Biochemistry (Moscow)

, Volume 82, Issue 2, pp 213–223 | Cite as

Intermolecular interactions of myosin subfragment 1 induced by the N-terminal extension of essential light chain 1

  • D. S. Logvinova
  • O. P. Nikolaeva
  • D. I. LevitskyEmail author


We applied dynamic light scattering (DLS) to compare aggregation properties of two isoforms of myosin subfragment 1 (S1) containing different “essential” (or “alkali”) light chains, A1 or A2, which differ by the presence of an N-terminal extension in A1. Upon mild heating (up to 40°C), which was not accompanied by thermal denaturation of the protein, we observed a significant growth in the hydrodynamic radius of the particles for S1(A1), from ~18 to ~600-700 nm, whereas the radius of S1(A2) remained unchanged and equal to ~18 nm. Similar difference between S1(A1) and S1(A2) was observed in the presence of ADP. In contrast, no differences were observed by DLS between these two S1 isoforms in their complexes S1-ADP-BeFx and S1-ADP-AlF 4 which mimic the S1 ATPase intermediate states S1*-ATP and S1**-ADP-Pi. We propose that during the ATPase cycle the A1 N-terminal extension can interact with the motor domain of the same S1 molecule, and this can explain why S1(A1) and S1(A2) in S1-ADP-BeFx and S1-ADP-AlF 4 complexes do not differ in their aggregation properties. In the absence of nucleotides (or in the presence of ADP), the A1 N-terminal extension can interact with actin, thus forming an additional actin-binding site on the myosin head. However, in the absence of actin, this extension seems to be unable to undergo intramolecular interaction, but it probably can interact with the motor domain of another S1 molecule. These intermolecular interactions of the A1 N-terminus can explain unusual aggregation properties of S1(A1).


myosin subfragment 1 essential light chains thermally induced aggregation dynamic light scattering 


A1 and A2

essential (alkali) myosin light chains 1 and 2


aluminum fluoride


beryllium fluoride


dynamic light scattering


differential scanning calorimetry


essential myosin light chains


myosin subfragment 1

S1(A1) and S1(A2)

S1 isoforms containing different alkali light chains-A1 or A2


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rayment, I., Rypniewski, W. P., Schmidt-Base, K., Smith, R., Tomchick, D. R., Benning, M. M., Winkelmann, D. A., Wesenberg, G., and Holden, H. M. (1993) Threedimensional structure of myosin subfragment 1: a molecular motor, Science, 261, 50–58.CrossRefPubMedGoogle Scholar
  2. 2.
    Rayment, I. (1996) The structural basis of the myosin ATPase activity, J. Biol. Chem., 271, 15850–15853.CrossRefPubMedGoogle Scholar
  3. 3.
    Uyeda, T. Q., Abramson, P. D., and Spudich, J. A. (1996) The neck region of the myosin motor domain acts as a lever arm to generate movement, Proc. Natl. Acad. Sci. USA, 93, 4459–4464.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Houdusse, A., Szent-Gyorgyi, A. G., and Cohen, C. (2000) Three conformational states of scallop myosin S1, Proc. Natl. Acad. Sci. USA, 97, 11238–11243.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Dominguez, R., Freyzon, Y., Trybus, K. M., and Cohen, C. (1998) Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state, Cell, 94, 559–571.CrossRefPubMedGoogle Scholar
  6. 6.
    Borejdo, J., Ushakov, D. S., Moreland, R., Akopova, I., Reshetnyak, Y., Saraswat, L. D., Kamm, K., and Lowey, S. (2001) The power stroke causes changes in the orientation and mobility of the termini of essential light chain 1 of myosin, Biochemistry, 40, 3796–3803.CrossRefPubMedGoogle Scholar
  7. 7.
    Logvinova, D. S., Markov, D. I., Nikolaeva, O. P., Sluchanko, N. N., Ushakov, D. S., and Levitsky, D. I. (2015) Does interaction between the motor and regulatory domains of the myosin head occur during ATPase cycle? Evidence from thermal unfolding studies on myosin subfragment 1, PLoS One, 10, e0137517.CrossRefGoogle Scholar
  8. 8.
    Frank, G., and Weeds, A. G. (1974) The amino-acid sequence of the alkali light chains of rabbit skeletal-muscle myosin, Eur. J. Biochem., 44, 317–334.CrossRefPubMedGoogle Scholar
  9. 9.
    Weeds, A. G., and Taylor, R. S. (1975) Separation of subfragment-1 isoenzymes from rabbit skeletal muscle myosin, Nature, 257, 54–56.CrossRefPubMedGoogle Scholar
  10. 10.
    Wagner, P. D., Slater, C. S., Pope, B., and Weeds, A. G. (1979) Studies on the actin activation of myosin subfragment-1 isoenzymes and the role of myosin light chains, Eur. J. Biochem., 99, 385–394.CrossRefPubMedGoogle Scholar
  11. 11.
    Chalovich, J. M., Stein, L. A., Greene, L. E., and Eisenberg, E. (1984) Interaction of isozymes of myosin subfragment 1 with actin: effect of ionic strength and nucleotide, Biochemistry, 23, 4885–4889.CrossRefPubMedGoogle Scholar
  12. 12.
    Sutoh, K. (1982) Identification of myosin-binding sites on the actin sequence, Biochemistry, 21, 3654–3661.CrossRefPubMedGoogle Scholar
  13. 13.
    Timson, D. J., Trayer, H. R., and Trayer, I. P. (1998) The N-terminus of A1-type myosin essential light chains binds actin and modulates myosin motor function, Eur. J. Biochem., 255, 654–662.CrossRefPubMedGoogle Scholar
  14. 14.
    Andreev, O. A., Saraswat, L. D., Lowey, S., Slaughter, C., and Borejdo, J. (1999) Interaction of the N-terminus of chicken skeletal essential light chain 1 with F-actin, Biochemistry, 38, 2480–2485.CrossRefPubMedGoogle Scholar
  15. 15.
    Hayashibara, T., and Miyanishi, T. (1994) Binding of the amino-terminal region of myosin alkali 1 light chain to actin and its effect on actin-myosin interaction, Biochemistry, 33, 12821–12827.CrossRefPubMedGoogle Scholar
  16. 16.
    Prince, H. P., Trayer, H. R., Henry, G. D., Trayer, I. P., Dalgarno, D. C., Levine, B. A., Cary, P. D., and Turner, C. (1981) Proton nuclear-magnetic-resonance spectroscopy of myosin subfragment 1 isoenzymes, Eur. J. Biochem., 121, 213–219.CrossRefPubMedGoogle Scholar
  17. 17.
    Yamamoto, K., and Sekine, T. (1983) Interaction of alkali light chain 1 with actin: effect of ionic strength on the cross-linking of alkali light chain 1 with actin, J. Biochem., 94, 2075–2078.CrossRefPubMedGoogle Scholar
  18. 18.
    Trayer, H. R., and Trayer, I. P. (1985) Differential binding of rabbit fast muscle myosin light chain isoenzymes to regulated actin, FEBS Lett., 180, 170–173.CrossRefPubMedGoogle Scholar
  19. 19.
    Sweeney, H. L., Kushmerick, M. J., Mabuchi, K., Sreter, F. A., and Gergely, J. (1988) Myosin alkali light chain and heavy chain variations correlate with altered shortening velocity of isolated skeletal muscle fibers, J. Biol. Chem., 263, 9034–9039.PubMedGoogle Scholar
  20. 20.
    Greaser, M. L., Moss, R. L., and Reiser, P. J. (1988) Variations in contractile properties of rabbit single muscle fibers in relation to troponin T isoforms and myosin light chains, J. Physiol., 406, 85–98.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lowey, S., Waller, G. S., and Trybus, K. M. (1993) Function of skeletal muscle myosin heavy and light chain isoforms by an in vitro motility assay, J. Biol. Chem., 268, 20414–20418.PubMedGoogle Scholar
  22. 22.
    Lowey, S., Saraswat, L. D., Liu, H., Volkmann, N., and Hanein, D. (2007) Evidence for an interaction between the SH3 domain and the N-terminal extension of the essential light chain in class II myosins, J. Mol. Biol., 371, 902–913.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kazmierczak, K., Xu, Y., Jones, M., Guzman, G., Hernandez, O. M., Kerrick, W. G., and Szczesna-Cordary, D. (2009) The role of the N-terminus of the myosin essential light chain in cardiac muscle contraction, J. Mol. Biol., 387, 706–725.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Wang, L., Muthu, P., Szczesna-Cordary, D., and Kawai, M. (2013) Characterizations of myosin essential light chain’s N-terminal truncation mutant ?43 in transgenic mouse papillary muscles by using tension transients in response to sinusoidal length alterations, J. Muscle Res. Cell Motil., 34, 93–105.CrossRefPubMedGoogle Scholar
  25. 25.
    Hernandez, O. M., Jones, M., Guzman, G., and SzczesnaCordary, D. (2007) Myosin essential light chain in health and disease, Am. J. Physiol. Heart. Circ. Physiol., 292, H1643–H1654.CrossRefPubMedGoogle Scholar
  26. 26.
    Mrakovcic-Zenic, A., Oriol-Audit, C., and Reisler, E. (1981) On the alkali light chains of vertebrate skeletal myosin. Nucleotide binding and salt-induced conformational changes, Eur. J. Biochem., 115, 565–570.CrossRefPubMedGoogle Scholar
  27. 27.
    Levitsky, D. I., Nikolaeva, O. P., Vedenkina, N. S., Shnyrov, V. L., Golitsina, N. L., Khvorov, N. V., Permyakov, E. A., and Poglazov, B. F. (1991) The effect of alkali light chains on the thermal stability of myosin subfragment 1, Biomed. Sci., 2, 140–146.PubMedGoogle Scholar
  28. 28.
    Markov, D. I., Nikolaeva, O. P., and Levitsky, D. I. (2010) Effects of myosin “essential” light chain A1 on the aggregation properties of the myosin head, Acta Naturae, 2, 77–81.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Markov, D. I., Zubov, E. O., Nikolaeva, O. P., Kurganov, B. I., and Levitsky, D. I. (2010) Thermal denaturation and aggregation of myosin subfragment 1 isoforms with different essential light chains, Int. J. Mol. Sci., 11, 4194–4226.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Pliszka, B., Redowicz, M. J., and Stepkowski, D. (2001) Interaction of the N-terminal part of the A1 essential light chain with the myosin heavy chain, Biochem. Biophys. Res. Commun., 281, 924–928.CrossRefPubMedGoogle Scholar
  31. 31.
    Phan, B., and Reisler, E. (1992) Inhibition of myosin ATPase by beryllium fluoride, Biochemistry, 31, 4787–4793.CrossRefPubMedGoogle Scholar
  32. 32.
    Werber, M. M., Peyser, Y. M., and Muhlrad, A. (1992) Characterization of stable beryllium fluoride, aluminum fluoride, and vanadate containing myosin subfragment 1 -nucleotide complexes, Biochemistry, 31, 7190–7197.PubMedGoogle Scholar
  33. 33.
    Ponomarev, M. A., Timofeev, V. P., and Levitsky, D. I. (1995) The difference between ADP-beryllium fluoride and ADP-aluminum fluoride complexes of the spin-labeled myosin subfragment 1, FEBS Lett., 371, 261–263.CrossRefPubMedGoogle Scholar
  34. 34.
    Bobkov, A. A., Khvorov, N. V., Golitsina, N. L., and Levitsky, D. I. (1993) Calorimetric characterization of the stable complex of myosin subfragment 1 with ADP and beryllium fluoride, FEBS Lett., 332, 64–66.CrossRefPubMedGoogle Scholar
  35. 35.
    Bobkov, A. A., and Levitsky, D. I. (1995) Differential scanning calorimetric study of the complexes of myosin subfragment 1 with nucleoside diphosphates and vanadate or beryllium fluoride, Biochemistry, 34, 9708–9713.CrossRefPubMedGoogle Scholar
  36. 36.
    Golitsina, N. L., Bobkov, A. A., Dedova, I. V., Pavlov, D. A., Nikolaeva, O. P., Orlov, V. N., and Levitsky, D. I. (1996) Differential scanning calorimetric study of the complexes of modified myosin subfragment 1 with ADP and vanadate or beryllium fluoride, J. Muscle Res. Cell Motil., 17, 475–485.CrossRefPubMedGoogle Scholar
  37. 37.
    Levitsky, D. I., Nikolaeva, O. P., Orlov, V. N., Pavlov, D. A., Ponomarev, M. A., and Rostkova, E. V. (1998) Differential scanning calorimetric studies on myosin and actin, Biochemistry (Moscow), 63, 322–333.Google Scholar
  38. 38.
    Levitsky, D. I. (2004) Structural and functional studies of muscle proteins by using differential scanning calorimetry, in The Nature of Biological Systems as Revealed by Thermal Methods (Lörinczy, D., ed.) Kluwer Academic Publishers, Dordrecht-Boston-London, pp. 127–158.Google Scholar
  39. 39.
    Shakirova, L. I., Mikhailova, V. V., Siletskaya, E. I., Timofeev, V. P., and Levitsky, D. I. (2007) Nucleotideinduced and actin-induced structural changes in SH1SH2-modified myosin subfragment 1, J. Muscle Res. Cell Motil., 28, 67–78.CrossRefPubMedGoogle Scholar
  40. 40.
    Trayer, H. R., and Trayer, I. P. (1988) Fluorescence resonance energy transfer within the complex formed by actin and myosin subfragment 1. Comparison between weakly and strongly attached states, Biochemistry, 27, 5718–5727.CrossRefPubMedGoogle Scholar
  41. 41.
    Nikolaeva, O. P., Orlov, V. N., Bobkov, A. A., and Levitsky, D. I. (2002) Differential scanning calorimetric study of myosin subfragment 1 with tryptic cleavage at the N-terminal region of the heavy chain, Eur. J. Biochem., 269, 56785688.CrossRefGoogle Scholar
  42. 42.
    Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680–685.CrossRefPubMedGoogle Scholar
  43. 43.
    Philo, J. S. (2006) Is any measurement method optimal for all aggregate sizes and types? AAPS J., 8, e564–E571.CrossRefGoogle Scholar
  44. 44.
    Trayer, I. P., Trayer, H. R., and Levine, B. A. (1987) Evidence that the N-terminal region of A1-light chain of myosin interacts directly with the C-terminal region of actin. A proton magnetic resonance study, Eur. J. Biochem., 164, 259–266.CrossRefPubMedGoogle Scholar
  45. 45.
    Andreev, O. A., and Boreido, J. (1995) Binding of heavychain and essential light-chain 1 of S1 to actin depends on the degree of saturation of F-actin filaments with S1, Biochemistry, 34, 14829–14833.CrossRefPubMedGoogle Scholar
  46. 46.
    Aydt, E. M., Wolff, G., and Morano, I. (2007) Molecular modeling of the myosin-S1(A1) isoform, J. Struct. Biol., 159, 158–163.CrossRefPubMedGoogle Scholar
  47. 47.
    Tokunaga, M., Suzuki, M., Saeki, K., and Wakabayashi, T. (1987) Position of the amino terminus of myosin light chain 1 and light chain 2 determined by electron microscopy with monoclonal antibody, J. Mol. Biol., 194, 245–255.CrossRefPubMedGoogle Scholar
  48. 48.
    Labbe, J.-P., Audemard, E., Bertrand, R., and Kassab, R. (1986) Specific interactions of the alkali light chain 1 in skeletal myosin heads probed by chemical cross-linking, Biochemistry, 25, 8325–8330.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • D. S. Logvinova
    • 1
    • 2
  • O. P. Nikolaeva
    • 3
  • D. I. Levitsky
    • 1
    • 3
    Email author
  1. 1.Bach Institute of Biochemistry, Research Center of BiotechnologyRussian Academy of SciencesMoscowRussia
  2. 2.Department of Biochemistry, School of BiologyLomonosov Moscow State UniversityMoscowRussia
  3. 3.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations