisto, P. T., and Kaakkola, S. (1999) Catechol-Omethyltransferase (COMT): biochemistry, molecular biology, pharmacology, and clinical efficacy of the new selective COMT inhibitors, Pharmacol. Rev., 51, 593–628.PubMedGoogle Scholar
  22. 22.
    Steen, R. G., Kwitek-Black, A. E., Glenn, C., GullingsHandley, J., Van Etten, W., Atkinson, O. S., Appel, D., Twigger, S., Muir, M., Mull, T., Granados, M., Kissebah, M., Russo, K., Crane, R., Popp, M., Peden, M., Matise, T., Brown, D. M., Lu, J., Kingsmore, S., Tonellato, P. J., Rozen, S., Slonim, D., Young, P., and Jacob, H. J. (1999) A high-density integrated genetic linkage and radiation hybrid map of the laboratory rat, Genome Res., 9, AP1-8, insert.Google Scholar
  23. 23.
    Sadlier, D. M., Ouyang, X., McMahon, B., Mu, W., Ohashi, R., Rodgers, K., Murray, D., Nakagawa, T., Godson, C., Doran, P., Brady, H. R., and Johnson, R. J. (2005) Microarray and bioinformatic detection of novel and established genes expressed in experimental anti-Thy1 nephritis, Kidney Int., 68, 2542–2561.CrossRefPubMedGoogle Scholar
  24. 24.
    Lu, Y., Liu, X., Shi, S., Su, H., Bai, X., Cai, G., Yang, F., Xie, Z., Zhu, Y., Zhang, Y., Zhang, S., Li, X., Wang, S., Wu, D., Zhang, L., Wu, J., Xie, Y., and Chen, X. (2012) Bioinformatics analysis of proteomic profiles during the process of anti-Thy1 nephritis, Mol. Cell. Proteomics, 11, M111.008755.CrossRefPubMedGoogle Scholar
  25. 25.
    Redina, O. E., Smolenskaya, S. E., Abramova, T. O., Ivanova, L. N., and Markel, A. L. (2015) Differential transcriptional activity of kidney genes in hypertensive ISIAH and normotensive WAG rats, Clin. Exp. Hypertens., 37, 249–259.CrossRefPubMedGoogle Scholar
  26. 26.
    Wagenseil, J. E., and Mecham, R. P. (2012) Elastin in large artery stiffness and hypertension, J. Cardiovasc. Transl. Res., 5, 264–273.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Briones, A. M., Gonzalez, J. M., Somoza, B., Giraldo, J., Daly, C. J., Vila, E., Gonzalez, M. C., McGrath, J. C., and Arribas, S. M. (2003) Role of elastin in spontaneously hypertensive rat small mesenteric artery remodelling, J. Physiol., 552, 185–195.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Raasch, W., Jungbluth, B., Schafer, U., Hauser, W., and Dominiak, P. (2003) Norepinephrine release is reduced by I(1)-receptors in addition to alpha(2)-adrenoceptors, Ann. N. Y. Acad. Sci., 1009, 270–273.CrossRefPubMedGoogle Scholar
  29. 29.
    Van Zwieten, P. A. (1998) Antihypertensive drugs interacting with central imidazoline (I1)-receptors, Exp. Opin. Invest. Drugs, 7, 1781–1793.CrossRefGoogle Scholar
  30. 30.
    De Andrade, C. A., De Andrade, G. M., De Paula, P. M., De Luca, L. A. J., and Menani, J. V. (2009) Involvement of central alpha1-adrenoceptors on renal responses to central moxonidine and alpha-methylnoradrenaline, Eur. J. Pharmacol., 607, 60–67.CrossRefPubMedGoogle Scholar
  31. 31.
    Cao, C., Kang, C. W., Kim, S. Z., and Kim, S. H. (2004) Augmentation of moxonidine-induced increase in ANP release by atrial hypertrophy, Am. J. Physiol. Heart Circ. Physiol., 287, H150–156.CrossRefPubMedGoogle Scholar
  32. 32.
    McCarthy, C. G., Goulopoulou, S., Wenceslau, C. F., Spitler, K., Matsumoto, T., and Webb, R. C. (2014) Tolllike receptors and damage-associated molecular patterns: novel links between inflammation and hypertension, Am. J. Physiol. Heart Circ. Physiol., 306, H184–196.CrossRefPubMedGoogle Scholar
  33. 33.
    Kurts, C., Panzer, U., Anders, H. J., and Rees, A. J. (2013) The immune system and kidney disease: basic concepts and clinical implications, Nat. Rev. Immunol., 13, 738–753.CrossRefPubMedGoogle Scholar
  34. 34.
    McMaster, W. G., Kirabo, A., Madhur, M. S., and Harrison, D. G. (2015) Inflammation, immunity, and hypertensive end-organ damage, Circ. Res., 116, 10221033.Google Scholar
  35. 35.
    Redina, O. E., Smolenskaya, S. E., Abramova, T. O., and Markel, A. L. (2014) Genetic loci for spleen weight and blood pressure in ISIAH rats with inherited stress-induced arterial hypertension, Mol. Biol., 48, 351–358.CrossRefGoogle Scholar
  36. 36.
    Fedoseeva, L. A., Ryazanova, M. A., Ershov, N. I., Markel, A. L., and Redina, O. E. (2016) Comparative transcriptional profiling of renal cortex in rats with inherited stressinduced arterial hypertension and normotensive Wistar Albino Glaxo rats, BMC Genet., 17, 12.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Klimov, L. O., Ershov, N. I., Efimov, V. M., Markel, A. L., and Redina, O. E. (2016) Genome-wide transcriptome analysis of hypothalamus in rats with inherited stressinduced arterial hypertension, BMC Genet., 17, 13.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Flatmark, T. (2000) Catecholamine biosynthesis and physiological regulation in neuroendocrine cells, Acta Physiol. Scand., 168, 1–17.CrossRefPubMedGoogle Scholar
  39. 39.
    Currie, G., Freel, E. M., Perry, C. G., and Dominiczak, A. F. (2012) Disorders of blood pressure regulation-role of catecholamine biosynthesis, release, and metabolism, Curr. Hypertens. Rep., 14, 38–45.CrossRefPubMedGoogle Scholar
  40. 40.
    Saxena, A., Moshynska, O., Sankaran, K., Viswanathan, S., and Sheridan, D. P. (2002) Association of a novel single nucleotide polymorphism, G(-248)A, in the 5'-UTR of BAX gene in chronic lymphocytic leukemia with disease progression and treatment resistance, Cancer Lett., 187, 199–205.Google Scholar
  41. 41.
    Danckwardt, S., Hentze, M. W., and Kulozik, A. E. (2008) 3'-end mRNA processing: molecular mechanisms and implications for health and disease, EMBO J., 27, 482–498.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Ng, P. C., and Henikoff, S. (2003) SIFT: predicting amino acid changes that affect protein function, Nucleic Acids Res., 31, 3812–3814.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Cingolani, P., Platts, A., Wang, L., Coon, M., Nguyen, T., Wang, L., Land, S. J., Lu, X., and Ruden, D. M. (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3, Fly (Austin), 6, 80–92.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Federal Research Center, Institute of Cytology and GeneticsSiberian Branch of the Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations