Biochemistry (Moscow)

, Volume 82, Issue 2, pp 122–139 | Cite as

Biological basis for amyloidogenesis in Alzheimer’S disease

  • T. V. Andreeva
  • W. J. Lukiw
  • E. I. Rogaev


Certain cellular proteins normally soluble in the living organism under certain conditions form aggregates with a specific cross-β sheet structure called amyloid. These intraor extracellular insoluble aggregates (fibers or plaques) are hallmarks of many neurodegenerative pathologies including Alzheimer’s disease (AD), Huntington’s disease, Parkinson’s disease, prion disease, and other progressive neurological diseases that develop in the aging human central nervous system. Amyloid diseases (amyloidoses) are widespread in the elderly human population, a rapidly expanding demographic in many global populations. Increasing age is the most significant risk factor for neurodegenerative diseases associated with amyloid plaques. To date, nearly three dozen different misfolded proteins targeting brain and other organs have been identified in amyloid diseases and AD, the most prevalent neurodegenerative amyloid disease affecting over 15 million people worldwide. Here we (i) highlight the latest data on mechanisms of amyloid formation and further discuss a hypothesis on the amyloid cascade as a primary mechanism of AD pathogenesis and (ii) review the evolutionary aspects of amyloidosis, which allow new insight on human-specific mechanisms of dementia development.


amyloidogenesis amyloidosis beta amyloid cleavage enzyme (BACE) β-amyloid precursor protein (APP) Alzheimer’s disease (AD) presenilins 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chiti, F., and Dobson, C. M. (2006) Protein misfolding, functional amyloid, and human disease, Annu. Rev. Biochem., 75, 333–366.CrossRefGoogle Scholar
  2. 2.
    Sipe, J. D., Benson, M. D., Buxbaum, J. N., Ikeda, S., Merlini, G., Saraiva, M. J., and Westermark, P. (2010) Amyloid fibril protein nomenclature: 2010 recommendations from the nomenclature committee of the International Society of Amyloidosis, Amyloid, 17, 101–104.PubMedCrossRefGoogle Scholar
  3. 3.
    McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., and Stadlan, E. M. (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease, Neurology, 34, 939–944.PubMedCrossRefGoogle Scholar
  4. 4.
    Hardy, J. A., and Higgins, G. A. (1992) Alzheimer’s disease: the amyloid cascade hypothesis, Science, 256, 184–185.PubMedCrossRefGoogle Scholar
  5. 5.
    Mohamed, T., Shakeri, A., and Rao, P. P. (2016) Amyloid cascade in Alzheimer’s disease: recent advances in medicinal chemistry, Eur. J. Med. Chem., 113, 258–272.PubMedCrossRefGoogle Scholar
  6. 6.
    Scherzinger, E., Lurz, R., Turmaine, M., Mangiarini, L., Hollenbach, B., Hasenbank, R., Bates, G. P., Davies, S. W., Lehrach, H., and Wanker, E. E. (1997) Huntingtinencoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo, Cell, 90, 549–558.PubMedCrossRefGoogle Scholar
  7. 7.
    Paulson, H. L., Perez, M. K., and Trottier, Y. (1997) Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3, Neuron, 19, 333–344.PubMedCrossRefGoogle Scholar
  8. 8.
    Goedert, M., Spillantini, M. G., Del Tredici, K., and Braak, H. (2013) 100 years of Lewy pathology, Nat. Rev. Neurol., 9, 13–24.PubMedCrossRefGoogle Scholar
  9. 9.
    Spillantini, M. G., Crowther, R. A., Jakes, R., Hasegawa, M., and Goedert, M. (1998) a-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies, Proc. Natl. Acad. Sci. USA, 95, 6469–6473.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Thinakaran, G., and Koo, E. H. (2008) Amyloid precursor protein trafficking, processing, and function, J. Biol. Chem., 283, 29615–29619.Google Scholar
  11. 11.
    Ohno-Matsui, K. (2011) Parallel findings in age-related macular degeneration and Alzheimer’s disease, Prog. Retin. Eye Res., 30, 217–238.PubMedCrossRefGoogle Scholar
  12. 12.
    Askanas, V., and Engel, W. K. (2007) Inclusion-body myositis, a multifactorial muscle disease associated with aging: current concepts of pathogenesis, Curr. Opin. Rheumatol., 19, 550–559.Google Scholar
  13. 13.
    Lee, M. S., Kao, S. C., Lemere, C. A., Xia, W., Tseng, H. C., Zhou, Y., Neve, R., Ahlijanian, M. K., and Tsai, L. H. (2003) APP processing is regulated by cytoplasmic phosphorylation, J. Cell Biol., 163, 83–95.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Yankner, B. A., Dawes, L. R., Fisher, S., Villa-Komaroff, L., Oster-Granite, M. L., and Neve, R. L. (1989) Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer’s disease, Science, 245, 417–420.PubMedCrossRefGoogle Scholar
  15. 15.
    Sun, X., Chen, W. D., and Wang, Y. D. (2015) ß-Amyloid: the key peptide in the pathogenesis of Alzheimer’s disease, Front. Pharmacol., 30, 221.Google Scholar
  16. 16.
    Gandy, S., Caporaso, G., Buxbaum, J., Frangione, B., and Greengard, P. (1994) APP proceßsing, Aß-amyloidogenesis, and the pathogenesis of Alzheimer’s disease, Neurobiol. Aging, 15, 253–256.PubMedGoogle Scholar
  17. 17.
    Haass, C., Schlossmacher, M. G., Hung, A. Y., VigoPelfrey, C., Mellon, A., Ostaszewski, B. L., Lieberburg, I., Koo, E. H., Schenk, D., and Teplow, D. B. (1992) Amyloid beta-peptide is produced by cultured cells during normal metabolism, Nature, 359, 322–325.PubMedCrossRefGoogle Scholar
  18. 18.
    Walsh, D. M., and Selkoe, D. J. (2007) A beta oligomers -a decade of discovery, J. Neurochem., 101, 1172–1184.PubMedCrossRefGoogle Scholar
  19. 19.
    Askanas, V., McFerrin, J., Baque, S., Alvarez, R. B., Sarkozi, E., and Engel, W. K. (1996) Transfer of beta-amyloid precursor protein gene using adenovirus vector causes mitochondrial abnormalities in cultured normal human muscle, Proc. Natl. Acad. Sci. USA, 93, 1314–1319.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Billings, L. M., Oddo, S., Green, K. N., McGaugh, J. L., and LaFerla, F. M. (2005) Intraneuronal Aß causes the onset of early Alzheimer’s disease-related cognitive deficits in transgenic mice, Neuron, 45, 675–688.PubMedCrossRefGoogle Scholar
  21. 21.
    Rajendran, L., Honsho, M., Zahn, T. R., Keller, P., Geiger, K. D., Verkade, P., and Simons, K. (2006) Alzheimer’s disease beta-amyloid peptides are released in association with exosomes, Proc. Natl. Acad. Sci. USA, 103, 11172–11177.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Revesz, T., Holton, J. L., Lashley, T., Plant, G., Frangione, B., Rostagno, A., and Ghiso, J. (2009) Genetics and molecular pathogenesis of sporadic and hereditary cerebral amyloid angiopathies, Acta Neuropathol., 118, 115–130.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Ratnayaka, J. A., Serpell, L. C., and Lotery, A. J. (2015) Dementia of the eye: the role of amyloid beta in retinal degeneration, Eye (London), 29, 1013–1026.CrossRefGoogle Scholar
  24. 24.
    Hoh Kam, J., Lenassi, E., and Jeffery, G. (2010) Viewing ageing eyes: diverse sites of amyloid beta accumulation in the ageing mouse retina and the up-regulation of macrophages, PLoS One, 5, 13127.CrossRefGoogle Scholar
  25. 25.
    McKay, G. J., Patterson, C. C., Chakravarthy, U., Dasari, S., Klaver, C. C., Vingerling, J. R., Ho, L., De Jong, P. T., Fletcher, A. E., Young, I. S., Seland, J. H., Rahu, M., Soubrane, G., Tomazzoli. L., Topouzis, F., Vioque, J., Hingorani, A. D., Sofat, R., Dean, M., Sawitzke, J., Seddon, J. M., Peter, I., Webster, A. R., Moore, A. T., Yates, J. R., Cipriani, V., Fritsche, L. G., Weber, B. H., Keilhauer, C. N., Lotery, A. J., Ennis, S., Klein, M. L., Francis, P. J., Stambolian, D., Orlin, A., Gorin, M. B., Weeks, D. E., Kuo, C. L., Swaroop, A., Othman, M., Kanda, A., Chen, W., Abecasis, G. R., Wright, A. F., Hayward, C., Baird, P. N., Guymer, R. H., Attia, J., Thakkinstian, A., and Silvestri, G. (2011) Evidence of association of ApoE with age-related macular degeneration: a pooled analysis of 15 studies, Hum. Mutat., 32, 1407–1416.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Morales, R., Duran-Aniotz, C., Castilla, J., Estrada, L. D., and Soto, C. (2012) De novo induction of amyloid-ß deposition in vivo, Mol. Psychiatry, 17, 1347–1353.PubMedCrossRefGoogle Scholar
  27. 27.
    Jaunmuktane, Z., Mead, S., Ellis, M., Wadsworth, J. D., Nicoll, A. J., Kenny, J., Launchbury, F., Linehan, J., Richard-Loendt, A., Walker, A. S., Rudge, P., Collinge, J., and Brandner, S. (2015) Evidence for human transmißsion of amyloid-ß pathology and cerebral amyloid angiopathy, Nature, 525, 247–250.PubMedCrossRefGoogle Scholar
  28. 28.
    Um, J. W., Nygaard, H. B., Heißs, J. K., Kostylev, M. A., Stagi, M., Vortmeyer, A., Wisniewski, T., Gunther, E. C., and Strittmatter, S. M. (2012) Alzheimer amyloid-ß oligomer bound to postsynaptic prion protein activates Fyn to impair neurons, Nat. Neurosci., 15, 1227–1235.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Peters, C., Espinoza, M. P., Gallegos, S., Opazo, C., and Aguayo, L. G. (2015) Alzheimer’s Aß interacts with cellular prion protein inducing neuronal membrane damage and synaptotoxicity, Neurobiol. Aging, 36, 1369–1377.PubMedCrossRefGoogle Scholar
  30. 30.
    Haaßs, C., Hung, A. Y., Schlossmacher, M. G., Teplow, D. B., and Selkoe, D. J. (1993) ß-Amyloid peptide and a 3-kDa fragment are derived by distinct cellular mechanisms, J. Biol. Chem., 268, 3021–3024.Google Scholar
  31. 31.
    Lin, M. T., and Beal, M. F. (2006) Alzheimer’s APP mangles mitochondria, Nat. Med., 12, 1241–1243.PubMedCrossRefGoogle Scholar
  32. 32.
    Copanaki, E., Chang, S., Vlachos, A., Tschape, J. A., Muller, U. C., Kogel, D., and Deller, T. (2010) sAPPa antagonizes dendritic degeneration and neuron death triggered by proteasomal stress, Mol. Cell. Neurosci., 44, 386393.CrossRefGoogle Scholar
  33. 33.
    Milosch, N., Tanriover, G., Kundu, A., Rami, A., Francois, J. C., Baumkotter, F., Weyer, S. W., and Samanta, A. (2014) Holo-APP and G-protein-mediated signaling are required for sAPPa-induced activation of the Akt survival pathway, Cell Death Dis., 5, 1391.CrossRefGoogle Scholar
  34. 34.
    Postina, R., Schroeder, A., Dewachter, I., Bohl, J., Schmitt, U., Kojro, E., Prinzen, C., Endres, K., Hiemke, C., Blessing, M., Flamez, P., Dequenne, A., Godaux, E., Van Leuven, F., and Fahrenholz, F. (2004) A disintegrinmetalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model, J. Clin. Invest., 113, 1456–1464.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Kim, M., Suh, J., Romano, D., Truong, M. H., Mullin, K., Hooli, B., Norton, D., Tesco, G., Elliott, K., Wagner, S. L., Moir, R. D., Becker, K. D., and Tanzi, R. E. (2009) Potential late-onset Alzheimer’s disease-associated mutations in the ADAM10 gene attenuate a-secretase activity, Hum. Mol. Genet., 18, 3987–3996.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Colombo, A., Wang, H., Kuhn, P. H., Page, R., Kremmer, E., Dempsey, P. J., Crawford, H. C., and Lichtenthaler, S. F. (2013) Constitutive aand ß-secretase cleavages of the amyloid precursor protein are partially coupled in neurons, but not in frequently used cell lines, Neurobiol. Dis., 49, 137–147.PubMedGoogle Scholar
  37. 37.
    Endres, K., Fahrenholz, F., Lotz, J., Hiemke, C., Teipel, S., Lieb, K., Tuscher, O., and Fellgiebel, A. (2014) Increased CSF APPs-a levels in patients with Alzheimer disease treated with acitretin, Neurology, 83, 1930–1935.PubMedCrossRefGoogle Scholar
  38. 38.
    Saftig, P., and Lichtenthaler, S. F. (2015) The alpha secretase ADAM10: a metalloprotease with multiple functions in the brain, Prog. Neurobiol., 135, 1–20.PubMedCrossRefGoogle Scholar
  39. 39.
    Vassar, R., Bennett, B. D., Babu-Khan, S., Kahn, S., Mendiaz, E. A., Denis, P., Teplow, D. B., Ross, S., Amarante, P., Loeloff, R., Luo, Y., Fisher, S., Fuller, J., Edenson, S., Lile, J., Jarosinski, M. A., Biere, A. L., Curran, E., Burgess, T., Louis, J. C., Collins, F., Treanor, J., Rogers, G., and Citron, M. (1999) Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE, Science, 286, 735–741.PubMedCrossRefGoogle Scholar
  40. 40.
    Fukumori, A., Okochi, M., Tagami, S., Jiang, J., Itoh, N., Nakayama, T., Yanagida, K., Ishizuka- Katsura, Y., Morihara, T., Kamino, K., Tanaka, T., Kudo, T., Tanii, H., Ikuta, A., Haass, C., and Takeda, M. (2006) Presenilindependent gamma-secretase on plasma membrane and endosomes is functionally distinct, Biochemistry, 45, 49074914.CrossRefGoogle Scholar
  41. 41.
    Holler, C. J., Webb, R. L., Laux, A. L., Beckett, T. L., Niedowicz, D. M., Ahmed, R. R., Liu, Y., Simmons, C. R., Dowling, A. L., Spinelli, A., Khurgel, M., Estus, S., Head, E., Hersh, L. B., and Murphy, M. P. (2012) BACE2 expression increases in human neurodegenerative disease, Am. J. Pathol., 180, 337–350.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Yan, R., Munzner, J. B., Shuck, M. E., and Bienkowski, M. J. (2001) BACE2 functions as an alternative alpha-secretase in cells, J. Biol. Chem., 276, 34019–34027.PubMedCrossRefGoogle Scholar
  43. 43.
    Rochin, L., Hurbain, I., Serneels, L., Fort, C., Watt, B., Leblanc, P., Marks, M. S., De Strooper, B., Raposo, G., and Van Niel, G. (2013) BACE2 processes PMEL to form the melanosome amyloid matrix in pigment cells, Proc. Natl. Acad. Sci. USA, 110, 10658–10663.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Ceglia, I., Reitz, C., Gresack, J., Ahn, J. H., Bustos, V., Bleck, M., Zhang, X., Martin, G., Simon, S. M., Nairn, A. C., Greengard, P., and Kim, Y. (2015) APP intracellular domain-WAVE1 pathway reduces amyloid-ß production, Nat. Med., 21, 1054–1009.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Takami, M., Nagashima, Y., Sano, Y., Ishihara, S., Morishima- Kawashima, M., Funamoto, S., and Ihara, Y. (2009) Gamma-secretase: successive tripeptide and tetrapeptide release from the transmembrane domain of beta-carboxyl terminal fragment, J. Neurosci., 29, 130421.CrossRefGoogle Scholar
  46. 46.
    Willem, M., Tahirovic, S., Busche, M. A., Ovsepian, S. V., Chafai, M., Kootar, S., Hornburg, D., Evans, L. D., Moore, S., Daria, A., Hampel, H., Muller, V., Giudici, C., Nuscher, B., Wenninger- Weinzierl, A., Kremmer, E., Heneka, M. T., Thal, D. R., Giedraitis, V., Lannfelt, L., Muller, U., Livesey, F. J., Meissner, F., Herms, J., Konnerth, A., Marie, H., and Haass, C. (2015) ?-Secretase processing of APP inhibits neuronal activity in the hippocampus, Nature, 526, 443–447.PubMedCrossRefGoogle Scholar
  47. 47.
    Haass, C., and Selkoe, D. J. (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide, Nat. Rev. Mol. Cell. Biol., 8, 101–112.PubMedCrossRefGoogle Scholar
  48. 48.
    Giaccone, G., Tagliavini, F., Linoli, G., Bouras, C., Frigerio, L., Frangione, B., and Bugiani, O. (1989) Down patients: extracellular preamyloid deposits precede neuritic degeneration and senile plaques, Neurosci. Lett., 97, 232–238.PubMedCrossRefGoogle Scholar
  49. 49.
    Jarrett, J. T., and Lansbury, P. T. (1993) Seeding “onedimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell, 73, 1055–1058.Google Scholar
  50. 50.
    Ow, S. Y., and Dunstan, D. E. (2014) A brief overview of amyloids and Alzheimer’s disease, Protein Sci., 23, 13151331.CrossRefGoogle Scholar
  51. 51.
    Simmons, L. K., May, P. C., Tomaselli, K. J., Rydel, R. E., Fuson, K. S., Brigham, E. F., Wright, S., Lieberburg, I., Becker, G. W., and Brems, D. N. (1994) Secondary structure of amyloid beta peptide correlates with neurotoxic activity in vitro, Mol. Pharmacol., 45, 373–379.PubMedGoogle Scholar
  52. 52.
    McLean, C. A., Cherny, R. A., Fraser, F. W., Fuller, S. J., Smith, M. J., Beyreuther, K., Bush, A. I., and Masters, C. L. (1999) Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease, Ann. Neurol., 46, 860–866.PubMedCrossRefGoogle Scholar
  53. 53.
    Klyubin, I., Betts, V., Welzel, A. T., Blennow, K., Zetterberg, H., Wallin, A., Lemere, C. A., Cullen, W. K., Peng, Y., Wisniewski, T., Selkoe, D. J., Anwyl, R., Walsh, D. M., and Rowan, M. J. (2008) Amyloid beta protein dimer-containing human CSF disrupts synaptic plasticity: prevention by systemic passive immunization, J. Neurosci., 28, 4231–4237.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Goate, A., Chartier-Harlin, M. C., Mullan, M., Brown, J., Crawford, F., Fidani, L., Giuffra, L., Haynes, A., Irving, N., and James, L. (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease, Nature, 349, 704–706.PubMedCrossRefGoogle Scholar
  55. 55.
    Raux, G., Guyant-Marechal, L., Martin, C., Bou, J., Penet, C., Brice, A., Hannequin, D., Frebourg, T., and Campion, D. (2005) Molecular diagnosis of autosomal dominant early onset Alzheimer’s disease: an update, J. Med. Genet., 42, 793–795.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Scheuner, D., Eckman, C., and Jensen, M. (2007) Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease, Nat. Med., 2, 864–870.CrossRefGoogle Scholar
  57. 57.
    Gyure, K. A., Durham, R., Stewart, W. F., Smialek, J. E., and Troncoso, J. C. (2001) Intraneuronal Abeta-amyloid precedes development of amyloid plaques in Down syndrome, Arch. Pathol. Lab. Med., 125, 489–492.PubMedGoogle Scholar
  58. 58.
    Lemere, C. A., Blusztajn, J. K., Yamaguchi, H., Wisniewski, T., Saido, T. C., and Selkoe, D. J. (1996) Sequence of deposition of heterogeneous amyloid betapeptides and ApoE in Down syndrome: implications for initial events in amyloid plaque formation, Neurobiol. Dis., 3, 16–32.PubMedCrossRefGoogle Scholar
  59. 59.
    Rovelet-Lecrux, A., Hannequin, D., Raux, G., Le Meur, N., Laquerriè re, A., Vital, A., Dumanchin, C., Feuillette, S., Brice, A., Vercelletto, M., Dubas, F., Frebourg, T., and Campion, D. (2006) APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy, Nat. Genet., 38, 24–26.PubMedCrossRefGoogle Scholar
  60. 60.
    Kasuga, K., Shimohata, T., Nishimura. A., Shiga, A., Mizuguchi, T., Tokunaga, J., Ohno, T., Miyashita, A., Kuwano, R., Matsumoto, N., Onodera, O., Nishizawa, M., and Ikeuchi, T. (2009) Identification of independent APP locus duplication in Japanese patients with earlyonset Alzheimer disease, J. Neurol. Neurosurg. Psychiatry, 80, 1050–1052.PubMedCrossRefGoogle Scholar
  61. 61.
    Di Fede, G., Catania, M., Morbin, M., Rossi, G., Suardi, S., Mazzoleni, G., Merlin, M., Giovagnoli, A. R., Prioni, S., Erbetta, A., Falcone, C., Gobbi, M., Colombo, L., Bastone, A., Beeg, M., Manzoni, C., Francescucci, B., Spagnoli, A., Cantù, L., Del Favero, E., Levy, E., Salmona, M., and Tagliavini, F. (2009) A recessive mutation in the APP gene with dominant-negative effect on amyloidogenesis, Science, 323, 1473–1477.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Jonsson, T., Atwal, J. K., Steinberg, S., Snaedal, J., Jonsson, P. V., Bjornsson, S., Stefansson, H., Sulem, P., Gudbjartsson, D., Maloney, J., Hoyte, K., Gustafson, A., Liu, Y., Lu, Y., Bhangale, T., Graham, R. R., Huttenlocher, J., Bjornsdottir, G., Andreassen, O. A., Jö nsson, E. G., Palotie, A., Behrens, T. W., Magnusson, O. T., Kong, A., Thorsteinsdottir, U., Watts, R. J., and Stefansson, K. (2012) A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline, Nature, 488, 9699.CrossRefGoogle Scholar
  63. 63.
    Chen, M. (2015) The maze of APP processing in Alzheimer’s disease: where did we go wrong in reasoning? Front. Cell. Neurosci., 9, 186.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Li, H., Wolfe, M. S., and Selkoe, D. J. (2009) Toward structural elucidation of the secretase complex, Structure, 17, 326–334.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Sherrington, R., Rogaev, E. I., Liang, Y., Rogaeva, E. A., Levesque, G., Ikeda, M., Chi, H., Lin, C., Li, G., Holman, K., Tsuda, T., Mar, L., Foncin, J. F., Bruni, A. C., Montesi, M. P., Sorbi, S., Rainero, I., Pinessi, L., Nee, L., Chumakov, I., Pollen, D., Brookes, A., Sanseau, P., Polinsky, R. J., Wasco, W., Da Silva, H. A., Haines, J. L., Perkicak-Vance, M. A., Tanzi, R. E., Roses, A. D., Fraser, P. E., Rommens, J. M., and St. George-Hyslop, P. H. (1995) Cloning of a gene bearing missense mutations in early onset familial Alzheimer’s disease, Nature, 375, 754760.CrossRefGoogle Scholar
  66. 66.
    Rogaev, E. I., Sherrington, R., Rogaeva, E. A., Levesque, G., Ikeda, M., Liang, Y., Chi, H., Lin, C., Holman, K., and Tsuda, T. (1995) Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene, Nature, 376, 775–778.PubMedCrossRefGoogle Scholar
  67. 67.
    Hill, J. M., Clement, C., Pogue, A. I., Bhattacharjee, S., Zhao, Y., and Lukiw, W. J. (2014) Pathogenic microbes, the microbiome, and Alzheimer’s disease (AD), Front. Aging Neurosci., 6, 127.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Hammer, N. D., Wang, X., McGuffie, B. A., and Chapman, M. R. (2008) Amyloids: friend or foe? J. Alzheimer’s Dis., 13, 407–419.Google Scholar
  69. 69.
    Nizhnikov, A. A., Antonets, K. S., and Inge-Vechtomov, S. G. (2015) Amyloids: from pathogenesis to function, Biochemistry (Moscow), 80, 1127–1244.CrossRefGoogle Scholar
  70. 70.
    Sheng, J. G., Bora, S. H., Xu, G., Borchelt, D. R., Price, D. L., and Koliatsos, V. E. (2003) Lipopolysaccharide-inducedneuroinflammation increases intracellular accumulation of amyloid precursor protein and amyloid beta peptide in APPswe transgenic mice, Neurobiol. Dis., 14, 133–145.PubMedCrossRefGoogle Scholar
  71. 71.
    Zhao, Y., Dua, P., and Lukiw, W. J. (2015) Microbial sources of amyloid and relevance to amyloidogenesis and Alzheimer’s disease (AD), J. Alzheimer’s Dis. Parkinsonism, 5, 177.Google Scholar
  72. 72.
    Kumar, D. K., Choi, S. H., Washicosky, K. J., Eimer, W. A., Tucker, S., Ghofrani, J., Lefkowitz, A., McColl, G., Goldstein, L. E., Tanzi, R. E., and Moir, R. D. (2016) Amyloid-ß peptide protects against microbial infection in mouse and worm models of Alzheimer’s disease, Sci. Transl. Med., 8, 340ra72.CrossRefGoogle Scholar
  73. 73.
    Lian, H. Y., Jiang, Y., Zhang, H., Jones, G. W., and Perrett, S. (2006) The yeast prion protein Ure2: structure, function and folding, Biochim. Biophys. Acta, 1764, 535–545.PubMedCrossRefGoogle Scholar
  74. 74.
    Stansfield, I., Jones, K. M., Kushnirov, V. V., Dagkesamanskaya, A. R., Poznyakovski, A. I., Paushkin, S. V., Nierras, C. R., Cox, B. S., Ter- Avanesyan, M. D., and Tuite, M. F. (1995) The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae, EMBO J., 14, 4365–4373.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Heinrich, S. U., and Lindquist, S. (2011) Protein-only mechanism induces self-perpetuating changes in the activity of neuronal Aplysia cytoplasmic polyadenylation element binding protein (CPEB), Proc. Natl. Acad. Sci. USA, 108, 2999–3004.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    McGlinchey, R., Shewmaker, F., McPhie, P., Monterroso, B., Thurber, K., and Wicknera, R. (2009) The repeat domain of the melanosome fibril protein Pmel17 forms the amyloid core promoting melanin synthesis, Proc. Natl. Acad. Sci. USA, 106, 13731–13736.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Maji, S. K., Perrin, M. H., Sawaya, M. R., Jessberger, S., Vadodaria, K., Rissman, R. A., Singru, P. S., Nilsson, K. P. R., Simon, R., Schubert, D., Eisenberg, D., Rivier, J., Sawchenko, P., Vale, W., and Riek, R. (2009) Functional amyloids as natural storage of peptide hormones in pituitary secretory granules, Science, 325, 328–332.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Ranganathan, S., Singh, P. K., Singh, U., Singru, P. S., Padinhateeri, R., and Maji, S. K. (2012) Molecular interpretation of ACTH-ß-endorphin coaggregation: relevance to secretory granule biogenesis, PLoS One, 7, 31924.CrossRefGoogle Scholar
  79. 79.
    Anoop, A., Ranganathan, S., Das Dhaked, B., Jha, N. N., Pratihar, S., Ghosh, S., Sahay, S., Kumar, S., Das, S., Kombrabail, M., Agarwal, K., Jacob, R. S., Singru, P., Bhaumik, P., Padinhateeri, R., Kumar, A., and Maji, S. K. (2014) Elucidating the role of disulfide bond on amyloid formation and fibril reversibility of somatostatin-14: relevance to its storage and secretion, J. Biol. Chem., 289, 16884–16903.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Williams, T. L., and Serpell, L. C. (2011) Membrane and surface interactions of Alzheimer’s Aß peptide -insights into the mechanism of cytotoxicity, FEBS J., 278, 3905–3917.PubMedCrossRefGoogle Scholar
  81. 81.
    Brender, J. R., Salamekh, S., and Ramamoorthy, A. (2012) Membrane disruption and early events in the aggregation of the diabetes related peptide IAPP from a molecular perspective, Acc. Chem. Res., 45, 454–462.PubMedCrossRefGoogle Scholar
  82. 82.
    Jiang, Z., and Lee, J. C. (2014) Lysophospholipid-containing membranes modulate the fibril formation of the repeat domain of a human functional amyloid, pmel17, J. Mol. Biol., 426, 4074–4086.PubMedCrossRefGoogle Scholar
  83. 83.
    Singh, S., Trikha, S., Bhowmick, D. C., Sarkar, A. A., and Jeremic, A. M. (2015) Role of cholesterol and phospholipids in amylin misfolding, aggregation and etiology of islet amyloidosis, Adv. Exp. Med. Biol., 855, 95–116.PubMedCrossRefGoogle Scholar
  84. 84.
    Leißsring, M. A., and Turner, A. J. (2013) Regulation of distinct pools of amyloid ß-protein by multiple cellular proteases, Alzheimer’s Res. Ther., 5, 37.CrossRefGoogle Scholar
  85. 85.
    Mawuenyega, K. G., Sigurdson, W., Ovod, V., Munsell, L., Kasten, T., Morris, J. C., Yarasheski, K. E., and Bateman, R. J. (2010) Decreased clearance of CNS beta-amyloid in Alzheimer’s disease, Science, 330, 1774.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Shirotani, K., Tsubuki, S., Iwata, N., Takaki, Y., Harigaya, W., Maruyama, K., Kiryu- Seo, S., Kiyama, H., Iwata, H., Tomita, T., Iwatsubo, T., and Saido, T. C. (2001) Neprilysin degrades both amyloid beta peptides 1-40 and 1-42 most rapidly and efficiently among thiorphanand phosphoramidon-sensitive endopeptidases, J. Biol. Chem., 276, 21895–21901.PubMedCrossRefGoogle Scholar
  87. 87.
    Maruyama, M., Higuchi, M., Takaki, Y., Matsuba, Y., Tanji, H., Nemoto, M., Tomita, N., Matsui, T., Iwata, N., Mizukami, H., Muramatsu, S., Ozawa, K., Saido, T. C., Arai, H., and Sasaki, H. (2005) Cerebrospinal fluid neprilysin is reduced in prodromal Alzheimer’s disease, Ann. Neurol., 57, 832–842.PubMedCrossRefGoogle Scholar
  88. 88.
    Hellstrom-Lindahl, E., Ravid, R., and Nordberg, A. (2008) Age-dependent decline of neprilysin in Alzheimer’s disease and normal brain: inverse correlation with Aß levels, Neurobiol. Aging, 29, 210–221.PubMedCrossRefGoogle Scholar
  89. 89.
    Hemming, M. L., Patterson, M., Reske-Nielsen, C., Lin, L., Isacson, O., and Selkoe, D. J. (2007) Reducing amyloid plaque burden via ex vivo gene delivery of an Abeta-degrading protease: a novel therapeutic approach to Alzheimer disease, PLoS Med., 4, 262.CrossRefGoogle Scholar
  90. 90.
    Hook, G., Yu, J., Toneff, T., Kindy, M., and Hook, V. (2014) cathepsin B and is reduced by the cysteine protease inhibitor E64d, representing a potential Alzheimer’s disease therapeutic, J. Alzheimer’s Dis., 41, 129–149.Google Scholar
  91. 91.
    Hook, V. Y., Kindy, M., Reinheckel, T., Peters, C., and Hook, G. (2009) Genetic cathepsin B deficiency reduces beta amyloid in transgenic mice expressing human wildtype amyloid precursor protein, Biochem. Biophys. Res. Commun., 386, 284–288.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Bhattacharjee, S., Zhao, Y., Dua, P., Rogaev, E. I., and Lukiw, W. J. (2016) microRNA-34a-mediated down-regulation of the microglial-enriched triggering receptor and phagocytosis-sensor TREM2 in age-related macular degeneration, PLoS One, 11, e0150211.Google Scholar
  93. 93.
    Zhao, Y., Bhattacharjee, S., Jones, B. M., Dua, P., Alexandrov, P. N., Hill, J. M., and Lukiw, W. J. (2013) Regulation of TREM2 expression by an NF-?B-sensitive miRNA-34a, Neuroreport, 24, 318–323.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Jones, B. M., Bhattacharjee, S., Dua, P., Hill, J. M., Zhao, Y., and Lukiw, W. J. (2014) Regulating amyloidogenesis through the natural triggering receptor expressed in myeloid/microglial cells 2 (TREM2), Front. Cell. Neurosci., 8, 94.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Zhao, Y., and Lukiw, W. J. (2015) Microbiome-generated amyloid and potential impact on amyloidogenesis in Alzheimer’s disease (AD), J. Nat. Sci., 1, e138.Google Scholar
  96. 96.
    Ma, J., Yee, A., Brewer, H. B., Das, S., and Potter, H. (1994) Amyloid-associated proteins alpha 1-antichymotrypsin and apolipoprotein E promote assembly of Alzheimer beta-protein into filaments, Nature, 372, 92–94.PubMedCrossRefGoogle Scholar
  97. 97.
    Veerhuis, R., Boshuizen, R. S., and Familian, A. (2005) Amyloid associated proteins in Alzheimer’s and prion disease, Curr. Drug Targets CNS Neurol. Disord., 4, 235–248.PubMedCrossRefGoogle Scholar
  98. 98.
    DeMattos, R. B., Cirrito, J. R., Parsadanian, M., May, P. C., O’Dell, M. A., Taylor, J. W., Harmony, J. A., Aronow, B. J., Bales, K. R., Paul, S. M., and Holtzman, D. M. (2004) ApoE and clusterin cooperatively suppress Abeta levels and deposition: evidence that ApoE regulates extracellular Abeta metabolism in vivo, Neuron, 41, 193–202.PubMedCrossRefGoogle Scholar
  99. 99.
    Nielsen, H. M., Mulder, S. D., Belien, J. A., Musters, R. J., Eikelenboom, P., and Veerhuis, R. (2010) Astrocytic A beta 1-42 uptake is determined by Abeta-aggregation state and the presence of amyloid-associated proteins, Glia, 58, 1235–1246.PubMedGoogle Scholar
  100. 100.
    Harold, D., Abraham, R., Hollingworth, P., Sims, R., Gerrish, A., Hamshere, M. L., Pahwa, J. S., Moskvina, V., Dowzell, K., Williams, A., Jones, N., Thomas, C., Stretton, A., Morgan, A. R., Lovestone, S., Powell, J., Proitsi, P., Lupton, M. K., Brayne, C., Rubinsztein, D. C., Gill, M., Lawlor, B., Lynch, A., Morgan, K., Brown, K. S., Passmore, P. A., Craig, D., McGuinness, B., Todd, S., Holmes, C., Mann, D., Smith, A. D., Love, S., Kehoe, P. G., Hardy, J., Mead, S., Fox, N., Rossor, M., Collinge, J., Maier, W., Jessen, F., Schürmann, B., Van den Bussche, H., Heuser, I., and Williams, J. (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease, Nat. Genet., 41, 10881093.Google Scholar
  101. 101.
    Lambert, J. C., Heath, S., Even, G., Campion, D., Sleegers, K., Hiltunen, M., Combarros, O., Zelenika, D., Bullido, M. J., Tavernier, B., Letenneur, L., Bettens, K., Berr, C., Pasquier, F., Fievet, N., Barberger-Gateau, P., Engelborghs, S., De Deyn, P., Mateo, I., Franck, A., Helisalmi, S., Porcellini, E., Hanon, O., European Alzheimer’s Disease Initiative Investigators, De Pancorbo, M. M., Lendon, C., Dufouil, C., Jaillard, C., Leveillard, T., Alvarez, V., Bosco, P., Mancuso, M., Panza, F., Nacmias, B., Bossu, P., Piccardi, P., Annoni, G., Seripa, D., Galimberti, D., Hannequin, D., Licastro, F., Soininen, H., Ritchie, K., Blanche, H., Dartigues, J. F., Tzourio, C., Gut, I., Van Broeckhoven, C., Alperovitch, A., Lathrop, M., and Amouyel, P. (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease, Nat. Genet., 41, 10941099.CrossRefGoogle Scholar
  102. 102.
    Golenkina, S. A., Gol’tsov, A. Iu., Kuznetsova, I. L., Grigorenko, A. P., Andreeva, T. V., Reshetov, D. A., Kunizheva, S. S., Shagam, L. I., Morozova, I. Iu., Goldenkova-Pavlova, I. V., Shimshilashvili, Kh., Viacheslavova, A. O., Faskhutdinova, G., Gareeva, A. E., Zainullina, A. G., Khusnutdinova, E. K., Puzyrev, V. P., Stepanov, V. A., Kolotvin, A. V., Samokhodskaia, L. M., Selezneva, N. D., Gavrilova, S. I., and Rogaev, E. I. (2010) Analysis of clusterin gene (CLU/APOJ) polymorphism in Alzheimer’s disease patients and in normal cohorts from Russian populations, Mol. Biol. (Moscow), 44, 620–626.CrossRefGoogle Scholar
  103. 103.
    Roses, A. D. (1996) apolipoprotein E alleles as risk factors in Alzheimer’s disease, Annu. Rev. Med., 47, 387–400.PubMedCrossRefGoogle Scholar
  104. 104.
    Kim, J., Basak, J. M., and Holtzman, D. M. (2009) The role of apolipoprotein E in Alzheimer’s disease, Neuron, 63, 287–303.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Bales, K. R., Verina, T., Cummins, D. J., Du, Y., Dodel, R. C., Saura, J., Fishman, C. E., DeLong, C. A., Piccardo, P., Petegnief, V., Ghetti, B., and Paul, S. M. (1999) apolipoprotein E is essential for amyloid deposition in the APP(V717F) transgenic mouse model of Alzheimer’s disease, Proc. Natl. Acad. Sci. USA, 96, 15233–15238.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Fagan, A. M., Watson, M., Parsadanian, M., Bales, K. R., Paul, S. M., and Holtzman, D. M. (2002) Human and murine ApoE markedly alters Aß metabolism before and after plaque formation in a mouse model of Alzheimer’s disease, Neurobiol. Dis., 9, 305–318.PubMedCrossRefGoogle Scholar
  107. 107.
    Koistinaho, M., Lin, S., Wu, X., Esterman, M., Koger, D., Hanson, J., Higgs, R., Liu, F., Malkani, S., Bales, K. R., and Paul, S. M. (2004) apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-beta peptides, Nat. Med., 10, 719–726.PubMedCrossRefGoogle Scholar
  108. 108.
    Dodart, J. C., Marr, R. A., Koistinaho, M., Gregersen, B. M., Malkani, S., Verma, I. M., and Paul, S. M. (2005) Gene delivery of human apolipoprotein E alters brain Abeta burden in a mouse model of Alzheimer’s disease, Proc. Natl. Acad. Sci. USA, 102, 1211–1216.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Boyles, J. K., Pitas, R. E., Wilson, E., Mahley, R. W., and Taylor, J. M. (1985) Apolipoprotein E associated with astrocytic glia of the central nervous system and with nonmyelinating glia of the peripheral nervous system, J. Clin. Invest., 76, 1501–1513.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Metzger, R. E., La Du, M. J., Pan, J. B., Getz, G. S., Frail, D. E., and Falduto, M. T. (1996) Neurons of the human frontal cortex display apolipoprotein E immunoreactivity: implications for Alzheimer’s disease, J. Neuropathol. Exp. Neurol., 55, 372–380.PubMedCrossRefGoogle Scholar
  111. 111.
    Xu, P. T., Schmechel, D., Rothrock-Christian, T., Burkhart, D. S., Qiu, H. L., Popko, B., Sullivan, P., Maeda, N., Saunders, A. M., Roses, A. D., and Gilbert, J. R. (1996) Human apolipoprotein E2, E3 and E4 isoformspecific transgenic mice: human-like pattern of glial and neuronal immunoreactivity in central nervous system not observed in wild-type mice, Neurobiol. Dis., 3, 229–245.Google Scholar
  112. 112.
    Soulie, C., Mitchell, V., Dupont-Wallois, L., ChartierHarlin, M. C., Beauvillain, J. C., Delacourte, A., and Caillet-Boudin, M. L. (1999) Synthesis of apolipoprotein E (ApoE) mRNA by human neuronal-type SK N SH-SY 5Y cells and its regulation by nerve growth factor and ApoE, Neurosci. Lett., 265, 147–150.PubMedCrossRefGoogle Scholar
  113. 113.
    Harris, F. M., Tesseur, I., Brecht, W. J., Xu, Q., Mullendorff, K., Chang, S., Wyss-Coray, T., Mahley, R. W., and Huang, Y. (2004) Astroglial regulation of apolipoprotein E expression in neuronal cells: implications for Alzheimer’s disease, J. Biol. Chem., 279, 3862–3868.PubMedCrossRefGoogle Scholar
  114. 114.
    Mahley, R. W., Weisgraber, K. H., and Huang, Y. (2009) Apolipoprotein E: structure determines function, from atherosclerosis to Alzheimer’s disease to AIDS, J. Lipid Res., 50, 183–188.Google Scholar
  115. 115.
    Harris, F. M., Brecht, W. J., Xu, Q., Tesseur, I., Kekonius, L., Wyss- Coray, T., Fish, J. D., Masliah, E., Hopkins, P. C., Scearce- Levie, K., Weisgraber, K. H., Mucke, L., Mahley, R. W., and Huang, Y. (2003) Carboxyl-terminaltruncated apolipoprotein E4 causes Alzheimer’s diseaselike neurodegeneration and behavioral deficits in transgenic mice, Proc. Natl. Acad. Sci. USA, 100, 10966–10971.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Huang, Y. (2010) Abeta-independent roles of apolipoprotein E4 in the pathogenesis of Alzheimer’s disease, Trends Mol. Med., 16, 287–294.PubMedCrossRefGoogle Scholar
  117. 117.
    Lockhart, A., Lamb, J. R., Osredkar, T., Sue, L. I., Joyce, J. N., Ye, L., Libri, V., Leppert, D., and Beach, T. G. (2007) PIB is a non-specific imaging marker of amyloidbeta peptide-related cerebral amyloidosis, Brain, 130, 2607–2615.PubMedCrossRefGoogle Scholar
  118. 118.
    West, M. J., Coleman, P. D., Flood, D. G., and Troncoso, J. C. (1994) Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease, Lancet, 344, 769–772.PubMedCrossRefGoogle Scholar
  119. 119.
    Braak, H., Braak, E., and Kalus, P. (1989) Alzheimer’s disease: areal and laminar pathology in the occipital isocortex, Acta Neuropathol., 77, 494–506.PubMedCrossRefGoogle Scholar
  120. 120.
    Morrison, J. H., and Hof, P. R. (2007) Life and death of neurons in the aging cerebral cortex, Int. Rev. Neurobiol., 81, 41–57.PubMedCrossRefGoogle Scholar
  121. 121.
    Hanks, S. D., and Flood, D. G. (1991) Region-specific stability of dendritic extent in normal human aging and regression in Alzheimer’s disease. I. CA1 of hippocampus, Brain Res., 540, 63–82.PubMedCrossRefGoogle Scholar
  122. 122.
    Frisoni, G. B., Ganzola, R., Canu, E., Rub, U., Pizzini, F. B., Alessandrini, F., Zoccatelli, G., Beltramello, A., Caltagirone, C., and Thompson, P. M. (2008) Mapping local hippocampal changes in Alzheimer’s disease and normal ageing with MRI at 3 Tesla, Brain, 131, 3266–3276.PubMedCrossRefGoogle Scholar
  123. 123.
    Fukuyama, R., Mizuno, T., Mori, S., Nakajima, K., Fushiki, S., and Yanagisawa, K. (2000) Age-dependent change in the levels of Aß40 and Aß42 in cerebrospinal fluid from control subjects, and a decrease in the ratio of Aß42 to Aß40 level in cerebrospinal fluid from Alzheimer’s disease patients, Eur. Neurol., 43, 155–160.Google Scholar
  124. 124.
    Miners, J. S., Van Helmond, Z., Kehoe, P. G., and Love, S. (2010) Changes with age in the activities of beta-secretase and the Abeta-degrading enzymes neprilysin, insulindegrading enzyme and angiotensin-converting enzyme, Brain Pathol., 20, 794–802.Google Scholar
  125. 125.
    Fukumoto, H., Rosene, D. L., Moss, M. B., Raju, S., Hyman, B. T., and Irizarry, M. C. (2004) Miners JBetasecretase activity increases with aging in human, monkey, and mouse brain, Am. J. Pathol., 164, 719–725.PubMedGoogle Scholar
  126. 126.
    Cheng, X., He, P., Lee, T., Yao, H., Li, R., and Shen, Y. (2014) High activities of BACE1 in brains with mild cognitive impairment, Am. J. Pathol., 184, 141–147.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Chen, M., and Nguyen, H. T. (2014) Our “energy-Ca(2+) signaling deficits” hypothesis and its explanatory potential for key features of Alzheimer’s disease, Front. Aging Neurosci., 6, 329.PubMedPubMedCentralGoogle Scholar
  128. 128.
    Inestrosa, N. C., Reyes, A. E., Chacon, M. A., Cerpa, W., Villalon, A., Montiel, J., Merabachvili, G., Aldunate, R., Bozinovic, F., and Aboitiz, F. (2005) Human-like rodent amyloid-beta-peptide determines Alzheimer pathology in aged wild-type Octodon degu, Neurobiol. Aging, 26, 10231028.CrossRefGoogle Scholar
  129. 129.
    Van Groen, T., Kadish, I., Popovic, N., Popovic, M., Caballero-Bleda, M., Bano-Otalora, B., Vivanco, P., Rol, M. A., and Madrid, J. A. (2011) Age-related brain pathology in Octodon degu: blood vessel, white matter and Alzheimer-like pathology, Neurobiol. Aging, 32, 16511661.Google Scholar
  130. 130.
    De Strooper, B., Simons, M., Multhaup, G., Van Leuven, F., Beyreuther, K., and Dotti, C. G. (1995) Production of intracellular amyloid-containing fragments in hippocampal neurons expressing human amyloid precursor protein and protection against amyloidogenesis by subtle amino acid substitutions in the rodent sequence, EMBO J., 14, 4932–4938.PubMedPubMedCentralGoogle Scholar
  131. 131.
    Roychaudhuri, R., Zheng, X., Lomakin, A., Maiti, P., Condron, M. M., Benedek, G. B., Bitan, G., Bowers, M. T., and Teplow, D. B. (2015) Role of species-specific primary structure differences in Aß42 assembly and neurotoxicity, ACS Chem. Neurosci., 6, 1941–1955.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Landesburg, G., and Ruehl, W. (1997) Geriatric behavioral problems, Vet. Clin. North Am. Small Pract., 27, 15371559.Google Scholar
  133. 133.
    Cummings, B. J., Su, J. H., Cotman, C. W., White, R., and Russell, M. J. (1993) Beta-amyloid accumulation in aged canine brain: a model of early plaque formation in Alzheimer’s disease, Neurobiol. Aging, 14, 547–560.PubMedCrossRefGoogle Scholar
  134. 134.
    Cotman, C. W., and Head, E. (2008) The canine (dog) model of human aging and disease: dietary, environmental and immunotherapy approaches, J. Alzheimer’s Dis., 15, 685–707.Google Scholar
  135. 135.
    Head, E., McCleary, R., Hahn, F. F., Milgram, N. W., and Cotman, C. W. (2000) Region-specific age at onset of beta-amyloid in dogs, Neurobiol. Aging, 21, 89–96.PubMedCrossRefGoogle Scholar
  136. 136.
    Russell, M. J., White, R., Patel, E., Markesbery, W. R., Watson, C. R., and Geddes, J. W. (1992) Familial influence on plaque formation in the beagle brain, Neuroreport, 3, 1093–1096.PubMedCrossRefGoogle Scholar
  137. 137.
    Serizawa, S., Chambers, J. K., and Une, Y. (2012) Beta amyloid deposition and neurofibrillary tangles spontaneously occur in the brains of captive cheetahs (Acinonyx jubatus), Vet. Pathol., 49, 304–312.PubMedCrossRefGoogle Scholar
  138. 138.
    Head, E., Moffat, K., Das, P., Sarsoza, F., Poon, W. W., Landsberg, G., Cotman, C. W., and Murphy, M. P. (2005) Beta-amyloid deposition and tau phosphorylation in clinically characterized aged cats, Neurobiol. Aging, 26, 749763.CrossRefGoogle Scholar
  139. 139.
    Mutsuga, M., Chambers, J. K., Uchida, K., Tei, M., Makibuchi, T., Mizorogi, T., Takashima, A., and Nakayama, H. (2012) Binding of curcumin to senile plaques and cerebral amyloid angiopathy in the aged brain of various animals and to neurofibrillary tangles in Alzheimer’s brain, J. Vet. Med. Sci., 74, 51–57.PubMedCrossRefGoogle Scholar
  140. 140.
    Chambers, J. K., Tokuda, T., Uchida, K., Ishii, R., Tatebe, H., Takahashi, E., Tomiyama, T., Une, Y., and Nakayama, H. (2015) The domestic cat as a natural animal model of Alzheimer’s disease, Acta Neuropathol. Commun., 3, 78.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Heilbroner, P. L., and Kemper, T. L. (1990) The cytoarchitectonic distribution of senile plaques in three aged monkeys, Acta Neuropathol., 81, 60–65.PubMedCrossRefGoogle Scholar
  142. 142.
    Rosen, R. F., Farberg, A. S., Gearing, M., Dooyema, J., Long, P. M., Anderson, D. C., Davis-Turak, J., Coppola, G., Geschwind, D. H., Pare, J. F., Duong, T. Q., Hopkins, W. D., Preuss, T. M., and Walker, L. C. (2008) Tauopathy with paired helical filaments in an aged chimpanzee, J. Comp. Neurol., 509, 259–270.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Sherwood, C. C., Gordon, A. D., Allen, J. S., Phillips, K. A., Erwin, J. M., Hof, P. R., and Hopkins, W. D. (2011) Aging of the cerebral cortex differs between humans and chimpanzees, Proc. Natl. Acad. Sci. USA, 108, 13029–13034.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Blard, O., Feuillette, S., Bou, J., Chaumette, B., Frebourg, T., Campion, D., and Lecourtois, M. (2007) Cytoskeleton proteins are modulators of mutant tauinduced neurodegeneration in Drosophila, Hum. Mol. Genet., 16, 555–566.PubMedCrossRefGoogle Scholar
  145. 145.
    Zhang, C. C., Xing, A., Tan, M. S., Tan, L., and Yu, J. T. (2016) The role of MAPT in neurodegenerative diseases: genetics, mechanisms and therapy, Mol. Neurobiol., 53, 4893–4904.PubMedCrossRefGoogle Scholar
  146. 146.
    Khatoon, S., Grundke-Iqbal, I., and Iqbal, K. (1992) Brain levels of microtubule-associated protein tau are elevated in Alzheimer’s disease: a radioimmuno-slot-blot assay for nanograms of the protein, J. Neurochem., 59, 750–753.PubMedCrossRefGoogle Scholar
  147. 147.
    Boutajangout, A., Boom, A., Leroy, K., and Brion, J. P. (2004) Expression of tau mRNA and soluble tau isoforms in affected and non-affected brain areas in Alzheimer’s disease, FEBS Lett., 576, 183–189.PubMedCrossRefGoogle Scholar
  148. 148.
    Andorfer, C., Kress, Y., Espinoza, M., De Silva, R., Tucker, K. L., Barde, Y. A., Duff, K., and Davies, P. (2003) Hyperphosphorylation and aggregation of tau in mice expressing normal human tau isoforms, J. Neurochem., 86, 582–590.PubMedCrossRefGoogle Scholar
  149. 149.
    Tiraboschi, P., Hansen, L. A., Thal, L. J., and CoreyBloom, J. (2004) The importance of neuritic plaques and tangles to the development and evolution of AD, Neurology, 62, 1984–1989.PubMedCrossRefGoogle Scholar
  150. 150.
    Grueninger, F., Bohrmann, B., Czech, C., Ballard, T. M., Frey, J. R., Weidensteiner, C., Von Kienlin, M., and Ozmen, L. (2010) Phosphorylation of Tau at S422 is enhanced by Abeta in TauPS2APP triple transgenic mice, Neurobiol. Dis., 37, 294–306.PubMedCrossRefGoogle Scholar
  151. 151.
    Song, M. S., Rauw, G., Baker, G. B., and Kar, S. (2008) Memantine protects rat cortical cultured neurons against beta-amyloid-induced toxicity by attenuating tau phosphorylation, Eur. J. Neurosci., 28, 1989–2002.PubMedCrossRefGoogle Scholar
  152. 152.
    Rapoport, M., Dawson, H. N., Binder, L. I., Vitek, M. P., and Ferreira, A. (2002) Tau is essential to beta-amyloidinduced neurotoxicity, Proc. Natl. Acad. Sci. USA, 99, 6364–6369.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Bigio, E. H., Vono, M. B., Satumtira, S., Adamson, J., Sontag, E., Hynan, L. S., White, C. L., Baker, M., and Hutton, M. (2001) Cortical synapse loss in progressive supranuclear palsy, J. Neuropathol. Exp. Neurol., 60, 403410.Google Scholar
  154. 154.
    Lipton, A. M., Cullum, C. M., Satumtira, S., Sontag, E., Hynan, L. S., White, C. L., and Bigio, E. H. (2001) Contribution of asymmetric synapse loss to lateralizing clinical deficits in frontotemporal dementias, Arch. Neurol., 58, 1233–1239.PubMedCrossRefGoogle Scholar
  155. 155.
    Roberson, E. D., Halabisky, B., Yoo, J. W., Yao, J., Chin, J., Yan, F., Wu, T., Hamto, P., Devidze, N., Yu, G. Q., Palop, J. J., Noebels, J. L., and Mucke, L. (2011) Amyloid-ß/Fyn-induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of Alzheimer’s disease, J. Neurosci., 31, 700–711.PubMedGoogle Scholar
  156. 156.
    Holmes, C., Boche, D., Wilkinson, D., Yadegarfar, G., Hopkins, V., Bayer, A., Jones, R. W., Bullock, R., Love, S., Neal, J. W., Zotova, E., and Nicoll, J. A. (2008) Longterm effects of Abeta42 immunization in Alzheimer’s disease: follow-up of a randomized, placebo-controlled phase I trial, Lancet, 372, 216–223.PubMedCrossRefGoogle Scholar
  157. 157.
    Bennett, D. A., Schneider, J. A., Wilson, R. S., Bienias, J. L., and Arnold, S. E. (2004) Neurofibrillary tangles mediate the association of amyloid load with clinical Alzheimer disease and level of cognitive function, Arch. Neurol., 61, 378–384.PubMedCrossRefGoogle Scholar
  158. 158.
    Tiraboschi, P., Sabbagh, M. N., Hansen, L. A., Salmon, D. P., Merdes, A., Gamst, A., Masliah, E., Alford, M., Thal, L. J., and Corey-Bloom, J. (2004) Alzheimer disease without neocortical neurofibrillary tangles: “a second look”, Neurology, 62, 1141–1147.PubMedCrossRefGoogle Scholar
  159. 159.
    Berg, L., McKeel, D. W., Jr., Miller, J. P., Storandt, M., Rubin, E. H., Morris, J. C., Baty, J., Coats, M., Norton, J., Goate, A. M., Price, J. L., Gearing, M., Mirra, S. S., and Saunders, A. M. (1998) Clinicopathologic studies in cognitively healthy aging and Alzheimer’s disease: relation of histologic markers to dementia severity, age, sex, and apolipoprotein E genotype, Arch. Neurol., 55, 326–335.Google Scholar
  160. 160.
    Graeber, M. B., Kosel, S., Egensperger, R., Banati, R. B., Muller, U., Bise, K., Hoff, P., Moller, H. J., Fujisawa, K., and Mehraein, P. (1997) Rediscovery of the case described by Alois Alzheimer in 1911: historical, histological and molecular genetic analysis, Neurogenetics, 1, 73–80.PubMedGoogle Scholar
  161. 161.
    Stamer, K., Vogel, R., Thies, E., Mandelkow, E., and Mandelkow, E. M. (2002) Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress, J. Cell. Biol., 156, 1051–1063.PubMedGoogle Scholar
  162. 162.
    Matrone, C., Barbagallo, A. P., La Rosa, L. R., Florenzano, F., Ciotti, M. T., Mercanti, D., Chao, M. V., Calissano, P., and D’Adamio, L. (2011) APP is phosphorylated by TrkA and regulates NGF/TrkA signaling, J. Neurosci., 31, 11756–11761.Google Scholar
  163. 163.
    Kumar, S., and Walter, J. (2011) Phosphorylation of amyloid beta (Aß) peptides -a trigger for formation of toxic aggregates in Alzheimer’s disease, Aging, 3, 803–812.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Askanas, V., Engel, W. K., and Nogalska, A. (2009) Inclusion body myositis: a degenerative muscle disease associated with intra-muscle fiber multi-protein aggregates, proteasome inhibition, endoplasmic reticulum stress and decreased lysosomal degradation, Brain Pathol., 19, 493–506.Google Scholar
  165. 165.
    Choi, S. H., Kim, Y. H., Hebisch, M., Sliwinski, C., Lee, S., D’Avanzo, C., Chen, H., Hooli, B., Asselin, C., Muffat, J., Klee, J. B., Zhang, C., Wainger, B. J., Peitz, M., Kovacs, D. M., Woolf, C. J., Wagner, S. L., Tanzi, R. E., and Kim, D. Y. (2014) A three-dimensional human neural cell culture model of Alzheimer’s disease, Nature, 515, 274–278.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • T. V. Andreeva
    • 1
    • 2
  • W. J. Lukiw
    • 3
    • 4
    • 5
  • E. I. Rogaev
    • 1
    • 2
    • 6
    • 7
  1. 1.Vavilov Institute of General GeneticsRussian Academy of SciencesMoscowRussia
  2. 2.Center for Brain Neurobiology and Neurogenetics, Institute of Cytology and GeneticsSiberian Branch of the Russian Academy of SciencesNovosibirskRussia
  3. 3.Louisiana State University Health Science CenterLSU Neuroscience CenterNew OrleansUSA
  4. 4.Department of OphthalmologyLouisiana State University Health Science CenterNew OrleansUSA
  5. 5.Department of NeurologyLouisiana State University Health Science CenterNew OrleansUSA
  6. 6.Department of PsychiatryUniversity of Massachusetts Medical School, Brudnick Neuropsychiatric Research InstituteWorcesterUSA
  7. 7.Lomonosov Moscow State UniversitySchool of Bioengineering and BioinformaticsMoscowRussia

Personalised recommendations