Advertisement

Biochemistry (Moscow)

, Volume 82, Issue 2, pp 89–94 | Cite as

Regulatory peptides in plants

  • B. F. VanyushinEmail author
  • V. V. Ashapkin
  • N. I. Aleksandrushkina
Review

Abstract

Many different peptides regulating cell differentiation, growth, and development are found in plants. Peptides participate in regulation of plant ontogenesis starting from pollination, pollen tube growth, and the very early stages of embryogenesis, including formation of embryo and endosperm. They direct differentiation of meristematic stem cells, formation of tissues and individual organs, take part in regulation of aging, fruit maturation, and abscission of plant parts associated with apoptosis. Biological activity of peptides is observed at very low concentrations, and it has mainly signal nature and hormonal character. “Mature” peptides appear mainly due to processing of protein precursors with (or without) additional enzymatic modifications. Plant peptides differ in origin, structure, and functional properties. Their specific action is due to binding with respective receptors and interactions with various proteins and other factors. Peptides can also regulate physiological functions by direct peptide–protein interactions. Peptide action is coordinated with the action of known phytohormones (auxins, cytokinins, and others); thus, peptides control phytohormonal signal pathways.

Keywords

regulatory peptides cell differentiation plant growth and development phytohormones 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Motomitsu, A., Sawa, S., and Ishida, T. (2015) Plant peptide hormone signaling, Essays Biochem., 58, 115–131.CrossRefPubMedGoogle Scholar
  2. 2.
    Czyzewicz, N., Yue, K., Beeckman, T., and De Smet, I. (2013) Message in a bottle: small signaling peptide outputs during growth and development, J. Exp. Bot., 64, 52815296.CrossRefGoogle Scholar
  3. 3.
    Tavormina, P., De Coninck, B., Nikonorova, N., De Smet, I., and Cammue, B. (2015) The plant peptidome: an expanding repertoire of structural features and biological functions, Plant Cell, 27, 2095–2118.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Pearce, G., Moura, D. S., Stratmann, J., and Ryan, C. A. (2001) Production of multiple plant hormones from a single polyprotein precursor, Nature, 411, 817–820.CrossRefPubMedGoogle Scholar
  5. 5.
    Hanada, K., Higuchi-Takeuchi, M., Okamoto, M., Yoshizumi, T., Shimizu, M., Nakaminami, K., Nishi, R., Ohashi, C., Iida, K., Tanaka, M., Horii, Y., Kawashima, M., Matsui, K., Toyoda, T., Shinozaki, K., Seki, M., and Matsui, M. (2013) Small open reading frames associated with morphogenesis are hidden in plant genomes, Proc. Natl. Acad. Sci. USA, 110, 2395–2400.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lauressergues, D., Couzigou, J.-M., Clemente, H. S., Martinez, Y., Dunand, C., Becard, G., and Combier, J.-P. (2015) Primary transcripts of microRNAs encode regulatory peptides, Nature, 520, 90–93.CrossRefPubMedGoogle Scholar
  7. 7.
    Haruta, M., Sabat, G., Stecker, K., Minkoff, B. B., and Sussman, M. R. (2014) A peptide hormone and its receptor protein kinase regulate plant cell expansion, Science, 343, 408–411.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Butenko, M. A., Wildhagen, M., Albert, M., Jehle, A., Kalbacher, H., Aalen, R. B., and Felix, G. (2014) Tools and strategies to match peptide-ligand receptor pairs, Plant Cell, 26, 1838–1847.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Yamaguchi, Y. L., Ishida T., and Sawa, S. (2016) CLE peptides and their signaling pathways in plant development, J. Exp. Bot., 67, 4813–4826.CrossRefPubMedGoogle Scholar
  10. 10.
    Matsubayashi, Y. (2014) Posttranslationally modified small-peptide signals in plants, Annu. Rev. Plant Biol., 65, 385–413.CrossRefPubMedGoogle Scholar
  11. 11.
    Murphy, E., Smith, S., and DeSmet, I. (2012) Small signaling peptides in Arabidopsis development: how cells communicate over a short distance, Plant Cell, 24, 3198–3217.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Zhang, H., Lin, X., Han, Z., Qu, L.-J., and Chai, J. (2016) Crystal structure of PXY-TDIF complex reveals a conserved recognition mechanism among CLE peptide-receptor pairs, Cell Res., 26, 543–555.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Komori, R., Amano, Y., Ogawa-Ohnishi, M., and Matsubayashi, Y. (2009) Identification of tyrosylprotein sulfotransferase in Arabidopsis, Proc. Natl. Acad. Sci. USA, 106, 15067–15072.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ito, Y., Nakanomyo, I., Motose, H., Iwamoto, K., Sawa, S., Dohmae, N., and Fukuda, H. (2006) Dodeca-CLE peptides as suppressors of plant stem cell differentiation, Science, 313, 842–845.CrossRefPubMedGoogle Scholar
  15. 15.
    Strabala, T. J., Phillips, L., West, M., and Stanbra, L. (2014) Bioinformatic and phylogenetic analysis of the CLAVATA3/EMBRYOSURROUNDING REGION (CLE) and the CLE-like signal peptide genes in the Pinophyta, BMC Plant Biol., 14, 47.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Oelkers, K., Goffard, N., Weiller, G. F., Gresshoff, P. M., Mathesius, U., and Frickey, T. (2008) Bioinformatic analysis of the CLE signaling peptide family, BMC Plant Biol., 8, 1–15.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Gancheva, M. S., Dodueva, I. E., Lebedeva, M. A., Tvorogova, V. E., Tkachenko, A. A., and Lutova, L. A. (2016) Identification, expression, and functional analysis of CLE genes in radish (Raphanus sativus L.) storage root, BMC Plant Biol., 16, Suppl. 1, 7.CrossRefGoogle Scholar
  18. 18.
    Miyawaki, K., Tabata, R., and Sawa, S. (2013) Evolutionarily conserved CLE peptide signaling in plant development, symbiosis, and parasitism, Curr. Opin. Plant Biol., 16, 598–606.CrossRefPubMedGoogle Scholar
  19. 19.
    Kinoshita, A., Nakamura, Y., Sasaki, E., Kyozuka, J., Fukuda, H., and Sawa, S. (2007) Gain-of-function phenotypes of chemically synthetic CLAVATA3/ESR-related (CLE) peptides in Arabidopsis thaliana and Oryza sativa, Plant Cell Physiol., 48, 1821–1825.CrossRefPubMedGoogle Scholar
  20. 20.
    Guo, H., Zhang, W., Tian, H., Zheng, K., Dai, X., Liu, S., Hu, Q., Wang, X., Liu, B., and Wang, S. (2015) An auxin responsive CLE gene regulates shoot apical meristem development in Arabidopsis, Front. Plant Sci., 6, 295.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Mortier, V., DeWever, E., Vuylsteke, M., Holsters, M., and Goormachtig, S. (2012) Nodule numbers are governed by interaction between CLE peptides and cytokinin signaling, Plant J., 70, 367–376.CrossRefPubMedGoogle Scholar
  22. 22.
    Araya, T., Miyamoto, M., Wibowo, J., Suzuki, A., Kojima, S., Tsuchiya, Y. N., Sawa, S., Fukuda, H., Von Wiren, N., and Takahashi, H. (2014) CLE-CLAVATA1 peptide-receptor signaling module regulates the expansion of plant root systems in a nitrogen-dependent manner, Proc. Natl. Acad. Sci. USA, 111, 2029–2034.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kanaoka, M., and Higashiyama, T. (2015) Peptide signaling in pollen tube guidance, Curr. Opin. Plant Biol., 28, 127–136.CrossRefPubMedGoogle Scholar
  24. 24.
    Endo, S., Shinohara, H., Matsubayashi, Y., and Fukuda, H. (2013) A novel pollen-pistil interaction conferring high-temperature tolerance during reproduction via CLE45 signaling, Curr. Biol., 23, 1670–1676.CrossRefPubMedGoogle Scholar
  25. 25.
    Tang, J., Han, Z., Sun, Y., Zhang, H., Gong, X., and Chai, J. (2015) Structural basis for recognition of an endogenous peptide by the plant receptor kinase PEPR1, Cell Res., 25, 110–120.CrossRefPubMedGoogle Scholar
  26. 26.
    Wang, J., Li, H., Han, Z., Zhang, H., Wang, T., and Lin, G. (2015) Allosteric receptor activation by the plant peptide hormone phytosulfokine, Nature, 525, 265–2688.CrossRefPubMedGoogle Scholar
  27. 27.
    Shiu, S. H., and Bleecker, A. B. (2003) Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis, Plant Physiol., 132, 530–543.CrossRefPubMedGoogle Scholar
  28. 28.
    Gish, L. A., and Clark, S. E. (2011) The RLK/Pelle family of kinases, Plant J., 66, 117–127.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ghorbani, S., Lin, Y. C., Parizot, B., Fernandez, A., Njo, M. F., Van de Peer, Y., Beeckman, T., and Hilson, P. (2015) Expanding the repertoire of secretory peptides controlling root development with comparative genome analysis and functional assays, J. Exp. Bot., 66, 5257–5269.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Wang, G., Zhang, G., and Wu, M. (2016) CLE peptide signaling and crosstalk with phytohormones and environmental stimuli, Front Plant Sci., 6, 1211.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Kondo, Y., Hirakawa, Y., Kieber, J. J., and Fukuda, H. (2011) CLE peptides can negatively regulate protoxylem vessel formation via cytokinin signaling, Plant Cell Physiol., 52, 37–48.CrossRefPubMedGoogle Scholar
  32. 32.
    Pallakies, H., and Simon, R. (2014) The CLE40 and CRN/CLV2 signaling pathways antagonistically control root meristem growth in Arabidopsis, Mol. Plant, 7, 16191636.CrossRefGoogle Scholar
  33. 33.
    Bisson, M. M. A., Kessenbrock, M., Muller, L., Hofmann, A., Schmitz, F., Cristescu, S. M., and Groth, G. (2016) Peptides interfering with protein-protein interactions in the ethylene signaling pathway delay tomato fruit ripening, Sci. Rep., 6, 30634.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Pearce, G., Strydom, D., Johnson, S., and Ryan, C. A. (1991) A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins, Science, 253, 895–898.CrossRefPubMedGoogle Scholar
  35. 35.
    Estornell, L. H., Wildhagen, M., Perez-Amador, M. A., Talyn, M., Tadeo, F., and Butenko, M. A. (2015) The IDA peptide controls abscission in Arabidopsis and Citrus, Front. Plant Sci., 6, 1003.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Khavinson, V. Kh., and Malinin, V. V. (2005) Gerontological Aspects of Genome Peptide Regulation, Karger AG,Basel, p. 104.Google Scholar
  37. 37.
    Khavinson, V. Kh., Tendler, S. M., Vanyushin, B. F., Kasyanenko, N. A., Kvetnoy, I. M., Linkova, N. S., Ashapkin, V. V., Polyakova, V. O., Basharina, V. S., and Bernadotte, A. (2014) Peptide regulation of gene expression and protein synthesis in bronchial epithelium, Lung, 192, 781–791.CrossRefPubMedGoogle Scholar
  38. 38.
    Khavinson, V. Kh., Tendler, S. M., Kasyanenko, N. A., Tarnovskaya, S. I., Linkova, N. S., Ashapkin, V. V., Yakutseni, P. P., and Vanyushin, B. F. (2015) Tetrapeptide KEDW interacts with DNA and regulates gene expression, Am. J. Biomed. Sci., 7, 156–169.CrossRefGoogle Scholar
  39. 39.
    Khavinson, V. Kh., Fedoreeva, L. I., and Vanyushin, B. F. (2011) Short peptides modulate the effect of endonucleases of wheat seedlings, Dokl. Akad. Nauk, 437, 124–127.Google Scholar
  40. 40.
    Mancinelli, L., De Angelis, P. M., Annulli, L., Padovini, V., Elgjo, K., and Gianfranceschi, G. L. (2009) A class of DNA-binding peptides from wheat bud causes growth inhibition, G2 cell cycle arrest and apoptosis induction in HeLa cells, Mol. Cancer, 8, 55.PubMedGoogle Scholar
  41. 41.
    Fedoreeva, L. I., Dilovarova, T. A., Ashapkin, V. V., Martirosyan, Yu. Ts., Khavinson, V. Kh., Kharchenko, P. N., and Vanyushin, B. F. (2017) Short exogenous peptides regulate the expression of genes from CLE, KNOX1 and GRF families in Nicotiana tabacum, Biochemistry (Moscow), in press.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • B. F. Vanyushin
    • 1
    • 2
    Email author
  • V. V. Ashapkin
    • 1
  • N. I. Aleksandrushkina
    • 1
  1. 1.Lomonosov Moscow State UniversityBelozersky Institute of Physico-Chemical BiologyMoscowRussia
  2. 2.All-Russia Research Institute of Agricultural BiotechnologyRussian Academy of SciencesMoscowRussia

Personalised recommendations