Biochemistry (Moscow)

, Volume 82, Issue 1, pp 46–59 | Cite as

Functioning of yeast Pma1 H+-ATPase under changing charge: Role of Asp739 and Arg811 residues

  • V. V. PetrovEmail author


The plasma membrane Pma1 H+-ATPase of the yeast Saccharomyces cerevisiae contains conserved residue Asp739 located at the interface of transmembrane segment M6 and the cytosol. Its replacement by Asn or Val (Petrov et al. (2000) J. Biol. Chem., 275, 15709-15716) or by Ala (Miranda et al. (2011) Biochim. Biophys. Acta, 1808, 1781-1789) caused complete blockage of biogenesis of the enzyme, which did not reach secretory vesicles. It was proposed that a strong ionic bond (salt bridge) could be formed between this residue and positively charged residue(s) in close proximity, and the replacement D739A disrupted this bond. Based on a 3D homology model of the enzyme, it was suggested that the conserved Arg811 located in close proximity to Asp739 could be such stabilizing residue. To test this suggestion, single mutants with substituted Asp739 (D739V, D739N, D739A, and D739R) and Arg811 (R811L, R811M, R811A, and R811D) as well as double mutants carrying charge-neutralizing (D739A/R811A) or charge-swapping (D739R/R811D) substitutions were used. Expression of ATPases with single substitutions R811A and R811D were 38-63%, and their activities were 29-30% of the wild type level; ATP hydrolysis and H+ transport in these enzymes were essentially uncoupled. For the other substitutions including the double mutations, the biogenesis of the enzyme was practically blocked. These data confirm the important role of Asp739 and Arg811 residues for the biogenesis and function of the enzyme, suggesting their importance for defining H+ transport determinants but ruling out, however, the existence of a strong ionic bond (salt bridge) between these two residues and/or importance of such bridge for structure–function relationships in Pma1 H+-ATPase.


yeast plasma membrane secretory vesicles Pma1 H+-ATPase transmembrane segments H+ transport sitedirected mutagenesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Serrano, R., Kielland-Brandt, M. C., and Fink, G. R. (1986) Yeast plasma membrane ATPase is essential for growth and has homology with (Na+,K+)K+and Ca2+ATPases, Nature, 319, 689–693.CrossRefPubMedGoogle Scholar
  2. 2.
    Lutsenko, S., and Kaplan, J. H. (1995) Organization of Ptype ATPases: significance of structural diversity, Biochemistry, 34, 15607–15613.CrossRefPubMedGoogle Scholar
  3. 3.
    Axelsen, K. B., and Palmgren, M. G. (1998) Evolution of substrate specificities in the P-type ATPase superfamily, J. Mol. Evol., 46, 84–101.CrossRefPubMedGoogle Scholar
  4. 4.
    Petrov, V. V., and Okorokov, L. A. (1992) Energization of yeast plasmalemma is necessary for activation of its ase by glucose, Biokhimiya (Moscow), 57, 1705–1711.Google Scholar
  5. 5.
    Goffeau, A., and Slayman, C. W. (1981) The protontranslocating ATPase of the fungal plasma membrane, Biochim. Biophys. Acta, 639, 197–223.CrossRefPubMedGoogle Scholar
  6. 6.
    Andersen, J. P., and Vilsen, B. (1994) Amino acids Asn796 and Thr799 of the Ca2+-ATPase of sarcoplasmic reticulum bind Ca2+ at different sites, J. Biol. Chem., 269, 15931–15936.PubMedGoogle Scholar
  7. 7.
    Rice, W. J., and MacLennan, D. H. (1996) Scanning mutagenesis reveals a similar pattern of mutation sensitivity in transmembrane sequences M4, M5, and M6, but not in M8, of the Ca2+-ATPase of sarcoplasmic reticulum (SERCA1a), J. Biol. Chem., 271, 31412–31419.Google Scholar
  8. 8.
    Zhang, Z., Lewis, D., Strock, C., Inesi, G., Nakasako, M., Nomura, H., and Toyoshima, C. (2000) Detailed characterization of the cooperative mechanism of Ca2+ binding and catalytic activation in the Ca2+ transport (SERCA) ATPase, Biochemistry, 39, 8758–8767.CrossRefPubMedGoogle Scholar
  9. 9.
    Vilsen, B., and Andersen, J. P. (1998) Mutation to the glutamate in the fourth membrane segment of Na+,K+ATPase and Ca2+-ATPase affects cation binding from both sides of the membrane and destabilizes the occluded enzyme forms, Biochemistry, 37, 10961–10971.CrossRefPubMedGoogle Scholar
  10. 10.
    Jewell-Motz, E. A., and Lingrel, J. B. (1993) Site-directed mutagenesis of the Na,K-ATPase: consequences of substitutions of negatively-charged amino acids localized in the transmembrane domains, Biochemistry, 32, 13523–13530.CrossRefPubMedGoogle Scholar
  11. 11.
    Kuntzweiler, T. A., Arguello, J. M., and Lingrel, J. B. (1996) Asp804 and Asp808 in the transmembrane domain of the Na,K-ATPase a subunit are cation coordinating residues, J. Biol. Chem., 271, 29682–29687.CrossRefPubMedGoogle Scholar
  12. 12.
    Nielsen, J. M., Pedersen, P. A., Karlish, S. J. D., and Jorgensen, P. L. (1998) Importance of intramembrane carboxylic acids for occlusion of K+ ions at equilibrium in renal Na,K-ATPase, Biochemistry, 37, 1961–1968.CrossRefPubMedGoogle Scholar
  13. 13.
    Swarts, H. G., Klaassen, C. H., De Boer, M., Fransen, J. A., and De Pont, J. J. (1996) Role of negatively charged residues in the fifth and sixth transmembrane domains of the catalytic subunit of gastric H+,K+-ATPase, J. Biol. Chem., 271, 29764–29772.CrossRefPubMedGoogle Scholar
  14. 14.
    Hermsen, H. P., Koenderink, J. B., Swarts, H. G., and De Pont, J. J. (1998) The negative charge of glutamic acid-795 is essential for gastric H+,K+-ATPase activity, Biochemistry, 39, 1330–1337.CrossRefGoogle Scholar
  15. 15.
    Hermsen, H. P., Swarts, H. G., Koenderink, J. B., and De Pont, J. J. (2000) The carbonyl group of glutamic acid-820 in the gastric H+,K+-ATPase alpha-subunit is essential for K+ activation of the enzyme activity, Biochem. J., 331, 465472.Google Scholar
  16. 16.
    Swarts, H. G. P., Koenderink, J. B., Willems, P. H., Krieger, E., and De Pont, J. J. (2005) Asn792 participates in the hydrogen bond network around the K+-binding pocket of gastric H,K-ATPase, J. Biol. Chem., 280, 1148811494.Google Scholar
  17. 17.
    Asano, S., Io, T., Kimura, T., Sakamoto, S., and Takeguchi, N. (2001) Alanine-scanning mutagenesis of the sixth transmembrane segment of gastric H+,K+-ATPase alpha-subunit, J. Biol. Chem., 276, 31265–31273.CrossRefPubMedGoogle Scholar
  18. 18.
    Asano, S., Morii, M., and Takeguchi, N. (2004) Molecular and cellular regulation of the gastric pump, Biol. Pharm. Bull., 27, 1–12.CrossRefPubMedGoogle Scholar
  19. 19.
    Buch-Pedersen, M. J., Venema, K., Serrano, R., and Palmgren, M. G. (2000) Abolishment of proton pumping and accumulation in the E1P conformational state of a plant plasma membrane H+-ATPase by substitution of a conserved aspartyl residue in transmembrane segment 6, J. Biol. Chem., 275, 39167–39173.CrossRefPubMedGoogle Scholar
  20. 20.
    Buch-Pedersen, M. J., and Palmgren, M. G. (2003) Conserved Asp684 in transmembrane segment M6 of the plant plasma membrane P-type proton pump AHA2 is molecular determinant of proton translocation, J. Biol. Chem., 278, 17845–17851.CrossRefPubMedGoogle Scholar
  21. 21.
    Wei, Y., Chen, J., Rosas, G., Tompkins, D. A., Holt, P. A., and Rao, R. (2000) Phenotypic screening of mutations in Pmr1, the yeast secretory pathway Ca2+/Mn2+-ATPase, reveals residues critical for ion selectivity and transport, J. Biol. Chem., 275, 23927–23932.CrossRefPubMedGoogle Scholar
  22. 22.
    Mandal, D., Woolf, T. B., and Rao, R. (2000) Manganese selectivity of pmr1, the yeast secretory pathway ion pump, is defined by residue Gln783 in transmembrane segment 6. Residue Asp778 is essential for cation transport, J. Biol. Chem., 275, 23933–23938.PubMedGoogle Scholar
  23. 23.
    Ambesi, A., Pan, R. L., and Slayman, C. W. (1996) Alanine-scanning mutagenesis along membrane segment 4 of the yeast plasma membrane H+-ATPase. Effects on structure and function, J. Biol. Chem., 271, 22999–23005.CrossRefPubMedGoogle Scholar
  24. 24.
    Dutra, M. B., Ambesi, A., and Slayman, C. W. (1998) Structure-function relationships in membrane segment 5 of the yeast Pma1 H+-ATPase, J. Biol. Chem., 273, 17411–17417.CrossRefPubMedGoogle Scholar
  25. 25.
    Petrov, V. V., Padmanabha, K. P., Nakamoto, R. K., Allen, K. E., and Slayman, C. W. (2000) Functional role of charged residues in the transmembrane segments of the yeast plasma membrane H+-ATPase, J. Biol. Chem., 275, 15709–15716.CrossRefPubMedGoogle Scholar
  26. 26.
    Guerra, G., Petrov, V. V., Allen, K. E., Miranda, M., Pardo, J. P., and Slayman, C. W. (2007) Role of transmembrane segment M8 in the biogenesis and function of yeast plasma-membrane H+-ATPase, Biochim. Biophys. Acta, 1768, 2383–2392.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Miranda-Arango, M., Pardo, J. P., and Petrov, V. V. (2009) Role of transmembrane segment M6 in the biogenesis and function of the yeast Pma1 H+-ATPase, J. Biomol. Struct. Dyn., 26, 866–868.Google Scholar
  28. 28.
    Petrov, V. V. (2009) Heat shock affects functioning of the yeast Pma1 H+-ATPase, J. Biomol. Struct. Dyn., 26, 857–858.Google Scholar
  29. 29.
    Petrov, V. V. (2010) Point mutations in Pma1 H+-ATPase of Saccharomyces cerevisiae: influence on its expression and activity, Biochemistry (Moscow), 75, 1055–1064.CrossRefGoogle Scholar
  30. 30.
    Miranda, M., Pardo, J. P., and Petrov, V. V. (2011) Structure-function relationships in membrane segment 6 of the yeast plasma membrane Pma1 H+-ATPase, Biochim. Biophys. Acta, 1808, 1781–1789.CrossRefPubMedGoogle Scholar
  31. 31.
    Petrov, V. V. (2011) Role of M5-M6 loop in the biogenesis and function of the yeast Pma1 H+-ATPase, J. Biomol. Struct. Dyn., 28, 1024–1025.Google Scholar
  32. 32.
    Petrov, V. V. (2015) Point mutations in the extracytosolic loop between transmembrane segments M5 and M6 of the yeast Pma1 H+-ATPase: alanine-scanning mutagenesis, J. Biomol. Struct. Dyn., 33, 70–84.CrossRefPubMedGoogle Scholar
  33. 33.
    Petrov, V. V. (2015) Role of loop L5-6 connecting transmembrane segments M5 and M6 in biogenesis and functioning of yeast Pma1 H+-ATPase, Biochemistry (Moscow), 80, 31–44.CrossRefGoogle Scholar
  34. 34.
    Toyosima, C., Nakasako, M., Nomura, H., and Ogawa, H. (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution, Nature, 405, 647–655.CrossRefGoogle Scholar
  35. 35.
    Toyosima, C., and Nomura, H. (2002) Structural changes in the calcium pump accompanying the dissociation of calcium, Nature, 418, 605–611.CrossRefGoogle Scholar
  36. 36.
    Takahashi, M., Kondou, Y., and Toyoshima, C. (2007) Interdomain communication in calcium pump as revealed in the crystal structures with transmembrane inhibitors, Proc. Natl. Acad. Sci. USA, 104, 5800–5805.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Toyoshima, C., Norimatsu, Y., Iwasawa, S., Tsuda, T., and Ogawa, H. (2007) How processing of aspartyl phosphate is coupled to lumenal gating of the ion pathway in the calcium pump, Proc. Natl. Acad. Sci. USA, 104, 19831–19836.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Toyoshima, C. (2008) Structural aspects of ion pumping by Ca2+-ATPase of sarcoplasmic reticulum, Arch. Biochem. Biophys., 476, 3–11.CrossRefPubMedGoogle Scholar
  39. 39.
    Toyoshima, C., Iwasawa, S., Ogawa, H., Hirata, A., Tsueda, J., and Inesi, G. (2013) Crystal structures of the calcium pump and sarcolipin in the Mg2+-bound E1 state, Nature, 495, 260–264.CrossRefPubMedGoogle Scholar
  40. 40.
    Morth, J. P., Pedersen, B. P., Toustrup-Jensen, M. S., Sorensen, T. L., Petersen, J., Andersen, J. P., Vilsen, B., and Nissen, P. (2007) Crystal structure of the sodiumpotassium pump, Nature, 450, 1043–1049.CrossRefPubMedGoogle Scholar
  41. 41.
    Shinoda, T., Ogawa, H., Cornelius, F., and Toyosima, C. (2009) Crystal structure of the sodium-potassium pump at 2.4 Å resolution, Nature, 459, 446–450.CrossRefPubMedGoogle Scholar
  42. 42.
    Ogawa, H., Shinoda, T., Cornelius, F., and Toyoshima, C. (2009) Crystal structure of the sodium-potassium pump (Na+,K+-ATPase) with bound potassium and ouabain, Proc. Natl. Acad. Sci. USA, 106, 13742–13747.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Nyblom, M., Poulsen, H., Gourdon, P., Reinhard, L., Andersson, M., Lindahl, E., Fedosova, N., and Nissen, P. (2013) Crystal structure of Na+, K+-ATPase in the Na+bound state, Science, 342, 123–127.PubMedGoogle Scholar
  44. 44.
    Kanai, R., Ogawa, H., Vilsen, B., Cornelius, F., and Toyoshima, C. (2013) Crystal structure of a Na+-bound Na+,K+-ATPase preceding the E1P state, Nature, 502, 201206.CrossRefGoogle Scholar
  45. 45.
    Pedersen, B. P., Buch-Pedersen, M., Morth, J. J. P., Palmgren, M. G., and Nissen, P. (2007) Crystal structure of the plasma membrane proton pump, Nature, 450, 11111114.CrossRefGoogle Scholar
  46. 46.
    Gupta, S. S., DeWitt, N. D., Allen, K. E., and Slayman, C. W. (1998) Evidence for a salt bridge between transmembrane segments 5 and 6 of the yeast plasma-membrane H+ATPase, J. Biol. Chem., 273, 34328–34334.CrossRefPubMedGoogle Scholar
  47. 47.
    Nakamoto, R. K., Rao, R., and Slayman, C. W. (1991) Expression of the yeast plasma membrane H+-ATPase in secretory vesicles. A new strategy for directed mutagenesis, J. Biol. Chem., 266, 7940–7949.PubMedGoogle Scholar
  48. 48.
    Petrov, V. V., and Slayman, C. W. (1995) Site-directed mutagenesis of the yeast PMA1 H+-ATPase. Structural and functional role of cysteine residues, J. Biol. Chem., 270, 28535–28540.CrossRefPubMedGoogle Scholar
  49. 49.
    Fabiato, A., and Fabiato, F. (1979) Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells, J. Physiol. (Paris), 75, 463–505.Google Scholar
  50. 50.
    Fiske, C. H., and Subbarow, Y. (1925) The colorimetric determination of phosphorus, J. Biol. Chem., 66, 375–400.Google Scholar
  51. 51.
    Bensadoun, A., and Weinstein, D. (1976) Assay of proteins in the presence of interfering materials, Anal. Biochem., 70, 241–250.CrossRefPubMedGoogle Scholar
  52. 52.
    Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res., 22, 4673–4680.PubMedGoogle Scholar
  53. 53.
    Serrano, R. (1988) Structure and function of proton translocating ATPase in plasma membranes of plants and fungi, Biochim. Biophys. Acta, 947, 1–28.CrossRefPubMedGoogle Scholar
  54. 54.
    Ambesi, A., Miranda, M., Petrov, V. V., and Slayman, C. W. (2000) Biogenesis and function of the yeast plasma-membrane H+-ATPase, J. Exp. Biol., 203, 156–160.Google Scholar
  55. 55.
    Ferreira, T., Mason, A. B., Pypaert, M., Allen, K. E., and Slayman, C. W. (2002) Quality control in the yeast secretory pathway: a misfolded PMA1 H+-ATPase reveals two checkpoints, J. Biol. Chem., 277, 21027–21040.CrossRefPubMedGoogle Scholar
  56. 56.
    Mason, A. B., Allen, K. E., and Slayman, C. W. (2014) Cterminal truncations of the Saccharomyces cerevisiae PMA1 H+-ATPase have major impacts on protein conformation, trafficking, quality control, and function, Eukaryot. Cell, 13, 43–52.Google Scholar
  57. 57.
    Nakamoto, R. K., Verjovski-Almeida, S., Allen, K. E., Ambesi, A., Rao, R., and Slayman, C. W. (1998) Substitutions of aspartate 378 in the phosphorylation domain of the yeast PMA1 H+-ATPase disrupt protein folding and biogenesis, J. Biol. Chem., 273, 7338–7344.CrossRefPubMedGoogle Scholar
  58. 58.
    Dougherty, D. A. (2006) Modern Physical Organic Chemistry, University Science Books, Sausalito, CA.Google Scholar
  59. 59.
    Bairagya, H. R., Mukhopadhyay, B. P., and Bera, A. K. (2011) Role of salt bridge dynamics in inter domain recognition of human IMPDH isoforms: insight to inhibitor topology for isoform II, J. Biomol. Struct. Dyn., 29, 441–462.CrossRefPubMedGoogle Scholar
  60. 60.
    Bairagya, H. R., and Mukhopadhyay, B. P. (2013) An insight to the dynamics of conserved water-mediated salt bridge interaction and interdomain recognition in hIMPDH isoforms, J. Biomol. Struct. Dyn., 31, 788–808.CrossRefPubMedGoogle Scholar
  61. 61.
    Morozov, V. N., and Kallenbach, N. R. (1996) Stabilization of helical peptides by mixed spaced salt bridges, J. Biomol. Struct. Dyn., 14, 285–291.Google Scholar
  62. 62.
    Hendsch, Z. S., and Tidor, B. (1994) Do salt bridges stabilize proteins? A continuum electrostatic analysis, Protein Sci., 3, 211–226.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Sindelar, C. V., Hendsch, Z. S., and Tidor, B. (1998) Effects of salt bridges on protein structure and design, Protein Sci., 7, 1898–1914.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Strop, P., and Mayo, S. L. (2000) Contribution of surface salt bridges to protein stability, Biochemistry, 39, 1251–1255.CrossRefPubMedGoogle Scholar
  65. 65.
    Kumar, S., and Nussinov, R. (2002) Close-range electrostatic interactions in proteins, ChemBioChem, 3, 604–617.CrossRefPubMedGoogle Scholar
  66. 66.
    Kumar, S., Tsai, C.-J., Ma, B., and Nussinov, R. (2000) Contribution of salt bridges toward protein thermostability, J. Biomol. Struct. Dyn., 17, S1, 79–85.CrossRefPubMedGoogle Scholar
  67. 67.
    Panja, A. S., Bandopadhyay, B., and Maiti, S. (2015) Protein thermostability is owing to their preferences to non-polar smaller volume amino acids, variations in residual physico-chemical properties and more salt-bridges, PLoS, doi: 10.1371/journal.pone.0131495.Google Scholar
  68. 68.
    Frillingos, S., Sahin-Toth, M., Lengeler, J. W., and Kaback, H. R. (1995) Helix packing in the sucrose permease of Escherichia coli: properties of engineered charge pairs between helixes VII and XI, Biochemistry, 34, 9368–9373.CrossRefPubMedGoogle Scholar
  69. 69.
    Frillingos, S., and Kaback, H. R. (1995) Chemical rescue of Asp237>Ala and Lys358>Ala mutants in the lactose permease of Escherichia coli, Biochemistry, 35, 13363–13367.CrossRefGoogle Scholar
  70. 70.
    Weinglass, A., Whitelegge, J. P., Faull, K. F., and Kaback, H. R. (2004) Monitoring conformational rearrangements in the substrate-binding site of a membrane transport protein by mass spectrometry, J. Biol. Chem., 279, 4185841865.CrossRefGoogle Scholar
  71. 71.
    Guan, L., and Kaback, H. R. (2009) Properties of a LacY efflux mutant, Biochemistry, 48, 9250–9255.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Koenderink, J. B., Swarts, H. G. P., Willems, P. H., Krieger, E., and De Pont, J. J. (2004) A conformation-specific interhelical salt bridge in the K+ binding site of gastric H,K-ATPase, J. Biol. Chem., 279, 16417–16424.CrossRefPubMedGoogle Scholar
  73. 73.
    Durr, K. L., Seuffert, I., and Friedrich, T. (2010) Deceleration of the E1P-E2P transition and ion transport by mutation of potentially salt bridge-forming residues Lys791 and Glu-820 in gastric H+/K+-ATPase, J. Biol. Chem., 285, 39366–39379.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Jorgensen, P. L., Hakansson, K. O., and Karlish, S. J. (2003) Structure and mechanism of Na,K-ATPase: functional sites and their interactions, Annu. Rev. Physiol., 65, 817–849.CrossRefPubMedGoogle Scholar
  75. 75.
    Rao, U. S., and Scarborough, G. A. (1990) Chemical state of the cysteine residues in the Neurospora crassa plasma membrane H+-ATPase, J. Biol. Chem., 265, 7227–7235.PubMedGoogle Scholar
  76. 76.
    Roblez-Martinez, L., Pardo, J. P., Miranda, M., Mendez, T. L., Matus-Ortega, M. G., Mendoza-Hernandez, G., and Guerra-Sanchez, G. (2013) The basidiomycete Ustilago maydis has two plasma membrane H+-ATPases related to fungi and plants, J. Bionerg. Biomembr., 45, 477–290.CrossRefGoogle Scholar
  77. 77.
    Supply, P., Wach, A., Thines-Sempoux, D., and Goffeau, A. (1993) Proliferation of intracellular structures upon overexpression of the PMA2 ATPase in Saccharomyces cerevisiae, J. Biol. Chem., 268, 19744–19752.PubMedGoogle Scholar
  78. 78.
    Supply, P., Wach, A., and Goffeau, A. (1993) Enzymatic properties of the PMA2 plasma membrane-bound H+ATPase of Saccharomyces cerevisiae, J. Biol. Chem., 268, 19753–19759.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Skryabin Institute of Biochemistry and Physiology of MicroorganismsPushchino, Moscow RegionRussia

Personalised recommendations