Advertisement

Biochemistry (Moscow)

, Volume 82, Issue 2, pp 205–212 | Cite as

Cytokine profile associated with selective removal of natural anti-αGal antibodies in a sepsis model in Gal-KO mice

  • Magdiel Pérez Cruz
  • Daniel Bello Gil
  • Cristina Costa
  • Rafael MañezEmail author
Article

Abstract

Selective depletion of natural anti-Galα1-3Galβ1-4GlcNAc (so-called anti-αGal) antibodies is achieved in α1,3-galactosyltransferase knockout (Gal-KO) mice by administration of the soluble glycoconjugate of αGal GAS914. This molecule removed up to 90% of natural circulating anti-αGal antibodies without causing unspecific production of cytokines in wild-type (CBA) and Gal-KO mice. However, the removal of anti-αGal antibodies in Gal-KO mice with GAS914 in the context of sepsis after cecal ligation and puncture (CLP) was associated with a significant increase in the production of leptin, CXLC1, CXLC13, and TIMP-1 cytokines compared to vehicle (PBS)-treated controls. Despite the current lack of understanding of the underlying mechanism, our data suggest a putative role of natural anti-αGal antibodies in the regulation of some cytokines during sepsis.

Keywords

natural antibodies anti-αGal glycoconjugates GAS914 cytokines inflammation sepsis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen, P., Stanojcic, M., and Jeschke, M. G. (2014) Differences between murine and human sepsis, Surg. Clin. North Am., 94, 1135–1149.CrossRefPubMedGoogle Scholar
  2. 2.
    Kumpf, O., and Schumann, R. R. (2010) Genetic variation in innate immunity pathways and their potential contribution to the SIRS/CARS debate: evidence from human studies and animal models, J. Innate Immun., 2, 381–394.CrossRefPubMedGoogle Scholar
  3. 3.
    Abram, M., Vu Kovic, D., Wraber, B., and Doric, M. (2000) Plasma cytokine response in mice with bacterial infection, Mediators Inflamm., 9, 229–234.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Shulgin, B., Helmlinger, G., and Kosinsky, Y. (2016) A generic mechanism for enhanced cytokine signaling via cytokine-neutralizing antibodies, PLoS One, 11, e0149154.CrossRefGoogle Scholar
  5. 5.
    Mostbock, S. (2009) Cytokine/antibody complexes: an emerging class of immunostimulants, Curr. Pharm. Des., 15, 809–825.CrossRefPubMedGoogle Scholar
  6. 6.
    Khasbiullina, N. R., and Bovin, N. V. (2015) Hypotheses of the origin of natural antibodies: a glycobiologist’s opinion, Biochemistry (Moscow), 80, 820–835.CrossRefGoogle Scholar
  7. 7.
    Wells, T. J., Whitters, D., Sevastsyanovich, Y. R., Heath, J. N., Pravin, J., Goodall, M., Browning, D. F., O’Shea, M. K., Cranston, A., De Soyza, A., Cunningham, A. F., MacLennan, C. A., Henderson, I. R., and Stockley, R. A. (2014) Increased severity of respiratory infections associated with elevated anti-LPS IgG2 which inhibits serum bactericidal killing, J. Exp. Med., 211, 1893–1904.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    De Alwis, R., Williams, K. L., Schmid, M. A., Lai, C. Y., Patel, B., Smith, S. A., Crowe, J. E., Wang, W. K., Harris, E., and De Silva, A. M. (2014) Dengue viruses are enhanced by distinct populations of serotype cross-reactive antibodies in human immune sera, PLoS Pathog., 10, 1004386.CrossRefGoogle Scholar
  9. 9.
    Skurnik, D., Kropec, A., Roux, D., Theilacker, C., Huebner, J., and Pier, G. B. (2012) Natural antibodies in normal human serum inhibit Staphylococcus aureus capsular polysaccharide vaccine efficacy, Clin. Infect. Dis., 55, 1188–1197.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Galili, U., Rachmilewitz, E. A., Peleg, A., and Flechner, I. (1984) A unique natural human IgG antibody with antialpha-galactosyl specificity, J. Exp. Med., 160, 1519–1531.CrossRefPubMedGoogle Scholar
  11. 11.
    Galili, U. (2015) Significance of the evolutionary a1,3galactosyltransferase (GGTA1) gene inactivation in preventing extinction of apes and old world monkeys, J. Mol. Evol., 80, 1–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Hamadeh, R. M., Jarvis, G. A., Galili, U., Mandrell, R. E., Zhou, P., and Griffiss, J. M. (1992) Human natural antiaGal IgG regulates alternative complement pathway activation on bacterial surfaces, J. Clin. Invest., 89, 1223–1235.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Katopodis, A. G., Warner, R. G., Duthaler, R. O., Streiff, M. B., Bruelisauer, A., Kretz, O., Dorobek, B., Persohn, E., Andres, H., Schweitzer, A., Thoma, G., Kinzy, W., Quesniaux, V. F., Cozzi, E., Davies, H. F., Manez, R., and White, D. (2002) Removal of anti-aGal-alpha1,3Gal xenoantibodies with an injectable polymer, J. Clin. Invest., 110, 1869–1877.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Costa, C., Zhao, L., DeCesare, S., and Fodor, W. L. (1999) Analysis of the three genetic modifications designed to inhibit human serum-mediated cytolysis, Xenotransplantation, 6, 6–16.CrossRefPubMedGoogle Scholar
  15. 15.
    Golde, W. T., Gollobin, P., and Rodriguez, L. L. (2005) A rapid, simple, and humane method for submandibular bleeding of mice using a lancet, Lab. Anim. (NY), 34, 3943.Google Scholar
  16. 16.
    Rittirsch, D., Huber-Lang, M. S., Flierl, M. A., and Ward, P. A. (2009) Immunodesign of experimental sepsis by cecal ligation and puncture, Nat. Protoc., 4, 31–36.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L., and Friedman, J. M. (1994) Positional cloning of the mouse obese gene and its human homologue, Nature, 372, 425–432.CrossRefPubMedGoogle Scholar
  18. 18.
    Mackey-Lawrence, N. M., and Petri, W. A. (2012) Leptin and mucosal immunity, Mucosal. Immunol., 5, 472–479.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Madan, R., Guo, X., Naylor, C., Buonomo, E. L., Mackay, D., Noor, Z., Concannon, P., Scully, K. W., Pramoonjago, P., Kolling, G. L., Warren, C. A., Duggal, P., and Petri, W. A. (2014) Role of leptin-mediated colonic inflammation in defense against Clostridium difficile colitis, Infect. Immun., 82, 341–349.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hsu, A., Aronoff, D. M., Phipps, J., Goel, D., and Mancuso, P. (2007) Leptin improves pulmonary bacterial clearance and survival in ob/ob mice during pneumococcal pneumonia, Clin. Exp. Immunol., 150, 332–339.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Wieland, C. W., Stegenga, M. E., Florquin, S., Fantuzzi, G., and Van der Poll, T. (2006) Leptin and host defense against Gram-positive and Gram-negative pneumonia in mice, Shock, 25, 414–419.CrossRefPubMedGoogle Scholar
  22. 22.
    Jin, L., Batra, S., Douda, D. N., Palaniyar, N., and Jeyaseelan, S. (2014) CXCL1 contributes to host defense in polymicrobial sepsis via modulating T cell and neutrophil functions, J. Immunol., 193, 3549–3558.CrossRefPubMedGoogle Scholar
  23. 23.
    Cai, S., Batra, S., Lira, S. A., Kolls, J. K., and Jeyaseelan, S. (2010) CXCL1 regulates pulmonary host defense to Klebsiella infection via CXCL2, CXCL5, NF-kappaB, and MAPKs, J. Immunol., 185, 6214–6225.PubMedGoogle Scholar
  24. 24.
    Bryant-Hudson, K. M., and Carr, D. J. (2012) CXCL1deficient mice are highly sensitive to Pseudomonas aeruginosa but not herpes simplex virus type 1 corneal infection, Invest. Ophthalmol. Vis. Sci., 53, 6785–6792.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Hoffmann, U., Brueckmann, M., and Borggrefe, M. (2009) Matrix metalloproteinases and their inhibitors: promising novel biomarkers in severe sepsis? Crit. Care, 13, 1006.Google Scholar
  26. 26.
    Chiang, T. Y., Yu, Y. L., Lin, C. W., Tsao, S. M., Yang, S. F., and Yeh, C. B. (2013) The circulating level of MMP-9 and its ratio to TIMP-1 as a predictor of severity in patients with community-acquired pneumonia, Clin. Chim. Acta, 424, 261–266.CrossRefPubMedGoogle Scholar
  27. 27.
    Elkington, P., Shiomi, T., Breen, R., Nuttall, R. K., Ugarte-Gil, C. A., Walker, N. F., Saraiva, L., Pedersen, B., Mauri, F., Lipman, M., Edwards, D. R., Robertson, B. D., D’Armiento, J., and Friedland, J. S. (2011) MMP-1 drives immunopathology in human tuberculosis and transgenic mice, J. Clin. Invest., 121, 1827–1833.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Yamamoto, K., Nishiumi, S., Yang, L., Klimatcheva, E., Pandina, T., Takahashi, S., Matsui, H., Nakamura, M., Zauderer, M., Yoshida, M., and Azuma, T. (2014) AntiCXCL13 antibody can inhibit the formation of gastric lymphoid follicles induced by Helicobacter infection, Mucosal. Immunol., 7, 1244–1254.CrossRefPubMedGoogle Scholar
  29. 29.
    Widney, D. P., Breen, E. C., Boscardin, W. J., Kitchen, S. G., Alcantar, J. M., Smith, J. B., Zack, J. A., Detels, R., and Martinez-Maza, O. (2005) Serum levels of the homeostatic B cell chemokine, CXCL13, are elevated during HIV infection, J. Interferon Cytokine Res., 25, 702–706.CrossRefPubMedGoogle Scholar
  30. 30.
    World Health Organization (WHO) (2014) Antimicrobial Resistance: Global Report on Surveillance.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • Magdiel Pérez Cruz
    • 1
  • Daniel Bello Gil
    • 1
  • Cristina Costa
    • 1
  • Rafael Mañez
    • 1
    • 2
    Email author
  1. 1.Bellvitge Biomedical Research Institute (IDIBELL)Hospitalet de LlobregatSpain
  2. 2.Bellvitge University HospitalHospitalet de LlobregatSpain

Personalised recommendations