Biochemistry (Moscow)

, Volume 82, Issue 1, pp 13–23 | Cite as

Glutathione-dependent formaldehyde dehydrogenase homolog from Bacillus subtilis strain R5 is a propanol-preferring alcohol dehydrogenase

  • Raza Ashraf
  • Naeem RashidEmail author
  • Saadia Basheer
  • Iram Aziz
  • Muhammad Akhtar


Genome search of Bacillus subtilis revealed the presence of an open reading frame annotated as glutathione-dependent formaldehyde dehydrogenase/alcohol dehydrogenase. The open reading frame consists of 1137 nucleotides corresponding to a polypeptide of 378 amino acids. To examine whether the encoded protein is glutathione-dependent formaldehyde dehydrogenase or alcohol dehydrogenase, we cloned and characterized the gene product. Enzyme activity assays revealed that the enzyme exhibits a metal ion-dependent alcohol dehydrogenase activity but no glutathione-dependent formaldehyde dehydrogenase or aldehyde dismutase activity. Although the protein is of mesophilic origin, optimal temperature for the enzyme activity is 60°C. Thermostability analysis by circular dichroism spectroscopy revealed that the protein is stable up to 60°C. Presence or absence of metal ions in the reaction mixture did not affect the enzyme activity. However, metal ions were necessary at the time of protein production and folding. There was a marked difference in the enzyme activity and CD spectra of the proteins produced in the presence and absence of metal ions. The experimental results obtained in this study demonstrate that the enzyme is a bona-fide alcohol dehydrogenase and not a glutathionedependent formaldehyde dehydrogenase.


Bacillus subtilis formaldehyde dehydrogenase alcohol dehydrogenase metal dependent protein folding circular dichroism 



alcohol dehydrogenase


circular dichroism




glutathione-dependent formaldehyde dehydrogenase


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    De Pouplana, L. R., Atrian, S., Gonzalex-Duarte, R., Fothergill-Gilmore, L. A., Kelly, S. M., and Price, N. C. (1991) Structural properties of long-and short-chain alcohol dehydrogenases. Contribution of NAD+ to stability, Biochem. J., 276, 433–438.CrossRefGoogle Scholar
  2. 2.
    Burdette, D. S., Jung, S. H., Shen, G. J., Hollingsworth, R. I., and Zeikus, J. G. (2002) Physiological function of alcohol dehydrogenases and long-chain (C30) fatty acids in alcohol tolerance of Thermoanaerobacter ethanolicus, Appl. Environ. Microbiol., 68, 1914–1918.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Reid, M. F., and Fewson, C. A. (1994) Molecular characterization of microbial alcohol dehydrogenases, Crit. Rev. Microbiol., 20, 13–56.CrossRefPubMedGoogle Scholar
  4. 4.
    Machielsen, R., Uria, R. A., Kengen, W. M., and Oost, J. (2006) Production and characterization of a thermostable alcohol dehydrogenase that belongs to the aldo-keto reductase superfamily, Appl. Environ. Microbiol., 72, 233–238.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kallberg, Y., Oppermann, U., Jornvall, H., and Persson, B. (2002) Short-chain dehydrogenases/reductases (SDRs), Eur. J. Biochem., 269, 4409–4417.CrossRefPubMedGoogle Scholar
  6. 6.
    Persson, B., Hedlund, J., and Jornvall, H. (2008) Mediumand short-chain dehydrogenase/reductase gene and protein families, Cell. Mol. Life Sci., 65, 3879–3894.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Danielsson, O., and Jornvall, H. (1992) “Enzymogenesis”: classical liver alcohol dehydrogenase origin from the glutathione-dependent formaldehyde dehydrogenase line, Proc. Natl. Acad. Sci. USA, 89, 9247–9251.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Koivusalo, M., Baumann, M., and Uotila, L. (1989) Evidence for the identity of glutathione-dependent formaldehyde dehydrogenase and class III alcohol dehydrogenase, FEBS Lett., 257, 105–109.CrossRefPubMedGoogle Scholar
  9. 9.
    Danielsson, O., Atrian, S., Luque, T., Hjelmqvist, L., Gonzalez-Duarte, R., and Jornvall, H. (1994) Fundamental molecular differences between alcohol dehydrogenase classes, Proc. Natl. Acad. Sci. USA, 91, 4980–4984.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Mashford, P. M., and Jones, A. R. (1982) Formaldehyde metabolism by the rat: a re-appraisal, Xenobiotica, 12, 119–124.CrossRefPubMedGoogle Scholar
  11. 11.
    Wagner, F. W., Pares, X., Holmquist, B., and Vallee, B. L. (1984) Physical and enzymatic properties of a class III isozyme of human liver alcohol dehydrogenase: chi-ADH, Biochemistry, 23, 2193–2199.CrossRefPubMedGoogle Scholar
  12. 12.
    Barber, R. D., Rott, M. A., and Donohue, T. J. (1996) Characterization of a glutathione-dependent formaldehyde dehydrogenase from Rhodobacter sphaeroides, J. Bacteriol., 178, 1386–1393.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Canestro, C., Albalat, R., Hjelmqvist, L., Godoy, L., Jornvall, H., and Gonzalez-Duarte, R. (2002) Ascidian and amphioxus Adh genes correlate functional and molecular features of the ADH family expansion during vertebrate evolution, J. Mol. Evol., 54, 81–89.CrossRefPubMedGoogle Scholar
  14. 14.
    Cederlund, E., Hedlund, J., Hjelmqvist, L., Jonsson, A., Shafqat, J., Norin, A., Keung, W. M., Persson, B., and Jornvall, H. (2011) Characterization of new medium-chain alcohol dehydrogenases adds resolution to duplications of the class I/III and the sub-class I genes, Chem. Biol. Interact., 191, 8–13.CrossRefPubMedGoogle Scholar
  15. 15.
    Sanghani, P. C., Robinson, H., Bosron, W. F., and Hurley, T. D. (2002) Human glutathione-dependent formaldehyde dehydrogenase, structures of apo, binary, and inhibitory ternary complexes, Biochemistry, 41, 10778–10786.PubMedGoogle Scholar
  16. 16.
    Eklund, H., Plapp, B. V., Samama, J. P., and Branden, C. I. (1982) Binding of substrate in a ternary complex of horse liver alcohol dehydrogenase, J. Biol. Chem., 257, 1434914358.Google Scholar
  17. 17.
    Jalal, A., Rashid, N., Rasool, N., and Akhtar, M. (2009) Gene cloning and characterization of a xylanase from a newly isolated Bacillus subtilis strain R5, J. Biosci. Bioeng., 107, 360–365.CrossRefPubMedGoogle Scholar
  18. 18.
    Kato, N., Yamagami, T., Shimo, M., and Sakazawa, C. (1986) Formaldehyde dismutase, a novel NAD-binding oxidoreductase from Pseudomonas putida F61, Eur. J. Biochem., 156, 59–64.PubMedGoogle Scholar
  19. 19.
    Yamasue, Y., Tanisaka, T., and Kusanagi, T. (1990) Alcohol dehydrogenase zymogram, its inheritance and anaerobic germinability of seeds of Echinochloa weeds, Japan J. Breed., 40, 53–61.CrossRefGoogle Scholar
  20. 20.
    Hollrigl, V., Hollmann, F., Kleeb, A. C., Buehler, K., and Schmid, A. (2008) TADH, the thermostable alcohol dehydrogenase from Thermus sp. ATN1: a versatile new biocatalyst for organic synthesis, Appl. Microbiol. Biotechnol., 81, 263–273.CrossRefPubMedGoogle Scholar
  21. 21.
    Nian, H., Meng, Q., Zhang, W., and Chen, L. (2013) Overexpression of the formaldehyde dehydrogenase gene from Brevibacillus brevis to enhance formaldehyde tolerance and detoxification of tobacco, Appl. Biochem. Biotechnol., 169, 170–180.CrossRefPubMedGoogle Scholar
  22. 22.
    Liao, Y., Chen, S., Wang, D., Zhang, W., Wang, S., Ding, J., and Zhu, H. (2013) Structure of formaldehyde dehydrogenase from Pseudomonas aeruginosa: the binary complex with the cofactor NAD+, Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 69, 967–972.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Sakamoto, A., Ueda, M., and Morikawa, H. (2002) Arabidopsis glutathione-dependent formaldehyde dehy-drogenase is an S-nitrosoglutathione reductase, FEBS Lett., 515, 20–24.CrossRefPubMedGoogle Scholar
  24. 24.
    Bottoms, C. A., Smith, P. E., and Tanner, J. J. (2002) A structurally conserved water molecule in Rossmann dinucleotide-binding domains, Protein Sci., 11, 2125–2137.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Yang, Z. N., Bosron, W. F., and Hurley, T. D. (1997) Structure of human chi chi alcohol dehydrogenase: a glutathione-dependent formaldehyde dehydrogenase, J. Mol. Biol., 265, 330–343.CrossRefPubMedGoogle Scholar
  26. 26.
    Vitale, A., Rosso, F., Barbarisi, A., Labella, T., and D’Auria, S. (2010) Properties and evolution of an alcohol dehydrogenase from the crenarchaeota Pyrobaculum aerophilum, Gene, 46, 26–31.CrossRefGoogle Scholar
  27. 27.
    Ryzewski, C. N., and Pietruszko, R. (1977) Horse liver alcohol dehydrogenase SS: purification and characterization of the homogeneous isoenzyme, Arch. Biochem. Biophys., 183, 73–82.CrossRefPubMedGoogle Scholar
  28. 28.
    Woronick, C. L. (1975) Alcohol dehydrogenase from human liver, Methods Enzymol., 41, 369–374.CrossRefPubMedGoogle Scholar
  29. 29.
    Tanaka, N., Kusakabe, Y., Ito, K., Yoshimoto, T., and Nakamura, K. T. (2003) Crystal structure of glutathioneindependent formaldehyde dehydrogenase, Chem. Biol. Interact., 143, 211–218.CrossRefPubMedGoogle Scholar
  30. 30.
    Tanaka, N., Kusakabe, Y., Ito, K., Yoshimoto, T., and Nakamura, K. T. (2002) Crystal structure of formaldehyde dehydrogenase from Pseudomonas putida: the structural origin of the tightly bound cofactor in nicotinoprotein dehydrogenases, J. Mol. Biol., 324, 519–533.CrossRefPubMedGoogle Scholar
  31. 31.
    Man, H., Gargiulo, S., Frank, A., Hollmann, F., and Grogan, G. (2014) Structure of the NADH-dependent thermostable alcohol dehydrogenase TADH from Thermus sp. ATN1 provides a platform for engineering specificity and improved compatibility with inorganic cofactor-regeneration catalysts, J. Mol. Catal. B Enzymol., 105, 1–6.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • Raza Ashraf
    • 1
  • Naeem Rashid
    • 1
    Email author
  • Saadia Basheer
    • 1
  • Iram Aziz
    • 1
  • Muhammad Akhtar
    • 2
  1. 1.School of Biological SciencesUniversity of the Punjab, Quaid-e-Azam CampusLahorePakistan
  2. 2.School of Biological SciencesUniversity of SouthamptonSouthamptonUK

Personalised recommendations