Advertisement

Biochemistry (Moscow)

, Volume 81, Issue 13, pp 1754–1770 | Cite as

Immuno-PCR: achievements and perspectives

  • D. Y. RyazantsevEmail author
  • D. V. Voronina
  • S. K. Zavriev
Review

Abstract

The immuno-PCR (iPCR) method combines advantages of enzyme-linked immunosorbent assay and polymerase chain reaction, which is used in iPCR as a method of “visualization” of antigen–antibody interaction. The use of iPCR provides classical PCR sensitivity to objects traditionally detected by ELISA. This method could be very sensitive and allow for detection of quantities of femtograms/ml order. However, iPCR is still not widely used. The aim of this review is to highlight the special features of the iPCR method and to show the main aspects of its development and application in recent years.

Keywords

immuno-PCR quantitative PCR antibody antigen DNA–antibody conjugate 

Abbreviations

BA

binding antibodies

(b)DA

(biotinylated) detecting antibodies

ELISA

enzyme-linked immunosorbent assay

iPCR

immuno-PCR

PCR

polymerase chain reaction

PLA

proximity ligation assay

qPCR

quantitative PCR (realtime PCR)

RT-PCR

PCR with reverse transcription

sulfo-SMCC

sulfo-N-succinimidyl 4-(maleimidomethyl)cyclo-hexane-1-carboxylate

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sano, T., Smith, C. L., and Cantor, C. R. (1992) ImmunoPCR: very sensitive antigen detection by means of specific antibody–DNA conjugates, Science, 258, 120–122.PubMedCrossRefGoogle Scholar
  2. 2.
    Saiki, R. K., Scharf, S., Faloona, F., Mullis, K. B., Horn, G. T., Erlich, H. A., and Arnheim, N. (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia, Science, 230, 1350–1354.PubMedCrossRefGoogle Scholar
  3. 3.
    Nakamura, S., Katamine, S., Yamamoto, T., Foung, S. K., Kurata, T., Hirabayashi, Y., Shimada, K., Hino, S., and Miyamoto, T. (1993) Amplification and detection of a single molecule of human immunodeficiency virus RNA, Virus Genes, 7, 325–338.PubMedCrossRefGoogle Scholar
  4. 4.
    Li, H., Cui, X., and Arnheim, N. (1990) Direct electrophoretic detection of the allelic state of single DNA molecules in human sperm by using the polymerase chain reaction, Proc. Natl. Acad. Sci. USA, 87, 4580–4584.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Sano, T., Smith, C. L., and Cantor, C. R. (1993) Response, Science, 260, 699.PubMedCrossRefGoogle Scholar
  6. 6.
    Zhou, H., Fisher, R. J., and Papas, T. S. (1993) Universal immuno-PCR for ultra-sensitive target protein detection, Nucleic Acids Res., 21, 6038–6039.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Hendrickson, E. R., Truby, T. M., Joerger, R. D., Majarian, W. R., and Ebersole, R. C. (1995) High sensitivity multianalyte immunoassay using covalent DNA-labeled antibodies and polymerase chain reaction, Nucleic Acids Res., 11, 522–529.CrossRefGoogle Scholar
  8. 8.
    Wang, T., Lu, H., Lou, P., and Lin, F. H. (2008) Application of highly sensitive, modified glass substrate-based immunoPCR on the early detection of nasopharyngeal carcinoma, Biomaterials, 29, 4447–4454.PubMedCrossRefGoogle Scholar
  9. 9.
    Kuczius, T., Becker, K., Fischer, A., and Zhang, W. (2012) Simultaneous detection of three CNS indicator proteins in complex suspensions using a single immuno-PCR protocol, Anal. Biochem., 431, 4–10.PubMedCrossRefGoogle Scholar
  10. 10.
    Barletta, J., Bartolome, A., and Constantine, N. (2009) Immunomagnetic quantitative immuno-PCR for detection of less than one HIV-1 virion, J. Virol. Methods, 157, 122–132.PubMedCrossRefGoogle Scholar
  11. 11.
    Chen, L., Wei, H., Guo, Y., Cui, Z., Zhang, Z., and Zhang, X. E. (2009) Gold nanoparticle enhanced immuno-PCR for ultrasensitive detection of Hantaan virus nucleocapsid protein, J. Immunol. Methods, 346, 64–70.PubMedCrossRefGoogle Scholar
  12. 12.
    Tian, P., and Mandrell, R. (2006) Detection of norovirus capsid proteins in fecal and food samples by a real time immuno-PCR method, J. Appl. Microbiol., 100, 564–574.PubMedCrossRefGoogle Scholar
  13. 13.
    Singer, D., Soininen, H., Alafuzoff, I., and Hoffmann, R. (2009) Immuno-PCR-based quantification of multiple phosphorylated tau-epitopes linked to Alzheimer’s disease, Anal. Bioanal. Chem., 395, 2263–2267.PubMedCrossRefGoogle Scholar
  14. 14.
    Dan, B., Huisheng, Zh., Guangxin, Y., and Xianyin, P. (2015) A real-time immuno-PCR assay for the detection of tetrabromobisphenol A, Anal. Methods., 7, 99–106.CrossRefGoogle Scholar
  15. 15.
    Zhuang, H. S., and Zhou, C. (2009) Determination of anthracene by real-time immuno-polymerase chain reaction assay, Anal. Chim. Acta, 633, 278–282.PubMedCrossRefGoogle Scholar
  16. 16.
    Meng, X. Y., Li, Y. S., Zhou, Y., Zhang, Y. Y., Qiao, B., Sun, Y., Yang, L., Hu, P., Lu, S. Y., Ren, H. L., Zhang, J. H., Wang, X. R., and Liu, Z. S. (2015) Real-time immunoPCR for ultrasensitive detection of pyrene and other homologous PAHs, Bio Sens. Bioelectron., 70, 42–47.CrossRefGoogle Scholar
  17. 17.
    Tao, X., He, Z., Cao, X., Shen, J., and Li, H. (2014) Development of a highly sensitive real-time immuno-PCR for the measurement of chloramphenicol in milk based on magnetic bead capturing, Anal. Methods, 6, 9340–9347.CrossRefGoogle Scholar
  18. 18.
    Niemeyer, C. M., Adler, M., and Wacker, R. (2007) Detecting antigens by quantitative immuno-PCR, Nature Protocols, 2, 1918–1930.PubMedCrossRefGoogle Scholar
  19. 19.
    Liang, H., Cordova, S. E., Kieft, T. L., and Rogelj, S. (2003) A highly sensitive immuno-PCR assay for detecting group A Streptococcus, J. Immunol. Methods, 279, 101–110.PubMedCrossRefGoogle Scholar
  20. 20.
    Chao, H. Y., Wang, Y. C., Tang, S. S., and Liu, H. W. (2004) A highly sensitive immuno-polymerase chain reaction assay for Clostridium botulinum neurotoxin type A, Toxicon, 43, 27–34.PubMedCrossRefGoogle Scholar
  21. 21.
    Barletta, J. (2006) Applications of real-time immuno-polymerase chain (RT-iPCR) for the rapid diagnoses of viral antigens and pathologic proteins, Mol. Aspects Med., 27, 224–253.PubMedCrossRefGoogle Scholar
  22. 22.
    Fischer, A., Von Eiff, C., Kuczius, T., Omoe, K., Peters, G., and Becker, K. (2007) A quantitative real-time immuno-PCR approach for detection of staphylococcal enterotoxins, J. Mol. Med. (Berl.), 85, 461–469.CrossRefGoogle Scholar
  23. 23.
    Niemeyer, C. M., Wacker, R., and Adler M. (2003) Combination of DNA-directed immobilization and immuno-PCR: very sensitive antigen detection by means of self-assembled DNA–protein conjugates, Nucleic Acids Res., 31, e90.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Pinzani, P., Lind, K., Malentacchi, F., Nesi, G., Salvianti, F., Villari, D., Kubista, M., Pazzagli, M., and Orlando, C. (2008) Prostate-specific antigen mRNA and protein levels in laser microdissected cells of human prostate measured by real-time reverse transcriptase-quantitative polymerase chain reaction and immuno-quantitative polymerase chain reaction, Hum. Pathol., 39, 1474–1482.PubMedCrossRefGoogle Scholar
  25. 25.
    Gullberg, M., Gustafsdottir, S., Schallmeiner, E., Jarvius, J., Bjarnegård, M., Betsholtz, C., Landegren, U., and Fredriksson, S. (2004) Cytokine detection by antibodybased proximity ligation, Proc. Natl. Acad. Sci. USA, 101, 8420–8424.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Case, M., Burt, A., Hughes, J., Palmer, J. M., Collier, J. D., Bassendine, M. F., Yeaman, S. J., Hughes, M. A., and Major, G. N. (1999) Enhanced ultrasensitive detection of structurally diverse antigens using a single immuno-PCR assay protocol, J. Immunol. Methods, 223, 93–106.PubMedCrossRefGoogle Scholar
  27. 27.
    Numata, Y., and Matsumoto, Y. (1997) Rapid detection of alpha-human atrial natriuretic peptide in plasma by a sensitive immuno-PCR sandwich assay, Clin. Chim. Acta, 259, 169–176.PubMedCrossRefGoogle Scholar
  28. 28.
    Niemeyer, C. M., Adler, M., Pignataro, B., Lenhert, S., Gao, S., Lifeng, C., Fuchs, H., and Dietmar, B. (1999) Self-assembly of DNA–streptavidin nanostructures and their use as reagents in immuno-PCR, Nucleic Acids Res., 27, 4553–4561.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Saito, K., Kobayashi, D., Sasaki, M., Araake, H., Kida, T., Yagihashi, A., Yajima, T., Kameshima, H., and Watanabe, N. (1999) Detection of human serum tumor necrosis factor-alpha in healthy donors, using a highly sensitive immuno-PCR assay, Clin. Chem., 45, 665–669.PubMedGoogle Scholar
  30. 30.
    Adler, M., Langer, M., Witthohn, K., Eck, J., Blohm, D., and Niemeyer, C. M. (2003) Detection of rViscumin in plasma samples by immuno-PCR, Biochem. Biophys. Res. Commun., 300, 757–763.PubMedCrossRefGoogle Scholar
  31. 31.
    Potuskova, L., Franko, F., Bambouskova, M., and Draber, P. (2011) Rapid and sensitive detection of cytokines using functionalized gold nanoparticle-based immuno-PCR, comparison with immuno-PCR and ELISA, J. Immunol. Methods, 371, 38–47.CrossRefGoogle Scholar
  32. 32.
    Ryazantsev, D. Yu., Petrova, E. E., Kalinina, N. A., Valyakina, T. I., Grishin, E. V., and Zavriev, S. K. (2012) Application of supramolecular DNA–streptavidin complexes for ultrasensitive detection of several toxins by immuno-PCR, Global J. Anal. Chem., 3, e17.Google Scholar
  33. 33.
    Ryazantsev, D. Yu., and Zavriev, S. K. (2011) ImmunoPCR: application of DNA–streptavidin supramolecular complexes for hypersensitive detection of antigens, FEBS J., 238, 161–162.Google Scholar
  34. 34.
    Maerle, A. V., Ryazantsev, D. Yu., Dmitrenko, O. A., Petrova, E. E., Komaleva, R. L., Sergeeva, I. V., Trofimov, D. Yu., and Zavriev, S. K. (2014) Detection of Staphylococcus aureus toxins using immuno-PCR, Russ. J. Bioorg. Chem., 40, 526–531.CrossRefGoogle Scholar
  35. 35.
    McKie, A. A., Samuel, D., Cohen, B., and Saunders, N. A. (2002) A quantitative immuno-PCR assay for the detection of mumps-specific IgG, J. Immunol. Methods, 270, 135–141.PubMedCrossRefGoogle Scholar
  36. 36.
    Harlow, E., and Lane, D. (1988) Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, N. Y., p. 559.Google Scholar
  37. 37.
    Ruzicka, V., Marz, W., Russ, A., and Gross, W. (1993) Immuno-PCR with a commercially available avidin system, Science, 260, 698–699.PubMedCrossRefGoogle Scholar
  38. 38.
    Malou, N., and Raoult, D. (2011) Immuno-PCR: a promising ultrasensitive diagnostic method to detect antigens and antibodies, Trends Microbiol., 19, 295–302.PubMedCrossRefGoogle Scholar
  39. 39.
    Niemeyer, C. M., Adler, M., and Wacker, R. (2005) Immuno-PCR: high sensitivity detection of proteins by nucleic acid amplification, Trends Biotechnol., 23, 208–216.PubMedCrossRefGoogle Scholar
  40. 40.
    Crowther, J. R. (1995) ELISA: Theory and Practice, Humana Press Inc.CrossRefGoogle Scholar
  41. 41.
    He, X., Qi, W., Quinones, B., McMahon, S., Cooley, M., and Mandrell, R. E. (2011) Sensitive detection of Shiga toxin 2 and some of its variants in environmental samples by a novel immuno-PCR assay, Appl. Environ. Microbiol., 77, 3558–3564.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Sims, P. W., Vasser, M., Wong, W. L., Williams, P. M., and Meng, Y.-J. G. (2000) Immuno-polymerase chain reaction using real-time polymerase chain reaction for detection, Anal. Biochem., 281, 230–232.PubMedCrossRefGoogle Scholar
  43. 43.
    Deng, M., Xiao, X., Ji, X., Sun, T., Wu, Z. X., Zheng, X. L., Wang, Q., and Zhu, L. H. (2014) Immuno-PCR for detection of Giardia lamblia Cy in water, J. AOAC Int., 97, 561–566.PubMedCrossRefGoogle Scholar
  44. 44.
    Allen, R., Rogelj, S., Cordova, S., and Kieft, T. L. (2006) An immuno-PCR method for detecting Bacillus thuringiensis Cry1Ac toxin, J. Immunol. Methods, 205, 364–367.Google Scholar
  45. 45.
    Babu, D., and Muriana, P. (2011) Immunomagnetic beadbased recovery and real time quantitative PCR (RT iqPCR) for sensitive quantification of aflatoxin B(1), J. Microbiol. Methods, 86, 188–194.PubMedCrossRefGoogle Scholar
  46. 46.
    Zhang, J., Vernes, J., Ni, J., Nelson, C., Wong, A., Chen, S. T., Asundi, A., Vandlen, R., and Meng, Y. G. (2014) Real-time immuno-polymerase chain reaction in a 384well format: detection of vascular endothelial growth factor and epidermal growth factor-like domain 7, Anal. Biochem., 463, 61–66.PubMedCrossRefGoogle Scholar
  47. 47.
    Agasti, S. S., Liong, M., Peterson, V. M., Lee, H., and Weissleder, R. (2012) Photocleavable DNA barcode–antibody conjugates allow sensitive and multiplexed protein analysis in single cells, J. Am. Chem. Soc., 134, 18499–184502.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Hashimoto, M., Aoki, M., Winblad, B., and Tjernberg, L. O. (2012) A novel approach for Aβ1-40 quantification using immuno-PCR, J. Neurosci. Methods, 205, 364–367.PubMedCrossRefGoogle Scholar
  49. 49.
    Kazane, S., Sok, D., Cho, E. H., Uson, M. L., Kuhn, P., Schultz, P. G., and Smider, V. V. (2012) Site-specific DNA–antibody conjugates for specific and sensitive immuno-PCR, Proc. Natl. Acad. Sci. USA, 109, 3731–3736.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Spicer, C. D., and Davis, B. G. (2014) Selective chemical protein modification, Nat. Commun., 5, 4740.PubMedCrossRefGoogle Scholar
  51. 51.
    Van Buggenum, J. A., Gerlach, J. P., Eising, S., Schoonen, L., Van Eijl, R. A., Tanis, S. E., Hogeweg, M., Hubner, N. C., Van Hest, J. C., Bonger, K. M., and Mulder, K. W. (2016) A covalent and cleavable antibody–DNA conjugation strategy for sensitive protein detection via immunoPCR, Sci. Rep., 6, 22675.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Malou, N., Renvoise, A., Nappez, C., and Raoult, D. (2012) Immuno-PCR for the early serological diagnosis of acute infectious diseases: the Q fever paradigm, Eur. J. Clin. Microbiol. Infect. Dis., 31, 1951–1960.PubMedCrossRefGoogle Scholar
  53. 53.
    Spengler, M., Adler, M., Jonas, A., and Niemeyer, C. M. (2009) Immuno-PCR assays for immunogenicity testing, Biochem. Biophys. Res. Commun., 387, 278–282.PubMedCrossRefGoogle Scholar
  54. 54.
    Adler, M., Schulz, S., Fisher, R., and Niemeyer, C. M. (2005) Detection of rotavirus from stool samples using a standardized immuno-PCR (“Imperacer”) method with end-point and real-time detection, Biochem. Biophys. Res. Commun., 333, 1289–1294.PubMedCrossRefGoogle Scholar
  55. 55.
    Luk, C., Compta, Y., Magdalinou, N., Marti, M. J., Hondhamuni, G., Zetterberg, H., Blennow, K., Constantinescu, R., Pijnenburg, Y., Mollenhauer, B., Trenkwalder, C., Van Swieten, J., Chiu, W. Z., Borroni, B., Camara, A., Cheshire, P., Williams, D. R., Lees, A. J., and De Silva, R. (2012) Development and assessment of sensitive immuno-PCR assays for the quantification of cerebrospinal fluid three- and four-repeat tau isoforms in tauopathies, J. Neurochem., 123, 396–405.PubMedCrossRefGoogle Scholar
  56. 56.
    Soderberg, O., Gullberg, M., Jarvius, M., Ridderstrale, K., Leuchowius, K.-J., Jarvius, J., Wester, K., Hygbring, P., Bahram, F., Larsson, L.-G., and Landegren, U. (2006) Direct observation of individual endogenous protein complexes in situ by proximity ligation, Nat. Methods, 3, 995–1000.PubMedCrossRefGoogle Scholar
  57. 57.
    Gehwolf, R., Band, E., Trost, A., Iglseder, B., Trinka, E., Haschke-Becher, E., Kraus, J., and Harrer, A. (2014) TaqManR proximity ligation technology for the detection of heterodimeric adhesion receptors on lymphocytes, J. Immunol. Methods, 404, 81–86.PubMedCrossRefGoogle Scholar
  58. 58.
    Jiang, X., Cheng, S., Chen, W., Wang, L., Shi, F., and Zhu, C. (2012) Comparison of oligonucleotide-labeled antibody probe assays for prostate-specific antigen detection, Anal. Biochem., 424, 1–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Johnston, E., Kamath, S., Lopata, A., and Schaeffer, P. M. (2014) Tus–Ter-lock immuno-PCR assays for the sensitive detection of tropomyosin-specific IgE antibodies, Bioanalysis, 6, 465–476.PubMedCrossRefGoogle Scholar
  60. 60.
    Morin, I., Askin, S. P., and Schaeffer, P. M. (2011) IgGdetection devices for the Tus–Ter-lock immuno-PCR diagnostic platform, Analyst, 136, 4815–4821.PubMedCrossRefGoogle Scholar
  61. 61.
    Li, Z., Wang, X., Chang, J., Xie, W. B., Liu, T. F., Zhang, Q. L., Deng, Y. J., and Ding, Y. Q. (2012) The establishment of supramolecular immunobead real-time PCR and the identification of Cox-2 as a metastasis-related marker in colorectal carcinoma, Oncol. Rep., 28, 977–984.PubMedGoogle Scholar
  62. 62.
    Deng, M., Long, L., Xiao, X., Wu, Z., Zhang, F., Zhang, Y., Zheng, X., Xin, X., Wang, Q., and Wu, D. (2011) Immuno-PCR for one step detection of H5N1 avian influenza virus and Newcastle disease virus using magnetic gold particles as carriers, Vet. Immunol. Immunopathol., 141, 183–189.PubMedCrossRefGoogle Scholar
  63. 63.
    Nikitina, I., Sabirova, E., Solopova, O., Surzhikov, S. A., Grineva, E. N., Karpov, V. L., Lisitsyn, N. A., and Beresten’, S. F. (2014) A new immunoPCR format for serological diagnosis of colon cancer, Mol. Biol. (Moscow), 48, 117–123.CrossRefGoogle Scholar
  64. 64.
    Ding, Y., Liu, Y., Zhou, J., Chen, H. T., Zhang, J., Ma, L. N., and Wei, G. (2011) A highly sensitive detection for foot- and -mouth disease virus by gold nanoparticle improved immuno-PCR, Virol. J., 8, 148.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Nam, J. M., Thaxton, C. S., and Mirkin, C. A. (2003) Nanoparticle-based bio-barcodes for the ultrasensitive detection of proteins, Science, 301, 1884–1886.PubMedCrossRefGoogle Scholar
  66. 66.
    Nam, J. M., Park, S. J., and Mirkin, C. A. (2002) Bio-barcodes based on oligonucleotide-modified nanoparticles, J. Am. Chem. Soc., 124, 3820–3821.PubMedCrossRefGoogle Scholar
  67. 67.
    Perez, J., Vargis, E., Russ, P., Haselton, F. R., and Wright, D. W. (2011) Detection of respiratory syncytial virus using nanoparticle amplified immuno-polymerase chain reaction, Anal. Biochem., 410, 141–148.PubMedCrossRefGoogle Scholar
  68. 68.
    Yin, H., Jia, M., Shi, L., Yang, S., Zhang, L. Y., Zhang, Q. M., Wang, S. Q., Li, G., and Zhang, J. G. (2011) Nanoparticle-based bio-barcode assay for the detection of bluetongue virus, J. Virol. Methods, 178, 225–228.PubMedCrossRefGoogle Scholar
  69. 69.
    Yang, G., Zhuang, H., Chen, H. Y., Ping, X. Y., and Bu, D. (2014) A sensitive immunosorbent bio-barcode assay based on real-time immuno-PCR for detecting 3,4,3′,4′-tetrachlorobiphenyl, Anal. Bioanal. Chem., 406, 1693–1700.PubMedCrossRefGoogle Scholar
  70. 70.
    Yang, G., Zhuang, H., Chen, H., Ping, X., and Bu, D. (2015) A gold nanoparticle based immunosorbent bio-barcode assay combined with real-time immuno-PCR for the detection of polychlorinated biphenyls, Sens. Actuator B Chem., 214, 152–158.CrossRefGoogle Scholar
  71. 71.
    Mason, J., Xu, L., Sheng, Z., He, J., and O’Leary, T. J. (2006) Liposome polymerase chain reaction assay for the sub-attomolar detection of cholera toxin and botulinum neurotoxin type A, Nat. Protoc., 1, 2003–2011.PubMedCrossRefGoogle Scholar
  72. 72.
    Guo, Y., Zhou, Y., Zhang, X., Zhang, Z., Qiao, Y., Bi, L., Wen, J., Liang, M., and Zhang, J. (2006) Phage display mediated immuno-PCR, Nucleic Acids Res., 34, e62.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Lei, J., Li, P., Zhang, Q., Wang, Y., Zhang, Z., Ding, X., and Zang, W. (2014) An anti-idiotypic nanobody-phage based real-time immuno-PCR for detection of hepatocarcinogen aflatoxin in grains and feedstuffs, Anal. Chem., 86, 10841–10846.PubMedCrossRefGoogle Scholar
  74. 74.
    Liu, X., Xu, Y., Xiong, Y., Tu, Z., Li, Y. P., He, Z. Y., Qiu, Y. L., Fu, J. H., Gee, S. J., and Hammock, B. D. (2014) VHH phage-based competitive real-time immuno-polymerase chain reaction for ultrasensitive detection of ochratoxin A in cereal, Anal. Chem., 86, 7471–7477.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Monjezi, R., Tan, S., Tey, B., Sieo, C. C., and Tan, W. S. (2013) Detection of hepatitis B virus core antigen by phage display mediated TaqMan real-time immuno-PCR, J. Virol. Methods, 187, 121–126.PubMedCrossRefGoogle Scholar
  76. 76.
    Kasai, N., Kobayashi, K., Shioya, S., Yoshikawa, Y., Yotsumoto, F., Miyamoto, S., Mekada, E., and Enokizono, J. (2012) Soluble heparin-binding EGF-like growth factor (HB-EGF) detected by newly developed immuno-PCR method is a clear-cut serological biomarker for ovarian cancer, Am. J. Transl. Res., 4, 415–421.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Bonot, S., Ogorzaly, L., El Moualij, B., Zorzi, W., and Cauchie, H. M. (2014) Detection of small amounts of human adenoviruses in stools: comparison of a new immuno real-time PCR assay with classical tools, Clin. Microbiol. Infect., 20, O1010-6.PubMedCrossRefGoogle Scholar
  78. 78.
    Lee, K., Hur, B., Chua, K., Kuo, I., Song, S., and Cha, S. (2008) Detection of serum IgE specific to mite allergens by immuno-PCR, Immune Network, 8, 82–89.CrossRefGoogle Scholar
  79. 79.
    Kakizaki, E., Yoshida, T., Kawakami, H., Oseto, M., Sakai, T., and Sakai, M. (1996) Detection of bacterial antigens using immuno-PCR, Lett. Appl. Microbiol., 23, 101–103.PubMedCrossRefGoogle Scholar
  80. 80.
    He, X., McMahon, S., McKeon, T., and Brandon, D. L. (2010) Development of a novel immuno-PCR assay for detection of ricin in ground beef, liquid chicken egg, and milk, J. Food. Prot., 73, 695–700.PubMedCrossRefGoogle Scholar
  81. 81.
    Mikita, K., Thakur, K., Anstey, N., Piera, K. A., Pardo, C. A., Weinberg, J. B., Mukemba, J., Florence, S., Mwaikambo, E. D., Granger, D. L., and Sullivan, D. J. (2014) Quantification of Plasmodium falciparum histidine-rich protein-2 in cerebrospinal spinal fluid from cerebral malaria patients, Am. J. Trop. Med. Hyg., 91, 486–492.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Peroni, L., Reis, J., Coletta-Filho, H., De Souza, A. A., Machado, M. A., and Stach-Machado, D. R. (2008) Assessment of the diagnostic potential of immmunocapture-PCR and immuno-PCR for citrus variegated chlorosis, J. Microbiol. Methods, 75, 302–307.PubMedCrossRefGoogle Scholar
  83. 83.
    Barletta, J. M., Edelman, D. C., and Constantine, N. T. (2004) Lowering the detection limits of HIV-1 viral load using real-time immuno-PCR for HIV-1 p24 antigen, Am. J. Clin. Pathol., 122, 20–27.PubMedCrossRefGoogle Scholar
  84. 84.
    http://edoc.rki.de/documents/rki_fv/rewfsQVGV4llc/PDF/ 20H9Hx8sK, (2002) Epidemiologisches Bulletin, No. 10, 77-80.Google Scholar
  85. 85.
    Kittigul, L., Ekchaloemkiet, S., Utrarachkij, F., Siripanichgon, K., Sujirarat, D., Pungchitton, S., and Boonthum, A. (2004) An efficient virus concentration method and RT-nested PCR for detection of rotaviruses in environmental water samples, J. Virol. Methods, 124, 117–122.PubMedCrossRefGoogle Scholar
  86. 86.
    Matsushita, T., Shirasaki, N., Tatsuki, Y., and Matsui, Y. (2013) Investigating norovirus removal by microfiltration, ultrafiltration, and precoagulation-microfiltration processes using recombinant norovirus virus-like particles and real-time immuno-PCR, Water Res., 47, 5819–5827.PubMedCrossRefGoogle Scholar
  87. 87.
    Andreja, R., Benaissa, E., Youssef, F., Dierick, K., Zorzi, W., Heinen, E., Uner, A., and Uyttendaele, M. (2012) Detection of Clostridium botulinum neurotoxins A and B in milk by ELISA and immuno-PCR at higher sensitivity than mouse bio-assay, Food Anal. Methods, 5, 319–326.CrossRefGoogle Scholar
  88. 88.
    Scarlatos, A., Welt, B. A., Cooper, B. Y., Archer, D., DeMarse, T., and Chau, K. V. (2005) Methods for detecting botulinum toxin with applicability to screening foods against biological terrorist attacks, J. Food Sci., 70, r121r130.CrossRefGoogle Scholar
  89. 89.
    Sharma, S. K., Ferreira, J. L., Eblen, B. S., and Whiting, R. C. (2006) Detection of type A, B, E, and F clostridium botulinum neurotoxins in foods by using an amplified enzymelinked immunosorbent assay with digoxigenin-labeled antibodies, Appl. Environ. Microbiol., 72, 1231–1238.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    He, X., McMahon, S., Skinner, C., Merrill, P., Scotcher, M. C., and Stanker, L. H. (2013) Development and characterization of monoclonal antibodies against Shiga toxin 2 and their application for toxin detection in milk, J. Immunol. Methods, 389, 18–28.PubMedCrossRefGoogle Scholar
  91. 91.
    He, X., McMahon, S., Henderson, T., Griffey, S. M., and Cheng, L. W. (2010) Ricin toxicokinetics and its sensitive detection in mouse sera or feces using immuno-PCR, PLoS One, 5, e12858.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Stockholm Convention on Persistent Organic Pollutants, http://chm.pops.int.Google Scholar
  93. 93.
    Chen, H., and Zhuang, H. (2011) A real-time immunoPCR method for detecting 3,3′,4,4′-tetrachlorobiphenyl, Microchim. Acta, 172, 233–239.CrossRefGoogle Scholar
  94. 94.
    Jani, D., Savino, E., and Goyal, J. (2015) Feasibility of immuno-PCR technology platforms as an ultrasensitive tool for the detection of anti-drug antibodies, Bioanalysis, 7, 285–294.PubMedCrossRefGoogle Scholar
  95. 95.
    Tao, X., Jiang, H., Zhu, J., Wang, X., Wang, Z., Niu, L., Wu, X., Shi, W., and Shen, J. (2014) An ultrasensitive chemiluminescent ELISA for determination of chloramphenicol in milk, milk powder, honey, eggs and chicken muscle, Food Agric. Immunol., 25, 137–148.CrossRefGoogle Scholar
  96. 96.
    Deng, M., Xiao, X., Zhang, Y., Wu, X. H., Zhu, L. H., Xin, X. Q., and Wu, D. L. (2011) A highly sensitive immunoPCR assay for detection of H5N1 avian influenza virus, Mol. Biol. Rep., 38, 1941–1948.PubMedCrossRefGoogle Scholar
  97. 97.
    Chen, Z., Hong, L., Liu, L., Peng, D., Li, Q., Jin, B., Qiao, T., Wu, K., and Fan, D. (2010) Monoclonal antibody MG7 as a screening tool for gastric cancer, Hybridoma, 29, 27–30.PubMedCrossRefGoogle Scholar
  98. 98.
    Stegurova, L., Draberova, E., Bartos, A., Draber, P., Ripova, D., and Draber, P. (2014) Gold nanoparticlebased immuno-PCR for detection of tau protein in cerebrospinal fluid, J. Immunol. Methods, 406, 137–142.PubMedCrossRefGoogle Scholar
  99. 99.
    Barletta, J., Edelman, D., Highsmith, W., and Constantine, N. T. (2005) Detection of ultra-low levels of pathologic prion protein in scrapie infected hamster brain homogenates using real-time immuno-PCR, J. Virol. Methods, 127, 154–164.PubMedCrossRefGoogle Scholar
  100. 100.
    Reuter, T., Gilroyed, B., Alexander, T., Mitchell, G., Balachandran, A., Czub, S., and McAllister, T. A. (2009) Prion protein detection via direct immuno-quantitative real-time PCR, J. Microbiol. Methods, 78, 307–311.PubMedCrossRefGoogle Scholar
  101. 101.
    Malou, N., Tran, T. N., Nappez, C., Signoli, M., Le Forestier, C., Castex, D., Drancourt, M., and Raoult, D. (2012) Immuno-PCR–a new tool for paleomicrobiology: the plague paradigm, PLoS One, 7, e31744.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Diel, P., Schiffer, T., Geisler, S., Hertrampf, T., Mosler, S., Schulz, S., Wintgens, K. F., and Adler, M. (2010) Analysis of the effects of androgens and training on myostatin propeptide and follistatin concentrations in blood and skeletal muscle using highly sensitive immuno PCR, Mol. Cell. Endocrinol., 330, 1–9.PubMedCrossRefGoogle Scholar
  103. 103.
    Dong, J., Hasan, S., Fujioka, Y., and Ueda, H. (2012) Detection of small molecule diagnostic markers with phage-based open-sandwich immuno-PCR, J. Immunol. Methods, 377, 1–7.PubMedCrossRefGoogle Scholar
  104. 104.
    Kwon, K., Hwang, S., Park, Y., Yoon, J., Kim, S., and Hong, J. (2014) A quantitative real-time immuno-PCR assay for detection of Staphylococcus aureus enterotoxin H, J. Food Saf., 34, 249–256.CrossRefGoogle Scholar
  105. 105.
    Kumar, R. (2011) A quantitative immuno-polymerase chain reaction method for detection of vegetative insecticidal protein in genetically modified crops, J. Agric. Food Chem., 59, 10448–10453.PubMedCrossRefGoogle Scholar
  106. 106.
    Kumar, R. (2012) A real-time immuno-PCR assay for the detection of transgenic Cry1Ab protein, Eur. Food Res. Technol., 234, 101–108.CrossRefGoogle Scholar
  107. 107.
    Bu, D., and Zhuang, H. (2014) A real-time immuno-PCR assay for the flame retardant tris(2,3-dibromopropyl) isocyanurate using a probe DNA conjugated to gold nanoparticles, Microchim. Acta, 182, 1863–1868.CrossRefGoogle Scholar
  108. 108.
    Sun, R., and Zhuang, H. (2015) An ultrasensitive gold nanoparticles improved real-time immuno-PCR assay for detecting diethyl phthalate in foodstuff samples, Anal. Biochem., 480, 49–57.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • D. Y. Ryazantsev
    • 1
    Email author
  • D. V. Voronina
    • 1
  • S. K. Zavriev
    • 1
  1. 1.Shemyakin–Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations