Advertisement

Biochemistry (Moscow)

, Volume 82, Issue 1, pp 1–12 | Cite as

Extracellular actin in health and disease

  • N. P. Sudakov
  • I. V. Klimenkov
  • V. A. Byvaltsev
  • S. B. Nikiforov
  • Yu. M. KonstantinovEmail author
Review

Abstract

This review considers the functions of extracellular actin–cell surface bound, associated with extracellular matrix, or freely circulating. The role of this protein in different pathological processes is analyzed: its toxic effects and involvement in autoimmune diseases as an autoantigen. The extracellular actin clearance system and its role in protection against the negative effects of actin are characterized. Levels of free-circulating actin, anti-actin immunoglobulins, and components of the actin clearance system as prognostic biomarkers for different diseases are reviewed. Experimental approaches to protection against excessive amounts of free-circulating F-actin are discussed.

Keywords

actin danger associated molecular patterns gelsolin Gc-globulin anti-actin antibodies pathologies biomarkers 

Abbreviations

DAMPs

danger-associated molecular patterns

Ig

immunoglobulins

PCD

programmed cell death

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Spudich, J. A. (1974) Biochemical and structural studies of actomyosin-like proteins from non-muscle cells. II. Purification, properties, and membrane association of actin from amoebae of Dictyostelium discoideum, J. Biol. Chem., 249, 6013–6020.PubMedGoogle Scholar
  2. 2.
    Wettero, J., Askendal, A., Tengvall, P., and Bengtsson, T. (2003) Interactions between surface-bound actin and complement, platelets, and neutrophils, J. Biomed. Mater. Res. A, 66, 162–175.PubMedCrossRefGoogle Scholar
  3. 3.
    Khaitlina, S. Yu. (2007) Mechanisms of spatial segregation of actin isoforms, Tsitologiya, 49, 345–354.Google Scholar
  4. 4.
    Levina, E. M., Kharitonova, M. A., Rovensky, Y. A., and Vasiliev, J. M. (2001) Cytoskeletal control of fibroblast length: experiments with linear strips of substrate, J. Cell Sci., 114, 4335–4341.PubMedGoogle Scholar
  5. 5.
    Gelfand, V. I., Glushankova, N. A., Ivanova, O. Yu., Mittelman, L. A., Pletyushkina, O. Yu., Vasiliev, J. M., and Gelfand, I. M. (1985) Polarization of cytoplasmic fragments microsurgically detached from mouse fibroblasts, Cell Biol. Int. Rep., 9, 883–892.PubMedCrossRefGoogle Scholar
  6. 6.
    Sellers, J. R., Spudich, J. A., and Sheetz, M. P. (1985) Light chain phosphorylation regulates the movement of smooth muscle myosin on actin filaments, J. Cell Biol., 101, 1897–1902.PubMedCrossRefGoogle Scholar
  7. 7.
    Miyairi, M., Watanabe, S., and Phillips, M. J. (1985) Cell motility of fetal hepatocytes in short-term culture, Pediatr. Res., 19, 1225–1229.PubMedCrossRefGoogle Scholar
  8. 8.
    Gloushankova, N. A., Krendel, M. F., Alieva, N. O., Bonder, E. M., Feder, H. H., Vasiliev, J. M., and Gelfand, I. M. (1998) Dynamics of contacts between lamellae of fibroblasts: essential role of the actin cytoskeleton, Proc. Natl. Acad. Sci. USA, 95, 4362–4367.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Singer, I. I., Kawka, D. W., Kazazis, D. M., and Clark, R. A. (1984) In vivo co-distribution of fibronectin and actin fibers in granulation tissue: immunofluorescence and electron microscope studies of the fibronexus at the myofibroblast surface, J. Cell Biol., 98, 2091–2106.PubMedCrossRefGoogle Scholar
  10. 10.
    Rovensky, Y. A., Domnina, L. V., Ivanova, O. Y., and Vasiliev, J. M. (1999) Locomotory behavior of epitheliocytes and fibroblasts on metallic grids, J. Cell Sci., 112, 1273–1282.PubMedGoogle Scholar
  11. 11.
    Kunze, D., and Rustow, B. (1993) Pathobiochemical aspects of cytoskeleton components, Eur. J. Clin. Chem. Clin. Biochem., 31, 477–489.PubMedGoogle Scholar
  12. 12.
    Popova, E. N., Pletjushkina, O. Y., Dugina, V. B., Domnina, L. V., Ivanova, O. Y., Izyumov, D. S., Skulachev, V. P., and Chernyak, B. V. (2010) Scavenging of reactive oxygen species in mitochondria induces myofibroblast differentiation, Antioxid. Redox Signal., 13, 1297–1307.PubMedCrossRefGoogle Scholar
  13. 13.
    Suarez-Huerta, N., Mosselmans, R., Dumont, J. E., and Robaye, B. (2000) Actin depolymerization and polymerization are required during apoptosis in endothelial cells, J. Cell Physiol., 184, 239–245.PubMedCrossRefGoogle Scholar
  14. 14.
    Domnina, L. V., Ivanova, O. Y., Pletjushkina, O. Y., Fetisova, E. K., Chernyak, B. V., Skulachev, V. P., and Vasiliev, J. M. (2004) Marginal blebbing during the early stages of TNF-induced apoptosis indicates alteration in actomyosin contractility, Cell Biol. Int., 28, 471–475.PubMedCrossRefGoogle Scholar
  15. 15.
    Domnina, L. V., Ivanova, O. Y., Cherniak, B. V., Skulachev, V. P., and Vasiliev, J. M. (2002) Effects of the inhibitors of dynamics of cytoskeletal structures on the development of apoptosis induced by the tumor necrosis factor, Biochemistry (Moscow), 67, 737–746.CrossRefGoogle Scholar
  16. 16.
    Rubtsova, S. N., Kondratov, R. V., Kopnin, P. B., Chumakov, P. M., Kopnin, B. P., and Vasiliev, J. M. (1998) Disruption of actin microfilaments by cytochalasin D leads to activation of p53, FEBS Lett., 430, 353–357.PubMedCrossRefGoogle Scholar
  17. 17.
    Smethurst, D. G., Dawes, I. W., and Gourlay, C. W. (2014) Actin–a biosensor that determines cell fate in yeasts, FEMS Yeast Res., 14, 89–95.PubMedCrossRefGoogle Scholar
  18. 18.
    Gourlay, C. W., and Ayscough, K. R. (2006) Actin-induced hyperactivation of the Ras signaling pathway leads to apoptosis in Saccharomyces cerevisiae, Mol. Cell Biol., 26, 64876501.CrossRefGoogle Scholar
  19. 19.
    Falahzadeh, K., Banaei-Esfahani, A., and Shahhoseini, M. (2015) The potential roles of actin in the nucleus, Cell J., 17, 7–14.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Pokorna, E., Jordan, P. W., O’Neill, C. H., Zicha, D., Gilbert, C. S., and Vesely, P. (1994) Actin cytoskeleton and motility in rat sarcoma cell populations with different metastatic potential, Cell Motil. Cytoskeleton, 28, 25–33.PubMedCrossRefGoogle Scholar
  21. 21.
    Verschueren, H., Van der Taelen, I., Dewit, J., De Braekeleer, J., and De Baetselier, P. (1994) Metastatic competence of BW5147 T-lymphoma cell lines is correlated with in vitro invasiveness, motility and F-actin content, J. Leukoc. Biol., 55, 552–556.PubMedGoogle Scholar
  22. 22.
    Shimokawa-Kuroki, R., Sadano, H., and Taniguchi, S. (1994) A variant actin (beta m) reduces metastasis of mouse B16 melanoma, Int. J. Cancer, 56, 689–697.PubMedCrossRefGoogle Scholar
  23. 23.
    Friedman, S. L. (1993) Seminars in medicine of the Beth Israel Hospital, Boston. The cellular basis of hepatic fibrosis. Mechanisms and treatment strategies, N. Engl. J. Med., 328, 1828–1835.PubMedCrossRefGoogle Scholar
  24. 24.
    Desmouliere, A., and Gabbiani, G. (1994) Modulation of fibroblastic cytoskeletal features during pathological situations: the role of extracellular matrix and cytokines, Cell Motil. Cytoskeleton, 29, 195–203.PubMedCrossRefGoogle Scholar
  25. 25.
    Janmey, P. A., and Chaponnier, C. (1995) Medical aspects of the actin cytoskeleton, Curr. Opin. Cell Biol., 7, 111–117.PubMedCrossRefGoogle Scholar
  26. 26.
    Miles, L. A., Andronicos, N. M., Baik, N., and Parmer, R. J. (2006) Cell-surface actin binds plasminogen and modulates neurotransmitter release from catecholaminergic cells, J. Neurosci., 26, 13017–13024.PubMedCrossRefGoogle Scholar
  27. 27.
    Accinni, L., Natali, P. G., Silvestrini, M., and De Martino, C. (1983) Actin in the extracellular matrix of smooth muscle cells. An immunoelectron microscopic study, Connect. Tissue Res., 11, 69–78.PubMedCrossRefGoogle Scholar
  28. 28.
    Aranega, A. E., Reina, A., Velez, C., Alvarez, L., Melguizo, C., and Aranega, A. (1993) Circulating alpha-actin in angina pectoris, J. Mol. Cell Cardiol., 25, 15–22.PubMedCrossRefGoogle Scholar
  29. 29.
    Jordan, J. R., Moore, E. E., Damle, S. S., Eckels, P., Johnson, J. L., Roach, J. P., Redzic, J. S., Hansen, K. C., and Banerjee, A. (2007) Gelsolin is depleted in post-shock mesenteric lymph, J. Surg. Res., 143, 130–135.Google Scholar
  30. 30.
    Teunissen, C. E., Dijkstra, C., and Polman, C. (2005) Biological markers in CSF and blood for axonal degeneration in multiple sclerosis, Lancet Neurol., 4, 32–41.PubMedCrossRefGoogle Scholar
  31. 31.
    Krysko, D. V., Garg, A. D., Kaczmarek, A., Krysko, O., Agostinis, P., and Vandenabeele, P. (2012) Immunogenic cell death and DAMPs in cancer therapy, Nat. Rev. Cancer, 12, 860–875.PubMedCrossRefGoogle Scholar
  32. 32.
    Kaczmarek, A., Vandenabeele, P., and Krysko, D. V. (2013) Necroptosis: the release of damage-associated molecular patterns and its physiological relevance, Immunity, 38, 209223.CrossRefGoogle Scholar
  33. 33.
    Ahrens, S., Zelenay, S., Sancho, D., Hanc, P., Kjæ r, S., Feest, C., Fletcher, G., Durkin, C., Postigo, A., Skehel, M., Batista, F., Thompson, B., Way, M., Reis e Sousa, C., and Schulz, O. (2012) F-actin is an evolutionarily conserved damage-associated molecular pattern recognized by DNGR-1, a receptor for dead cells, Immunity, 36, 635–645.PubMedGoogle Scholar
  34. 34.
    Garg, A. D., Krysko, D. V., Vandenabeele, P., and Agostinis, P. (2011) DAMPs and PDT-mediated photooxidative stress: exploring the unknown, Photochem. Photobiol. Sci., 10, 670–680.PubMedCrossRefGoogle Scholar
  35. 35.
    Lee, T. L., Lin, Y. C., Mochitate, K., and Grinnell, F. (1993) Stress-relaxation of fibroblasts in collagen matrices triggers ectocytosis of plasma membrane vesicles containing actin, annexins II and VI,and beta1 integrin receptors, J. Cell Sci., 105, 167–177.Google Scholar
  36. 36.
    Polzer, K., Schett, G., and Zwerina, J. (2007) The lonely death: chondrocyte apoptosis in TNF-induced arthritis, Autoimmunity, 40, 333–336.PubMedCrossRefGoogle Scholar
  37. 37.
    Krysko, D. V., D’ Herde, K., and Vandenabeele, P. (2006) Clearance of apoptotic and necrotic cells and its immunological consequences, Apoptosis, 11, 1709–1726.PubMedCrossRefGoogle Scholar
  38. 38.
    Smalheiser, N. R. (1996) Proteins in unexpected locations, Mol. Biol. Cell, 7, 1003–1014.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Wang, H., Doll, J. A., Jiang, K., Cundiff, D. L., Czarnecki, J. S., Wilson, M., Ridge, K. M., and Soff, G. A. (2006) Differential binding of plasminogen, plasmin, and angiostatin 4.5 to cell surface beta-actin: implications for cancermediated angiogenesis, Cancer Res., 66, 7211–7215.Google Scholar
  40. 40.
    Dudani, A. K., and Ganz, P. R. (1996) Endothelial cell surface actin serves as a binding site for plasminogen, tissue plasminogen activator and lipoprotein(a), Br. J. Haematol., 95, 168–178.PubMedCrossRefGoogle Scholar
  41. 41.
    Pendleton, A., Pope, B., Weeds, A., and Koffer, A. (2003) Latrunculin B or ATP depletion induces cofilin-dependent translocation of actin into nuclei of mast cells, J. Biol. Chem., 278, 14394–14400.PubMedCrossRefGoogle Scholar
  42. 42.
    Wada, A., Fukuda, M., Mishima, M., and Nishida, E. (1998) Nuclear export of actin: a novel mechanism regulating the subcellular localization of a major cytoskeletal protein, EMBO J., 17, 1635–1641.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Stuven, T., Hartmann, E., and Gorlich, D. (2003) Exportin 6: a novel nuclear export receptor that is specific for profilin–actin complexes, EMBO J., 22, 5928–5940.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Donate, F., Juarez, J. C., Guan, X., Shipulina, N. V., Plunkett, M. L., Tel-Tsur, Z., Shaw, D. E., Morgan, W. T., and Mazar, A. P. (2004) Peptides derived from the histidine-proline domain of the histidine-proline-rich glycoprotein bind to tropomyosin and have antiangiogenic and antitumor activities, Cancer Res., 64, 5812–5817.PubMedCrossRefGoogle Scholar
  45. 45.
    Li, G. H., Arora, P. D., Chen, Y., McCulloch, C. A., and Liu, P. (2012) Multifunctional roles of gelsolin in health and diseases, Med. Res. Rev., 32, 999–1025.PubMedCrossRefGoogle Scholar
  46. 46.
    Moroianu, J., Fett, J. W., Riordan, J. F., and Vallee, B. L. (1993) Actin is a surface component of calf pulmonary artery endothelial cells in culture, Proc. Natl. Acad. Sci. USA, 90, 3815–3819.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Leng, X., Wang, X., Pang, W., Zhan, R., Zhang, Z., Wang, L., Gao, X., and Qian, L. (2013) Evidence of a role for both antiHsp70 antibody and endothelial surface membrane Hsp70 in atherosclerosis, Cell Stress Chaperones, 18, 483–493.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Bachmann, A. S., Howard, J. P., and Vogel, C. W. (2006) Actin-binding protein filamin A is displayed on the surface of human neuroblastoma cells, Cancer Sci., 97, 1359–1365.PubMedCrossRefGoogle Scholar
  49. 49.
    Rubin, R. W., Quillen, M., Corcoran, J. J., Ganapathi, R., and Krishan, A. (1982) Tubulin as a major cell surface protein in human lymphoid cells of leukemic origin, Cancer Res., 42, 1384–1389.PubMedGoogle Scholar
  50. 50.
    Owen, M. J., Auger, J., Barber, B. H., Edwards, A. J., Walsh, F. S., and Crumpton, M. J. (1978) Actin may be present on the lymphocyte surface, Proc. Natl. Acad. Sci. USA, 75, 4484–4488.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Liu, D. Y., Clarke, G. N., and Baker, H. W. (2005) Exposure of actin on the surface of the human sperm head during in vitro culture relates to sperm morphology, capacitation and zona binding, Hum. Reprod., 20, 999–1005.PubMedCrossRefGoogle Scholar
  52. 52.
    George, J. N., Lyons, R. M., and Morgan, R. K. (1980) Membrane changes associated with platelet activation. Exposure of actin on the platelet surface after thrombininduced secretion, J. Clin. Invest., 66, 1–9.Google Scholar
  53. 53.
    Cheng, C. Y., and Mruk, D. D. (2012) The blood-testis barrier and its implications for male contraception, Pharmacol. Rev., 64, 16–64.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Bach, P. R., and Bentley, J. P. (1980) Structural glycoprotein, fact or artefact, Connect. Tissue Res., 7, 185–196.PubMedCrossRefGoogle Scholar
  55. 55.
    Denning, G. M., Kim, I. S., and Fulton, A. B. (1988) Shedding of cytoplasmic actins by developing muscle cells, J. Cell Sci., 89, 273–282.PubMedGoogle Scholar
  56. 56.
    Rubenstein, P., Ruppert, T., and Sandra, A. (1982) Selective isoactin release from cultured embryonic skeletal muscle cells, J. Cell Biol., 92, 164–169.PubMedCrossRefGoogle Scholar
  57. 57.
    Tykhomyrov, A. A. (2012) Interaction of actin with plasminogen/plasmin system: mechanisms and physiological role, Biopolym. Cell, 28, 413–423.CrossRefGoogle Scholar
  58. 58.
    Hu, G. F., Strydom, D. J., Fett, J. W., Riordan, J. F., and Vallee, B. L. (1993) Actin is a binding protein for angiogenin, Proc. Natl. Acad. Sci. USA, 90, 1217–1221.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Moroianu, J., and Riordan, J. F. (1994) Nuclear translocation of angiogenin in proliferating endothelial cells is essential to its angiogenic activity, Proc. Natl. Acad. Sci. USA, 91, 1677–1681.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Hu, G. F., and Riordan, J. F. (1993) Angiogenin enhances actin acceleration of plasminogen activation, Biochem. Biophys. Res. Commun., 197, 682–687.PubMedCrossRefGoogle Scholar
  61. 61.
    Sheng, J., and Xu, Z. (2016) Three decades of research on angiogenin: a review and perspective, Acta Biochim. Biophys. Sin. (Shanghai), 48, 399–410.CrossRefGoogle Scholar
  62. 62.
    Andronicos, N. M., and Ranson, M. (2001) The topology of plasminogen binding and activation on the surface of human breast cancer cells, Br. J. Cancer, 85, 909–916.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Wang, H., Schultz, R., Hong, J., Cundiff, D. L., Jiang, K., and Soff, G. A. (2004) Cell surface-dependent generation of angiostatin 4.5, Cancer Res., 64, 162–168.PubMedCrossRefGoogle Scholar
  64. 64.
    Lucas, R., Holmgren, L., Garcia, I., Jimenez, B., Mandriota, S. J., Borlat, F., Sim, B. K., Wu, Z., Grau, G. E., Shing, Y., Soff, G. A., Bouck, N., and Pepper M. S. (1998) Multiple forms of angiostatin induce apoptosis in endothelial cells, Blood, 92, 4730–4741.PubMedGoogle Scholar
  65. 65.
    Hanford, H. A., Wong, C. A., Kassan, H., Cundiff, D. L., Chandel, N., Underwood, S., Mitchell, C. A., and Soff, G. A. (2003) Angiostatin(4.5)-mediated apoptosis of vascular endothelial cells, Cancer Res., 63, 4275–4280.PubMedGoogle Scholar
  66. 66.
    Lobo, P. I., Brayman, K. L., and Okusa, M. D. (2014) Natural IgM anti-leucocyte autoantibodies (IgM-ALA) regulate inflammation induced by innate and adaptive immune mechanisms, J. Clin. Immunol., 34, S22-S29.Google Scholar
  67. 67.
    Servettaz, A., Guilpain, P., Tamas, N., Kaveri, S. V., Camoin, L., and Mouthon, L. (2008) Natural antiendothelial cell antibodies, Autoimmun. Rev., 7, 426–430.PubMedCrossRefGoogle Scholar
  68. 68.
    Bachvaroff, R. J., Miller, F., and Rapaport, F. T. (1980) Appearance of cytoskeletal components on the surface of leukemia cells and of lymphocytes transformed by mitogens and Epstein–Barr virus, Proc. Natl. Acad. Sci. USA, 77, 4979–4983.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Bach, M. A., Lewis, D. E., McClure, J. E., Parikh, N., Rosenblatt, H. M., and Shearer, W. T. (1986) Monoclonal anti-actin antibody recognizes a surface molecule on normal and transformed human B lymphocytes: expression varies with phase of cell cycle, Cell Immunol., 98, 364374.CrossRefGoogle Scholar
  70. 70.
    Castellani-Ceresa, L., Brivio, M. F., and Radaelli, G. (1992) F-actin in acrosome-reacted boar spermatozoa, Mol. Reprod. Dev., 33, 99–107.PubMedCrossRefGoogle Scholar
  71. 71.
    Castellani-Ceresa, L., Mattioli, M., Radaelli, G., Barboni, B., and Brivio, M. F. (1993) Actin polymerization in boar spermatozoa: fertilization is reduced with use of cytochalasin D, Mol. Reprod. Dev., 36, 203–211.PubMedCrossRefGoogle Scholar
  72. 72.
    Tykhomyrov, A. A. (2014) Dynamics of thrombin-induced exposition of actin on the platelet surface, Ukr. Biokhim. Zh., 86, 74–81.Google Scholar
  73. 73.
    George, J. N., Lyons, R. M., and Morgan, R. K. (1980) Membrane changes associated with platelet activation. Exposure of actin on the platelet surface after thrombininduced secretion, J. Clin. Invest., 66, 1–9.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Haddad, J. G., Harper, K. D., Guoth, M., Pietra, G. G., and Sanger, J. W. (1990) Angiopathic consequences of saturating the plasma scavenger system for actin, Proc. Natl. Acad. Sci. USA, 87, 1381–1385.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Keski-Oja, J., Sen, A., and Todaro, G. J. (1980) Direct association of fibronectin and actin molecules in vitro, J. Cell Biol., 85, 527–533.PubMedCrossRefGoogle Scholar
  76. 76.
    Prados, J., Melguizo, C., Aranega, A. E., EscobarJimenez, F., Cobo, V., Gonzalez, R., and Aranega, A. (1995) Circulating alpha-actin in non-insulin-dependent diabetics with autonomic dysfunction, Int. J. Cardiol., 51, 127–130.PubMedCrossRefGoogle Scholar
  77. 77.
    Kwon, O., Molitoris, B. A., Pescovitz, M., and Kelly, K. J. (2003) Urinary actin, interleukin-6, and interleukin-8 may predict sustained ARF after ischemic injury in renal allografts, Am. J. Kidney Dis., 41, 1074–1087.PubMedCrossRefGoogle Scholar
  78. 78.
    Candiano, G., Bruschi, M., Pedemonte, N., Musante, L., Ravazzolo, R., Liberatori, S., Bini, L., Galietta, L. J., and Zegarra-Moran, O. (2007) Proteomic analysis of the airway surface liquid: modulation by proinflammatory cytokines, Am. J. Physiol. Lung Cell Mol. Physiol., 292, L185–L198.PubMedCrossRefGoogle Scholar
  79. 79.
    Claesson-Welsh, L. (2015) Vascular permeability–the essentials, Ups. J. Med. Sci., 120, 135–143.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Aranega, A. E., Reina, A., Muros, M. A., Alvarez, L., Prados, J., and Aranega, A. (1993) Circulating alpha-actin protein in acute myocardial infarction, Int. J. Cardiol., 38, 49–55.PubMedCrossRefGoogle Scholar
  81. 81.
    Evennett, N., Cerigioni, E., Hall, N. J., Pierro, A., and Eaton, S. (2014) Smooth muscle actin as a novel serologic marker of severe intestinal damage in rat intestinal ischemia-reperfusion and human necrotizing enterocolitis, J. Surg. Res., 191, 323–330.Google Scholar
  82. 82.
    Otterbein, L. R., Cosio, C., Graceffa, P., and Dominguez, R. (2002) Crystal structures of the vitamin D-binding protein and its complex with actin: structural basis of the actin-scavenger system, Proc. Natl. Acad. Sci. USA, 99, 8003–8008.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Lee, P. S., Patel, S. R., Christiani, D. C., Bajwa, E., Stossel, T. P., and Waxman, A. B. (2008) Plasma gelsolin depletion and circulating actin in sepsis: a pilot study, PLoS One, 3, e3712.Google Scholar
  84. 84.
    Lee, P. S., Waxman, A. B., Cotich, K. L., Chung, S. W., Perrella, M. A., and Stossel, T. P. (2007) Plasma gelsolin is a marker and therapeutic agent in animal sepsis, Crit. Care Med., 35, 849–855.PubMedCrossRefGoogle Scholar
  85. 85.
    Lee, W. M., and Galbraith, R. M. (1992) The extracellular actin-scavenger system and actin toxicity, N. Engl. J. Med., 326, 1335–1341.Google Scholar
  86. 86.
    Scarborough, V. D., Bradford, H. R., and Ganguly, P. (1981) Aggregation of platelets by muscle actin. A multivalent interaction model of platelet aggregation by ADP, Biochem. Biophys. Res. Commun., 100, 1314–1319.PubMedCrossRefGoogle Scholar
  87. 87.
    Cohen, I., Kaminski, E., and Glaser, T. (1976) Actin and myosin from blood platelets or muscle are potent aggregating agents, Thromb. Res., 8, 383–392.PubMedCrossRefGoogle Scholar
  88. 88.
    Laki, K., and Muszbek, L. (1974) On the interaction of Factin with fibrin, Biochim. Biophys. Acta, 371, 519–525.PubMedCrossRefGoogle Scholar
  89. 89.
    Lind, S. E., and Smith, C. J. (1991) Actin is a noncompetitive plasmin inhibitor, J. Biol. Chem., 266, 5273–5278.Google Scholar
  90. 90.
    Erukhimov, J. A., Tang, Z. L., Johnson, B. A., Donahoe, M. P., Razzack, J. A., Gibson, K. F., Lee, W. M., Wasserloos, K. J., Watkins, S. A., and Pitt, B. R. (2000) Actin-containing sera from patients with adult respiratory distress syndrome are toxic to sheep pulmonary endothelial cells, Am. J. Respir. Crit. Care Med., 162, 288–294.PubMedCrossRefGoogle Scholar
  91. 91.
    Janssen, U., Eitner, F., Kunter, U., Ostendorf, T., Wolf, G., Chaponnier, C., Gabbiani, G., Kerjaschki, D., and Floege, J. (2003) Extracellular actin impairs glomerular capillary repair in experimental mesangioproliferative glomerulonephritis, Nephron Exp. Nephrol., 93, 158–167.CrossRefGoogle Scholar
  92. 92.
    Janmey, P. A., and Lind, S. E. (1987) Capacity of human serum to depolymerize actin filaments, Blood, 70, 524530.Google Scholar
  93. 93.
    Meier, U., Gressner, O., Lammert, F., and Gressner, A. M. (2006) Gc-globulin: roles in response to injury, Clin. Chem., 52, 1247–1253.PubMedCrossRefGoogle Scholar
  94. 94.
    Goldschmidt-Clermont, P. J., Van Baelen, H., Bouillon, R., Shook, T. E., Williams, M. H., Nel, A. E., and Galbraith, R. M. (1988) Role of group-specific component ( vitamin D binding protein) in clearance of actin from the circulation in the rabbit, J. Clin. Invest., 81, 1519–1527.Google Scholar
  95. 95.
    Goldschmidt-Clermont, P. J., Williams, M. H., and Galbraith, R. M. (1987) Altered conformation of Gc (vitamin D-binding protein) upon complexing with cellular actin, Biochem. Biophys. Res. Commun., 146, 611–617.PubMedCrossRefGoogle Scholar
  96. 96.
    Herrmannsdoerfer, A. J., Heeb, G. T., Feustel, P. J., Estes, J. E., Keenan, C. J., Minnear, F. L., Selden, L., Giunta, C., Flor, J. R., and Blumenstock, F. A. (1993) Vascular clearance and organ uptake of Gand F-actin in the rat, Am. J. Physiol., 265, G1071-G1081.Google Scholar
  97. 97.
    DiNubile, M. J. (2008) Plasma gelsolin as a biomarker of inflammation, Arthritis Res. Ther., 10, 124.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Ge, L., Trujillo, G., Miller, E. J., and Kew, R. R. (2014) Circulating complexes of the vitamin D binding protein with G-actin induce lung inflammation by targeting endothelial cells, Immunobiology, 219, 198–207.PubMedCrossRefGoogle Scholar
  99. 99.
    Smith, D. B., Janmey, P. A., and Lind, S. E. (1988) Circulating actin–gelsolin complexes following oleic acidinduced lung injury, Am. J. Pathol., 130, 261–267.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Peddada, N., Sagar, A., and Garg, A. R. (2012) Plasma gelsolin: a general prognostic marker of health, Med. Hypotheses, 78, 203–210.PubMedCrossRefGoogle Scholar
  101. 101.
    Lee, P. S., Bhan, I., and Thadhani, R. (2010) The potential role of plasma gelsolin in dialysis-related protein-energy wasting, Blood Purif., 29, 99–101.PubMedCrossRefGoogle Scholar
  102. 102.
    Lee, P. S., Sampath, K., Karumanchi, S. A., Tamez, H., Bhan, I., Isakova, T., Gutierrez, O. M., Wolf, M., Chang, Y., Stossel, T. P., and Thadhani, R. (2009) Plasma gelsolin and circulating actin correlate with hemodialysis mortality, J. Am. Soc. Nephrol., 20, 1140–1148.Google Scholar
  103. 103.
    DiNubile, M. J., Stossel, T. P., Ljunghusen, O. C., Ferrara, J. L., and Antin, J. H. (2002) Prognostic implications of declining plasma gelsolin levels after allogeneic stem cell transplantation, Blood, 100, 4367–4371.PubMedCrossRefGoogle Scholar
  104. 104.
    Goldschmidt-Clermont, P. J., Lee, W. M., and Galbraith, R. M. (1988) Proportion of circulating Gc (vitamin Dbinding protein) in complexed form: relation to clinical outcome in fulminant hepatic necrosis, Gastroenterology, 94, 1454–1458.PubMedCrossRefGoogle Scholar
  105. 105.
    Young, W. O., Goldschmidt-Clermont, P. J., Emerson, D. L., Lee, W. M., Jollow, D. J., and Galbraith, R. M. (1987) Correlation between extent of liver damage in fulminant hepatic necrosis and complexing of circulating group-specific component (vitamin D-binding protein) Gc, J. Lab. Clin. Med., 110, 83–90.Google Scholar
  106. 106.
    Antoniades, C. G., Berry, P. A., Bruce, M., Cross, T. J., Portal, A. J., Hussain, M. J., Bernal, W., Wendon, J. A., and Vergani, D. (2007) Actin-free Gc globulin: a rapidly assessed biomarker of organ dysfunction in acute liver failure and cirrhosis, Liver Transpl., 13, 1254–1261.PubMedCrossRefGoogle Scholar
  107. 107.
    Lee, W. M., Emerson, D. L., Young, W. O., GoldschmidtClermont, P. J., Jollow, D. J., and Galbraith, R. M. (1987) Diminished serum Gc (vitamin D-binding protein) levels and increased Gc:G-actin complexes in a hamster model of fulminant hepatic necrosis, Hepatology, 7, 825–830.PubMedCrossRefGoogle Scholar
  108. 108.
    Dahl, B., Schiodt, F. V., Ott, P., Wians, F., Lee, W. M., Balko, J., and O’Keefe, G. E. (2003) Plasma concentration of Gc-globulin is associated with organ dysfunction and sepsis after injury, Crit. Care Med., 31, 152–156.PubMedCrossRefGoogle Scholar
  109. 109.
    Bucki, R., Kulakowska, A., Byfield, F. J., ZendzianPiotrowska, M., Baranowski, M., Marzec, M., Winer, J. P., Ciccarelli, N. J., Gorski, J., Drozdowski, W., Bittman, R., and Janmey, P. A. (2010) Plasma gelsolin modulates cellular response to sphingosine 1-phosphate, Am. J. Physiol. Cell Physiol., 299, C1516-C1523.Google Scholar
  110. 110.
    Li-ChunHsieh, K., Schob, S., Zeller, M. W., Pulli, B., Ali, M., Wang, C., Chiou, T. T., Tsang, Y. M., Lee, P. S., Stossel, T. P., and Chen, J. W. (2015) Gelsolin decreases actin toxicity and inflammation in murine multiple sclerosis, J. Neuroimmunol., 287, 36–42.Google Scholar
  111. 111.
    Lee, W. M., Reines, D., Watt, G. H., Cook, J. A., Wise, W. C., Halushka, P. V., and Galbraith, R. M. (1989) Alterations in Gc levels and complexing in septic shock, Circ. Shock, 28, 249–255.PubMedGoogle Scholar
  112. 112.
    Kulakowska, A., Ciccarelli, N. J., Wen, Q., Mroczko, B., Drozdowski, W., Szmitkowski, M., Janmey, P. A., and Bucki, R. (2010) Hypogelsolinemia, a disorder of the extracellular actin scavenger system, in patients with multiple sclerosis, BMC Neurol., 10, 107.PubMedGoogle Scholar
  113. 113.
    Christofidou-Solomidou, M., Scherpereel, A., Solomides, C. C., Christie, J. D., Stossel, T. P., Goelz, S., and DiNubile, M. J. (2002) Recombinant plasma gelsolin diminishes the acute inflammatory response to hyperoxia in mice, J. Investig. Med., 50, 54–60.Google Scholar
  114. 114.
    Osborn, T. M., Dahlgren, C., Hartwig, J. H., and Stossel, T. P. (2007) Modifications of cellular responses to lysophosphatidic acid and platelet-activating factor by plasma gelsolin, Am. J. Physiol. Cell Physiol., 292, C1323C1330.Google Scholar
  115. 115.
    Bucki, R., Georges, P. C., Espinassous, Q., Funaki, M., Pastore, J. J., Chaby, R., and Janmey, P. A. (2005) Inactivation of endotoxin by human plasma gelsolin, Biochemistry, 44, 9590–9597.PubMedCrossRefGoogle Scholar
  116. 116.
    Bucki, R., Byfield, F. J., Kulakowska, A., McCormick, M. E., Drozdowski, W., Namiot, Z., Hartung, T., and Janmey, P. A. (2008) Extracellular gelsolin binds lipoteichoic acid and modulates cellular response to proinflammatory bacterial wall components, J. Immunol., 181, 4936–4944.Google Scholar
  117. 117.
    Merched, A., Serot, J. M., Visvikis, S., Aguillon, D., Faure, G., and Siest, G. (1998) Apolipoprotein E, transthyretin and actin in the CSF of Alzheimer’s patients: relation with the senile plaques and cytoskeleton biochemistry, FEBS Lett., 425, 225–228.PubMedCrossRefGoogle Scholar
  118. 118.
    Gressner, O. A., Schifflers, M. C., Kim, P., Heuts, L., Lahme, B., and Gressner, A. M. (2009) Questioning the role of actin-free Gc-globulin as actin scavenger in neurodegenerative central nervous system disease: relationship to S-100B levels and blood-brain barrier function, Clin. Chim. Acta, 400, 86–90.PubMedCrossRefGoogle Scholar
  119. 119.
    Kulakowska, A., Drozdowski, W., Sadzynski, A., Bucki, R., and Janmey, P. A. (2008) Gelsolin concentration in cerebrospinal fluid from patients with multiple sclerosis and other neurological disorders, Eur. J. Neurol., 15, 584588.CrossRefGoogle Scholar
  120. 120.
    Kulakowska, A., Ciccarelli, N. J., Wen, Q., Mroczko, B., Drozdowski, W., Szmitkowski, M., Janmey, P. A., and Bucki, R. (2010) Hypogelsolinemia, a disorder of the extracellular actin scavenger system, in patients with multiple sclerosis, BMC Neurol., 10, 107.PubMedGoogle Scholar
  121. 121.
    Sengupta, N., Mukherjee, S., Tripathi, P., Kumar, R., Suryavanshi, A., and Basu, A. (2015) Cerebrospinal fluid biomarkers of Japanese encephalitis, F1000 Res., 4, 334.Google Scholar
  122. 122.
    Peng, X., Zhang, X., Wang, L., Zhu, Q., Luo, J., Wang, W., and Wang, X. (2011) Gelsolin in cerebrospinal fluid as a potential biomarker of epilepsy, Neurochem. Res., 36, 2250–2258.PubMedCrossRefGoogle Scholar
  123. 123.
    Chauhan, V. P., Ray, I., Chauhan, A., and Wisniewski, H. M. (1999) Binding of gelsolin, a secretory protein, to amyloid beta-protein, Biochem. Biophys. Res. Commun., 258, 241–246.PubMedGoogle Scholar
  124. 124.
    Ray, I., Chauhan, A., Wegiel, J., and Chauhan, V. P. (2000) Gelsolin inhibits the fibrillization of amyloid beta-protein, and also defibrillizes its preformed fibrils, Brain Res., 853, 344–351.PubMedGoogle Scholar
  125. 125.
    Candiano, G., Bruschi, M., Pedemonte, N., Caci, E., Liberatori, S., Bini, L., Pellegrini, C., Vigano, M., O’Connor, B. J., Lee, T. H., Galietta, L. J., and ZegarraMoran, O. (2005) Gelsolin secretion in interleukin-4treated bronchial epithelia and in asthmatic airways, Am. J. Respir. Crit. Care Med., 172, 1090–1096.PubMedCrossRefGoogle Scholar
  126. 126.
    Yang, M., Qin, Z., Zhu, Y., Li, Y., Qin, Y., Jing, Y., and Liu, S. (2013) Vitamin D-binding protein in cerebrospinal fluid is associated with multiple sclerosis progression, Mol. Neurobiol., 47, 946–956.PubMedCrossRefGoogle Scholar
  127. 127.
    De Scheerder, I., Vandekerckhove, J., Robbrecht, J., Algoed, L., De Buyzere, M., De Langhe, J., De Schrijver, G., and Clement, D. (1985) Post-cardiac injury syndrome and an increased humoral immune response against the major contractile proteins (actin and myosin), Am. J. Cardiol., 56, 631–633.PubMedCrossRefGoogle Scholar
  128. 128.
    Hanc, P., Fujii, T., Iborra, S., Yamada, Y., Huotari, J., Schulz, O., Ahrens, S., Kjær, S., Way, M., Sancho, D., Namba, K., and Reis e Sousa, C. (2015) Structure of the complex of F-actin and DNGR-1, a C-type lectin receptor involved in dendritic cell cross-presentation of dead cell-associated antigens, Immunity, 42, 839–849.PubMedGoogle Scholar
  129. 129.
    Durant, L. R., Pereira, C., Boakye, A., Makris, S., Kausar, F., Goritzka, M., and Johansson, C. (2014) DNGR-1 is dispensable for CD8+ T-cell priming during respiratory syncytial virus infection, Eur. J. Immunol., 44, 2340–2348.PubMedCrossRefGoogle Scholar
  130. 130.
    Nishioka, M., Kobayashi, K., Uchida, M., and Nakamura, T. (1982) A binding activity of actin with human C1q, Biochem. Biophys. Res. Commun., 108, 13071312.CrossRefGoogle Scholar
  131. 131.
    Chishimba, L., Thickett, D. R., Stockley, R. A., and Wood, A. M. (2010) The vitamin D axis in the lung: a key role for vitamin D-binding protein, Thorax, 65, 456–462.PubMedCrossRefGoogle Scholar
  132. 132.
    Nagasawa, H., Uto, Y., Sasaki, H., Okamura, N., Murakami, A., Kubo, S., Kirk, K. L., and Hori, H. (2005) Gc protein (vitamin D-binding protein): Gc genotyping and GcMAF precursor activity, Anticancer Res., 25, 36893695.Google Scholar
  133. 133.
    Schotte, H., Willeke, P., Schmalhorst, J., and Schluter, B. (2014) Diagnostic performance of an anti-actin autoantibody binding enzyme immunodot blot in autoimmune hepatitis type 1, J. Clin. Lab. Anal., 30, 1–6.Google Scholar
  134. 134.
    Schirru, E., Danjou, F., Cicotto, L., Rossino, R., Macis, M. D., Lampis, R., Jores, R. D., and Congia, M. (2013) Anti-actin IgA antibodies identify celiac disease patients with a Marsh 3 intestinal damage among subjects with moderate anti-TG2 levels, Biomed. Res. Int., 2013, 630463.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Alvarez-Marquez, A., Aguilera, I., Blanco, R. M., Pascual, D., Encarnacion-Carrizosa, M., Alvarez-Lopez, M. R., Wichmann, I., and Nunz-Roldan, A. (2008) Positive association of anti-cytoskeletal endothelial cell antibodies and cardiac allograft rejection, Hum. Immunol., 69, 143–148.PubMedCrossRefGoogle Scholar
  136. 136.
    Musante, L., Candiano, G., Bruschi, M., Santucci, L., Carnemolla, B., Orecchia, P., Giampuzzi, M., Zennaro, C., Sanna-Cherchi, S., Carraro, M., Oleggini, R., Camussi, G., Perfumo, F., and Ghiggeri, G. M. (2005) Circulating anti-actin and anti-ATP synthase antibodies identify a subset of patients with idiopathic nephrotic syndrome, Clin. Exp. Immunol., 141, 491–499.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Dangas, G., Konstadoulakis, M. M., Epstein, S. E., Stefanadis, C. I., Kymionis, G. D., Toutouza, M. G., Liakos, C., Sadaniantz, A., Cohen, A. M., Chesebro, J. H., and Toutouzas, P. K. (2000) Prevalence of autoantibodies against contractile proteins in coronary artery disease and their clinical implications, Am. J. Cardiol., 85, 870–872.PubMedCrossRefGoogle Scholar
  138. 138.
    Kellner, R., Orth, T., and Mayet, W. J. (1997) Characterization of target antigens from anti-neutrophil cytoplasmic antibodies in autoimmune hepatitis type-I, Electrophoresis, 18, 507–510.PubMedCrossRefGoogle Scholar
  139. 139.
    Orth, T., Gerken, G., Kellner, R., Meyer zum Buschenfelde, K. H., and Mayet, W. J. (1997) Actin is a target antigen of anti-neutrophil cytoplasmic antibodies (ANCA) in autoimmune hepatitis type-1, J. Hepatol., 26, 37–47.PubMedCrossRefGoogle Scholar
  140. 140.
    Aubert, V., Pisler, I. G., and Spertini, F. (2008) Improved diagnoses of autoimmune hepatitis using an anti-actin ELISA, J. Clin. Lab. Anal., 22, 340–345.PubMedCrossRefGoogle Scholar
  141. 141.
    Soares, A., Cunha, R., Rodrigues, F., and Ribeiro, H. (2009) Smooth muscle autoantibodies with F-actin specificity, Autoimmun. Rev., 8, 713–716.PubMedCrossRefGoogle Scholar
  142. 142.
    Czaja, A. J. (2007) Autoimmune hepatitis. Part B: diagnosis, Expert. Rev. Gastroenterol. Hepatol., 1, 129–143.PubMedCrossRefGoogle Scholar
  143. 143.
    Couto, C. A., Bittencourt, P. L., Porta, G., AbrantesLemos, C. P., Carrilho, F. J., Guardia, B. D., and Cancado, E. L. (2014) Antismooth muscle and anti-actin antibodies are indirect markers of histological and biochemical activity of autoimmune hepatitis, Hepatology, 59, 592–600.PubMedCrossRefGoogle Scholar
  144. 144.
    Czaja, A. J., Cassani, F., Cataleta, M., Valentini, P., and Bianchi, F. B. (1996) Frequency and significance of antibodies to actin in type 1 autoimmune hepatitis, Hepatology, 24, 1068–1073.PubMedCrossRefGoogle Scholar
  145. 145.
    Hudacko, R. M., Alvarez, G. A., Talal, A. H., Jacobson, I., Wan, D. W., Zhou, X. K., and Yantiss, R. K. (2010) Clinical and biologic importance of F-actin autoantibodies in HCV mono-infected and HCV-HIV coinfected patients, Am. J. Clin. Pathol., 134, 228–234.PubMedCrossRefGoogle Scholar
  146. 146.
    Islam, S., Mekhloufi, F., Paul, J. M., Islam, M., Johanet, C., Legendre, C., Degott, C., Abuaf, N., and Homberg, J. C. (1989) Characteristics of clometacin-induced hepatitis with special reference to the presence of anti-actin cable antibodies, Autoimmunity, 2, 213–221.PubMedCrossRefGoogle Scholar
  147. 147.
    Profumo, E., Buttari, B., Petrone, L., Lacroce, G., Tesori, M. C., Capoano, R., Salvati, B., and Rigano, R. (2013) Actin is a target of T-cell reactivity in patients with advanced carotid atherosclerotic plaques, Mediators Inflamm., 261054.Google Scholar
  148. 148.
    Kazmierski, R., Baumann-Antczak, A., and Kozubski, W. (2003) Serum autoantibodies to actin are associated with carotid artery wall adventitial thickness assessed using Bmode ultrasound, Folia Neuropathol., 41, 145–148.PubMedGoogle Scholar
  149. 149.
    Niebroj-Dobosz, I., Dorobek, M., Marchel, M., and Hausmanowa-Petrusewicz, I. (2006) Evidence for autoimmunity to heart-specific antigens in patients with Emery–Dreifuss muscular dystrophy, Acta Myol., 2, 568572.Google Scholar
  150. 150.
    Thomas, K. A., Valenzuela, N. M., and Reed, E. F. (2015) The perfect storm: HLA antibodies, complement, Fc?Rs, and endothelium in transplant rejection, Trends. Mol. Med., 21, 319–329.Google Scholar
  151. 151.
    Piazza, A., Ozzella, G., Poggi, E., Caputo, D., Manfreda, A., and Adorno, D. (2014) Virtual crossmatch in kidney transplantation, Transplant Proc., 46, 2195–2198.PubMedCrossRefGoogle Scholar
  152. 152.
    Porcelli, B., Ferretti, F., Vindigni, C., Scapellato, C., and Terzuoli, L. (2013) Detection of autoantibodies against actin filaments in celiac disease, J. Clin. Lab. Anal., 27, 2126.CrossRefGoogle Scholar
  153. 153.
    Achour, A., Thabet, Y., Sakly, W., Mankai, A., Sakly, N., Ayadi, A., Sfar, M. T., Amri, F., Harbi, A., Essoussi, A. S., Krifa, A., Ajmi, S., and Ghedira, I. (2010) IgA anti-actin antibodies in celiac disease, Gastroenterol. Clin. Biol., 34, 483–487.PubMedCrossRefGoogle Scholar
  154. 154.
    Bazzigaluppi, E., Parma, B., Tronconi, G. M., Corsin, P., Albarello, L., Mora, S., and Barera, G. (2010) IgA antiactin antibodies in children with celiac disease: comparison of immunofluorescence with ELISA assay in predicting severe intestinal damage, Ital. J. Pediatr., 36, 25.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Matsiota, P., Dosquet, P., Louzir, H., Druet, E., Druet, P., and Avrameas, S. (1990) IgA poly-specific autoantibodies in IgA nephropathy, Clin. Exp. Immunol., 79, 361–366.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Boulassel, M. R., Tomasi, J. P., Deggouj, N., and Gersdorff, M. (2000) Identification of beta-actin as a candidate autoantigen in autoimmune inner ear disease, Clin. Otolaryngol. Allied Sci., 25, 535–541.PubMedCrossRefGoogle Scholar
  157. 157.
    Hartman, K. R., Mallet, M. K., Nath, J., and Wright, D. G. (1990) Antibodies to actin in autoimmune neutropenia, Blood, 75, 736–743.PubMedGoogle Scholar
  158. 158.
    Niebroj-Dobosz, I., Dziewulska, D., and Janik, P. (2006) Auto-antibodies against proteins of spinal cord cells in cerebrospinal fluid of patients with amyotrophic lateral sclerosis (ALS), Folia Neuropathol., 44, 191–196.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • N. P. Sudakov
    • 1
    • 2
    • 3
    • 4
  • I. V. Klimenkov
    • 3
    • 4
  • V. A. Byvaltsev
    • 1
  • S. B. Nikiforov
    • 1
  • Yu. M. Konstantinov
    • 3
    • 5
    Email author
  1. 1.Irkutsk Surgery and Traumatology Research CenterIrkutskRussia
  2. 2.Irkutsk Research CenterSiberian Branch of the Russian Academy of SciencesIrkutskRussia
  3. 3.Irkutsk State UniversityIrkutskRussia
  4. 4.Limnological InstituteSiberian Branch of the Russian Academy of SciencesIrkutskRussia
  5. 5.Siberian Institute of Plant Physiology and BiochemistrySiberian Branch of the Russian Academy of SciencesIrkutskRussia

Personalised recommendations