Biochemistry (Moscow)

, Volume 81, Issue 13, pp 1676–1697 | Cite as

Myosin light chain kinase MYLK1: Anatomy, interactions, functions, and regulation

  • A. Y. KhapchaevEmail author
  • V. P. Shirinsky


This review discusses and summarizes the results of molecular and cellular investigations of myosin light chain kinase (MLCK, MYLK1), the key regulator of cell motility. The structure and regulation of a complex mylk1 gene and the domain organization of its products is presented. The interactions of the mylk1 gene protein products with other proteins and posttranslational modifications of the mylk1 gene protein products are reviewed, which altogether might determine the role and place of MLCK in physiological and pathological reactions of cells and entire organisms. Translational potential of MLCK as a drug target is evaluated.


myosin light chain kinase KRP/telokin mylk1 gene organization and regulation posttranslational modifications protein–protein interactions MLCK-dependent cellular reactions MLCK in pathology 





extracellular regulated kinase-1/2


interferon gamma




kinase-related protein


mitogenactivated protein kinase


myosin light chain kinase


myosin light chain phosphatase


myosin phosphatase target subunit 1


cyclic AMP-dependent protein kinase, protein kinase A


posttranslational modification


regulatory light chain


Rho-associated protein kinase


tissue necrosis factor alpha


zip-per-interacting protein kinase


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cunningham, K. E., and Turner, J. R. (2012) Myosin light chain kinase: pulling the strings of epithelial tight junction function, Ann. N. Y. Acad. Sci., 1258, 34–42.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Herring, B. P., El-Mounayri, O., Gallagher, P. J., Yin, F., and Zhou, J. (2006) Regulation of myosin light chain kinase and telokin expression in smooth muscle tissues, Am. J. Physiol. Cell Physiol., 291, C817-827.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Kamm, K. E., and Stull, J. T. (2001) Dedicated myosin light chain kinases with diverse cellular functions, J. Biol. Chem., 276, 4527–4530.PubMedCrossRefGoogle Scholar
  4. 4.
    Lukas, T. J., and Shirinsky, V. P. (2012) MYLK (Myosin Light Chain Kinase), in Encyclopedia of Signaling Molecules (Choi, S., ed.) Springer, New York, pp. 1160–1165.Google Scholar
  5. 5.
    Shen, K., Wang, T., and Garcia, J. G. (2012) MYLK (myosin light chain kinase), Atlas Genet. Cytogenet. Oncol. Haematol., 16, 901–908.Google Scholar
  6. 6.
    Gallagher, P. J., Herring, B. P., and Stull, J. T. (1997) Myosin light chain kinases, J. Muscle Res. Cell Motil., 18, 1–16.PubMedCrossRefGoogle Scholar
  7. 7.
    Khapchaev, A. Y., Shirinsky, V. P., and Vorotnikov, A. V. (2003) Structure, properties and regulation of the myosin light chain kinase genetic locus protein products, Usp. Biol. Khim., 43, 365–420.Google Scholar
  8. 8.
    Gao, Y., Ye, L. H., Kishi, H., Okagaki, T., Samizo, K., Nakamura, A., and Kohama, K. (2001) Myosin light chain kinase as a multifunctional regulatory protein of smooth muscle contraction, IUBMB Life, 51, 337–344.PubMedCrossRefGoogle Scholar
  9. 9.
    Takashima, S. (2009) Phosphorylation of myosin regulatory light chain by myosin light chain kinase, and muscle contraction, Circ. J., 73, 208–213.PubMedCrossRefGoogle Scholar
  10. 10.
    Hong, F., Haldeman, B. D., Jackson, D., Carter, M., Baker, J. E., and Cremo, C. R. (2011) Biochemistry of smooth muscle myosin light chain kinase, Arch. Biochem. Biophys., 510, 135–146.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Dabrowska, R., Sherry, J. M., Aromatorio, D. K., and Hartshorne, D. J. (1978) Modulator protein as a component of the myosin light chain kinase from chicken gizzard, Biochemistry, 17, 253–258.PubMedCrossRefGoogle Scholar
  12. 12.
    Pires, E., Perry, S. V., and Thomas, M. A. (1974) Myosin light-chain kinase, a new enzyme from striated muscle, FEBS Lett., 41, 292–296.PubMedCrossRefGoogle Scholar
  13. 13.
    Chan, J. Y., Takeda, M., Briggs, L. E., Graham, M. L., Lu, J. T., Horikoshi, N., Weinberg, E. O., Aoki, H., Sato, N., Chien, K. R., and Kasahara, H. (2008) Identification of cardiac-specific myosin light chain kinase, Circ. Res., 102, 571–580.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Roush, C. L., Kennelly, P. J., Glaccum, M. B., Helfman, D. M., Scott, J. D., and Krebs, E. G. (1988) Isolation of the cDNA encoding rat skeletal muscle myosin light chain kinase. Sequence and tissue distribution, J. Biol. Chem., 263, 10510–10516.PubMedGoogle Scholar
  15. 15.
    Birukov, K. G., Schavocky, J. P., Shirinsky, V. P., Chibalina, M. V., Van Eldik, L. J., and Watterson, D. M. (1998) Organization of the genetic locus for chicken myosin light chain kinase is complex: multiple proteins are encoded and exhibit differential expression and localization, J. Cell. Biochem., 70, 402–413.PubMedCrossRefGoogle Scholar
  16. 16.
    Potier, M. C., Chelot, E., Pekarsky, Y., Gardiner, K., Rossier, J., and Turnell, W. G. (1995) The human myosin light chain kinase (MLCK) from hippocampus: cloning, sequencing, expression, and localization to 3qcen-q21, Genomics, 29, 562–570.PubMedCrossRefGoogle Scholar
  17. 17.
    Hornbeck, P. V., Zhang, B., Murray, B., Kornhauser, J. M., Latham, V., and Skrzypek, E. (2015) PhosphoSitePlus, 2014: mutations, PTMs and recalibrations, Nucleic Acids Res., 43, D512-520.PubMedCrossRefGoogle Scholar
  18. 18.
    Watterson, D. M., Collinge, M., Lukas, T. J., Van Eldik, L. J., Birukov, K. G., Stepanova, O. V., and Shirinsky, V. P. (1995) Multiple gene products are produced from a novel protein kinase transcription region, FEBS Lett., 373, 217–220.PubMedCrossRefGoogle Scholar
  19. 19.
    Ito, M., Dabrowska, R., Guerriero, V., Jr., and Hartshorne, D. J. (1989) Identification in turkey gizzard of an acidic protein related to the C-terminal portion of smooth muscle myosin light chain kinase, J. Biol. Chem., 264, 13971–13974.PubMedGoogle Scholar
  20. 20.
    Ye, D., and Ma, T. Y. (2008) Cellular and molecular mechanisms that mediate basal and tumour necrosis factoralpha-induced regulation of myosin light chain kinase gene activity, J. Cell. Mol. Med., 12, 1331–1346.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Shimizu, Y., Camp, S. M., Sun, X., Zhou, T., Wang, T., and Garcia, J. G. (2015) Sp1-mediated nonmuscle myosin light chain kinase expression and enhanced activity in vascular endothelial growth factor-induced vascular permeability, Pulm. Circ., 5, 707–715.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Chang, A. N., Mahajan, P., Knapp, S., Barton, H., Sweeney, H. L., Kamm, K. E., and Stull, J. T. (2016) Cardiac myosin light chain is phosphorylated by Ca2+/calmodulin-dependent and -independent kinase activities, Proc. Natl. Acad. Sci. USA, 113, E3824-3833.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Guerriero, V., Jr., Russo, M. A., Olson, N. J., Putkey, J. A., and Means, A. R. (1986) Domain organization of chicken gizzard myosin light chain kinase deduced from a cloned cDNA, Biochemistry, 25, 8372–8381.PubMedCrossRefGoogle Scholar
  24. 24.
    Garcia, J. G., Lazar, V., Gilbert-McClain, L. I., Gallagher, P. J., and Verin, A. D. (1997) Myosin light chain kinase in endothelium: molecular cloning and regulation, Am. J. Respir. Cell Mol. Biol., 16, 489–494.PubMedCrossRefGoogle Scholar
  25. 25.
    Yin, F., Hoggatt, A. M., Zhou, J., and Herring, B. P. (2006) 130-kDa smooth muscle myosin light chain kinase is transcribed from a CArG-dependent, internal promoter within the mouse mylk gene, Am. J. Physiol. Cell Physiol., 290, C1599-1609.PubMedCrossRefGoogle Scholar
  26. 26.
    Collinge, M., Matrisian, P. E., Zimmer, W. E., Shattuck, R. L., Lukas, T. J., Van Eldik, L. J., and Watterson, D. M. (1992) Structure and expression of a calcium-binding protein gene contained within a calmodulin-regulated protein kinase gene, Mol. Cell. Biol., 12, 2359–2371.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Gallagher, P. J., and Herring, B. P. (1991) The carboxyl terminus of the smooth muscle myosin light chain kinase is expressed as an independent protein, telokin, J. Biol. Chem., 266, 23945–23952.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Lazar, V., and Garcia, J. G. (1999) A single human myosin light chain kinase gene (MLCK; MYLK), Genomics, 57, 256–267.PubMedCrossRefGoogle Scholar
  29. 29.
    Hoggatt, A. M., Simon, G. M., and Herring, B. P. (2002) Cell-specific regulatory modules control expression of genes in vascular and visceral smooth muscle tissues, Circ. Res., 91, 1151–1159.PubMedCrossRefGoogle Scholar
  30. 30.
    Herring, B. P., and Smith, A. F. (1997) Telokin expression in A10 smooth muscle cells requires serum response factor, Am. J. Physiol., 272, C1394-1404.PubMedGoogle Scholar
  31. 31.
    Khromov, A. S., Wang, H., Choudhury, N., McDuffie, M., Herring, B. P., Nakamoto, R., Owens, G. K., Somlyo, A. P., and Somlyo, A. V. (2006) Smooth muscle of telokindeficient mice exhibits increased sensitivity to Ca2+ and decreased cGMP-induced relaxation, Proc. Natl. Acad. Sci. USA, 103, 2440–2445.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Zhou, J., and Herring, B. P. (2005) Mechanisms responsible for the promoter-specific effects of myocardin, J. Biol. Chem., 280, 10861–10869.PubMedCrossRefGoogle Scholar
  33. 33.
    El-Mounayri, O., Triplett, J. W., Yates, C. W., and Herring, B. P. (2005) Regulation of smooth muscle-specific gene expression by homeodomain proteins, Hoxa10 and Hoxb8, J. Biol. Chem., 280, 25854–25863.PubMedCrossRefGoogle Scholar
  34. 34.
    Zhou, J., Hoggatt, A. M., and Herring, B. P. (2004) Activation of the smooth muscle-specific telokin gene by thyrotroph embryonic factor (TEF), J. Biol. Chem., 279, 15929–15937.PubMedCrossRefGoogle Scholar
  35. 35.
    Hoggatt, A. M., Kim, J. R., Ustiyan, V., Ren, X., Kalin, T. V., Kalinichenko, V. V., and Herring, B. P. (2013) The transcription factor Foxf1 binds to serum response factor and myocardin to regulate gene transcription in visceral smooth muscle cells, J. Biol. Chem., 288, 28477–28487.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Hoggatt, A. M., Kriegel, A. M., Smith, A. F., and Herring, B. P. (2000) Hepatocyte nuclear factor-3 homologue 1 (HFH-1) represses transcription of smooth muscle-specific genes, J. Biol. Chem., 275, 31162–31170.PubMedCrossRefGoogle Scholar
  37. 37.
    Yin, F., and Herring, B. P. (2005) GATA-6 can act as a positive or negative regulator of smooth muscle-specific gene expression, J. Biol. Chem., 280, 4745–4752.PubMedCrossRefGoogle Scholar
  38. 38.
    Zhou, J., Hu, G., and Herring, B. P. (2005) Smooth muscle-specific genes are differentially sensitive to inhibition by Elk-1, Mol. Cell. Biol., 25, 9874–9885.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Watterson, D. M., Schavocky, J. P., Guo, L., Weiss, C., Chlenski, A., Shirinsky, V. P., Van Eldik, L. J., and Haiech, J. (1999) Analysis of the kinase-related protein gene found at human chromosome 3q21 in a multi-gene cluster: organization, expression, alternative splicing, and polymorphic marker, J. Cell. Biochem., 75, 481–491.PubMedCrossRefGoogle Scholar
  40. 40.
    Zhou, J., Blue, E. K., Hu, G., and Herring, B. P. (2008) Thymine DNA glycosylase represses myocardin-induced smooth muscle cell differentiation by competing with serum response factor for myocardin binding, J. Biol. Chem., 283, 35383–35392.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Zhou, J., Hu, G., and Wang, X. (2010) Repression of smooth muscle differentiation by a novel high mobility group box-containing protein, HMG2L1, J. Biol. Chem., 285, 23177–23185.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Liu, F., Wang, X., Hu, G., Wang, Y., and Zhou, J. (2014) The transcription factor TEAD1 represses smooth musclespecific gene expression by abolishing myocardin function, J. Biol. Chem., 289, 3308–3316.PubMedCrossRefGoogle Scholar
  43. 43.
    Han, Y. J., Hu, W. Y., Chernaya, O., Antic, N., Gu, L., Gupta, M., Piano, M., and De Lanerolle, P. (2006) Increased myosin light chain kinase expression in hypertension: regulation by serum response factor via an insertion mutation in the promoter, Mol. Biol. Cell, 17, 4039–4050.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Chen, M., Zhang, W., Lu, X., Hoggatt, A. M., Gunst, S. J., Kassab, G. S., Tune, J. D., and Herring, B. P. (2013) Regulation of 130-kDa smooth muscle myosin light chain kinase expression by an intronic CArG element, J. Biol. Chem., 288, 34647–34657.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Basu, S., Srinivasan, D. K., Yang, K., Raina, H., Banerjee, S., Zhang, R., Fisher, S. A., and Proweller, A. (2013) Notch transcriptional control of vascular smooth muscle regulatory gene expression and function, J. Biol. Chem., 288, 11191–11202.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Basu, S., and Proweller, A. (2016) Autoregulatory control of smooth muscle myosin light chain kinase promoter by notch signaling, J. Biol. Chem., 291, 2988–2999.PubMedCrossRefGoogle Scholar
  47. 47.
    Graham, W. V., Wang, F., Clayburgh, D. R., Cheng, J. X., Yoon, B., Wang, Y., Lin, A., and Turner, J. R. (2006) Tumor necrosis factor-induced long myosin light chain kinase transcription is regulated by differentiation-dependent signaling events. Characterization of the human long myosin light chain kinase promoter, J. Biol. Chem., 281, 26205–26215.PubMedCrossRefGoogle Scholar
  48. 48.
    Wang, F., Graham, W. V., Wang, Y., Witkowski, E. D., Schwarz, B. T., and Turner, J. R. (2005) Interferon-gamma and tumor necrosis factor-alpha synergize to induce intestinal epithelial barrier dysfunction by up-regulating myosin light chain kinase expression, Am. J. Pathol., 166, 409–419.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Ye, D., Ma, I., and Ma, T. Y. (2006) Molecular mechanism of tumor necrosis factor-alpha modulation of intestinal epithelial tight junction barrier, Am. J. Physiol. Gastrointest. Liver Physiol., 290, G496-504.PubMedCrossRefGoogle Scholar
  50. 50.
    Al-Sadi, R., Guo, S., Dokladny, K., Smith, M. A., Ye, D., Kaza, A., Watterson, D. M., and Ma, T. Y. (2012) Mechanism of interleukin-1beta induced-increase in mouse intestinal permeability in vivo, J. Interferon Cytokine Res., 32, 474–484.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Al-Sadi, R., Guo, S., Ye, D., Rawat, M., and Ma, T. Y. (2016) TNF-alpha modulation of intestinal tight junction permeability is mediated by NIK/IKK-alpha axis activation of the canonical NF-kappaB pathway, Am. J. Pathol., 186, 1151–1165.PubMedCrossRefGoogle Scholar
  52. 52.
    Al-Sadi, R., Ye, D., Said, H. M., and Ma, T. Y. (2011) Cellular and molecular mechanism of interleukin-1beta modulation of Caco-2 intestinal epithelial tight junction barrier, J. Cell. Mol. Med., 15, 970–982.PubMedCrossRefGoogle Scholar
  53. 53.
    Al-Sadi, R., Guo, S., Ye, D., Dokladny, K., Alhmoud, T., Ereifej, L., Said, H. M., and Ma, T. Y. (2013) Mechanism of IL-1beta modulation of intestinal epithelial barrier involves p38 kinase and activating transcription factor-2 activation, J. Immunol., 190, 6596–6606.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Cao, M., Wang, P., Sun, C., He, W., and Wang, F. (2013) Amelioration of IFN-gamma and TNF-alpha-induced intestinal epithelial barrier dysfunction by berberine via suppression of MLCK-MLC phosphorylation signaling pathway, PLoS One, 8, e61944.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Qi, H., Wang, P., Liu, C., Li, M., Wang, S., Huang, Y., and Wang, F. (2011) Involvement of HIF-1alpha in MLCKdependent endothelial barrier dysfunction in hypoxia, Cell. Physiol. Biochem., 27, 251–262.PubMedCrossRefGoogle Scholar
  56. 56.
    Leveille, N., Fournier, A., and Labrie, C. (2009) Androgens down-regulate myosin light chain kinase in human prostate cancer cells, J. Steroid Biochem. Mol. Biol., 114, 174–179.PubMedCrossRefGoogle Scholar
  57. 57.
    Adyshev, D. M., Moldobaeva, N., Mapes, B., Elangovan, V., and Garcia, J. G. (2013) MicroRNA regulation of nonmuscle myosin light chain kinase expression in human lung endothelium, Am. J. Respir. Cell Mol. Biol., 49, 58–66.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Weber, M., Kim, S., Patterson, N., Rooney, K., and Searles, C. D. (2014) MiRNA-155 targets myosin light chain kinase and modulates actin cytoskeleton organization in endothelial cells, Am. J. Physiol. Heart Circ. Physiol., 306, H1192-1203.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Heidersbach, A., Saxby, C., Carver-Moore, K., Huang, Y., Ang, Y. S., De Jong, P. J., Ivey, K. N., and Srivastava, D. (2013) microRNA-1 regulates sarcomere formation and suppresses smooth muscle gene expression in the mammalian heart, Elife, 2, e01323.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Zhu, H. Q., Wang, F., Dong, L. Y., Zhou, Q., and Wang, Y. (2014) MicroRNA1 modulates oxLDL-induced hyperlipidemia by down-regulating MLCK and ERK/p38 MAPK pathway, Life Sci., 107, 21–26.PubMedCrossRefGoogle Scholar
  61. 61.
    Sundararajan, V., Gengenbacher, N., Stemmler, M. P., Kleemann, J. A., Brabletz, T., and Brabletz, S. (2015) The ZEB1/miR-200c feedback loop regulates invasion via actin interacting proteins MYLK and TKS5, Oncotarget, 6, 27083–27096.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Gao, L., Grant, A., Halder, I., Brower, R., Sevransky, J., Maloney, J. P., Moss, M., Shanholtz, C., Yates, C. R., Meduri, G. U., Shriver, M. D., Ingersoll, R., Scott, A. F., Beaty, T. H., Moitra, J., Ma, S. F., Ye, S. Q., Barnes, K. C., and Garcia, J. G. (2006) Novel polymorphisms in the myosin light chain kinase gene confer risk for acute lung injury, Am. J. Respir. Cell Mol. Biol., 34, 487–495.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Gao, L., Grant, A. V., Rafaels, N., Stockton-Porter, M., Watkins, T., Gao, P., Chi, P., Munoz, M., Watson, H., Dunston, G., Togias, A., Hansel, N., Sevransky, J., Maloney, J. P., Moss, M., Shanholtz, C., Brower, R., Garcia, J. G., Grigoryev, D. N., Cheadle, C., Beaty, T. H., Mathias, R. A., and Barnes, K. C. (2007) Polymorphisms in the myosin light chain kinase gene that confer risk of severe sepsis are associated with a lower risk of asthma, J. Allergy Clin. Immunol., 119, 1111–1118.PubMedCrossRefGoogle Scholar
  64. 64.
    Han, Y. J., Ma, S. F., Wade, M. S., Flores, C., and Garcia, J. G. (2012) An intronic MYLK variant associated with inflammatory lung disease regulates promoter activity of the smooth muscle myosin light chain kinase isoform, J. Mol. Med. (Berl.), 90, 299–308.CrossRefGoogle Scholar
  65. 65.
    Lee, S. O., Cheong, H. S., Park, B. L., Bae, J. S., Sim, W. C., Chun, J. Y., Isbat, M., Uh, S. T., Kim, Y. H., Jang, A. S., Park, C. S., and Shin, H. D. (2009) MYLK polymorphism associated with blood eosinophil level among asthmatic patients in a Korean population, Mol. Cells, 27, 175–181.PubMedCrossRefGoogle Scholar
  66. 66.
    Wang, L., Guo, D. C., Cao, J., Gong, L., Kamm, K. E., Regalado, E., Li, L., Shete, S., He, W. Q., Zhu, M. S., Offermanns, S., Gilchrist, D., Elefteriades, J., Stull, J. T., and Milewicz, D. M. (2010) Mutations in myosin light chain kinase cause familial aortic dissections, Am. J. Hum. Genet., 87, 701–707.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Rusconi, F., Potier, M. C., Le Caer, J. P., Schmitter, J. M., and Rossier, J. (1997) Characterization of the chicken telokin heterogeneity by time-of-flight mass spectrometry, Biochemistry, 36, 11021–11026.PubMedCrossRefGoogle Scholar
  68. 68.
    Strausberg, R. L., Feingold, E. A., Grouse, L. H., Derge, J. G., Klausner, R. D., Collins, F. S., Wagner, L., Shenmen, C. M., Schuler, G. D., Altschul, S. F., Zeeberg, B., Buetow, K. H., Schaefer, C. F., Bhat, N. K., Hopkins, R. F., Jordan, H., Moore, T., Max, S. I., Wang, J., Hsieh, F., Diatchenko, L., Marusina, K., Farmer, A. A., Rubin, G. M., Hong, L., Stapleton, M., Soares, M. B., Bonaldo, M. F., Casavant, T. L., Scheetz, T. E., Brownstein, M. J., Usdin, T. B., Toshiyuki, S., Carninci, P., Prange, C., Raha, S. S., Loquellano, N. A., Peters, G. J., Abramson, R. D., Mullahy, S. J., Bosak, S. A., McEwan, P. J., McKernan, K. J., Malek, J. A., Gunaratne, P. H., Richards, S., Worley, K. C., Hale, S., Garcia, A. M., Gay, L. J., Hulyk, S. W., Villalon, D. K., Muzny, D. M., Sodergren, E. J., Lu, X., Gibbs, R. A., Fahey, J., Helton, E., Ketteman, M., Madan, A., Rodrigues, S., Sanchez, A., Whiting, M., Young, A. C., Shevchenko, Y., Bouffard, G. G., Blakesley, R. W., Touchman, J. W., Green, E. D., Dickson, M. C., Rodriguez, A. C., Grimwood, J., Schmutz, J., Myers, R. M., Butterfield, Y. S., Krzywinski, M. I., Skalska, U., Smailus, D. E., Schnerch, A., Schein, J. E., Jones, S. J., and Marra, M. A. (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences, Proc. Natl. Acad. Sci. USA, 99, 16899–16903.PubMedCrossRefGoogle Scholar
  69. 69.
    Herring, B. P., and Smith, A. F. (1996) Telokin expression is mediated by a smooth muscle cell-specific promoter, Am. J. Physiol., 270, C1656-1665.PubMedGoogle Scholar
  70. 70.
    Herring, B. P., Dixon, S., and Gallagher, P. J. (2000) Smooth muscle myosin light chain kinase expression in cardiac and skeletal muscle, Am. J. Physiol. Cell Physiol., 279, C1656-1664.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Gallagher, P. J., Garcia, J. G., and Herring, B. P. (1995) Expression of a novel myosin light chain kinase in embryonic tissues and cultured cells, J. Biol. Chem., 270, 29090–29095.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Fisher, S. A., and Ikebe, M. (1995) Developmental and tissue distribution of expression of nonmuscle and smooth muscle isoforms of myosin light chain kinase, Biochem. Biophys. Res. Commun., 217, 696–703.PubMedCrossRefGoogle Scholar
  73. 73.
    Blue, E. K., Goeckeler, Z. M., Jin, Y., Hou, L., Dixon, S. A., Herring, B. P., Wysolmerski, R. B., and Gallagher, P. J. (2002) 220- and 130-kDa MLCKs have distinct tissue distributions and intracellular localization patterns, Am. J. Physiol. Cell Physiol., 282, C451-460.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Kudryashov, D. S., Chibalina, M. V., Birukov, K. G., Lukas, T. J., Sellers, J. R., Van Eldik, L. J., Watterson, D. M., and Shirinsky, V. P. (1999) Unique sequence of a high molecular weight myosin light chain kinase is involved in interaction with actin cytoskeleton, FEBS Lett., 463, 67–71.PubMedCrossRefGoogle Scholar
  75. 75.
    Krymsky, M. A., Kudryashov, D. S., Shirinsky, V. P., Lukas, T. J., Watterson, D. M., and Vorotnikov, A. V. (2001) Phosphorylation of kinase-related protein (telokin) in tonic and phasic smooth muscles, J. Muscle Res. Cell Motil., 22, 425–437.PubMedCrossRefGoogle Scholar
  76. 76.
    Xu, J., Gao, X. P., Ramchandran, R., Zhao, Y. Y., Vogel, S. M., and Malik, A. B. (2008) Nonmuscle myosin lightchain kinase mediates neutrophil transmigration in sepsisinduced lung inflammation by activating beta2 integrins, Nat. Immunol., 9, 880–886.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Sun, C., Wu, M. H., and Yuan, S. Y. (2011) Nonmuscle myosin light-chain kinase deficiency attenuates atherosclerosis in apolipoprotein E-deficient mice via reduced endothelial barrier dysfunction and monocyte migration, Circulation, 124, 48–57.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Clayburgh, D. R., Rosen, S., Witkowski, E. D., Wang, F., Blair, S., Dudek, S., Garcia, J. G., Alverdy, J. C., and Turner, J. R. (2004) A differentiation-dependent splice variant of myosin light chain kinase, MLCK1, regulates epithelial tight junction permeability, J. Biol. Chem., 279, 55506–55513.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Verin, A. D., Lazar, V., Torry, R. J., Labarrere, C. A., Patterson, C. E., and Garcia, J. G. (1998) Expression of a novel high molecular-weight myosin light chain kinase in endothelium, Am. J. Respir. Cell Mol. Biol., 19, 758–766.PubMedCrossRefGoogle Scholar
  80. 80.
    Hathaway, D. R., and Adelstein, R. S. (1979) Human platelet myosin light chain kinase requires the calciumbinding protein calmodulin for activity, Proc. Natl. Acad. Sci. USA, 76, 1653–1657.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Wang, H. H., Nakamura, A., Matsumoto, A., Yoshiyama, S., Qin, X., Ye, L. H., Xie, C., Zhang, Y., Gao, Y., Ishikawa, R., and Kohama, K. (2009) Nonkinase activity of MLCK in elongated filopodia formation and chemotaxis of vascular smooth muscle cells toward sphingosylphosphorylcholine, Am. J. Physiol. Heart Circ. Physiol., 296, H1683-1693.PubMedCrossRefGoogle Scholar
  82. 82.
    Poperechnaya, A., Varlamova, O., Lin, P. J., Stull, J. T., and Bresnick, A. R. (2000) Localization and activity of myosin light chain kinase isoforms during the cell cycle, J. Cell Biol., 151, 697–708.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Woody, S., Stall, R., Ramos, J., and Patel, Y. M. (2013) Regulation of myosin light chain kinase during insulinstimulated glucose uptake in 3T3-L1 adipocytes, PLoS One, 8, e77248.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Yu, H. J., Serebryannyy, L. A., Fry, M., Greene, M., Chernaya, O., Hu, W. Y., Chew, T. L., Mahmud, N., Kadkol, S. S., Glover, S., Prins, G., Strakova, Z., and De Lanerolle, P. (2013) Tumor stiffness is unrelated to myosin light chain phosphorylation in cancer cells, PLoS One, 8, e79776.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Kim, D. Y., and Helfman, D. M. (2016) Loss of MLCK leads to disruption of cell–cell adhesion and invasive behavior of breast epithelial cells via increased expression of EGFR and ERK/JNK signaling, Oncogene, 35, 4495–4508.PubMedCrossRefGoogle Scholar
  86. 86.
    Minamiya, Y., Nakagawa, T., Saito, H., Matsuzaki, I., Taguchi, K., Ito, M., and Ogawa, J. (2005) Increased expression of myosin light chain kinase mRNA is related to metastasis in non-small cell lung cancer, Tumour Biol., 26, 153–157.PubMedCrossRefGoogle Scholar
  87. 87.
    Kennelly, P. J., Leng, J., and Marchand, P. (1992) The MgATP-binding site on chicken gizzard myosin light chain kinase remains open and functionally competent during the calmodulin-dependent activation-inactivation cycle of the enzyme, Biochemistry, 31, 5394–5399.PubMedCrossRefGoogle Scholar
  88. 88.
    Herring, B. P., Gallagher, P. J., and Stull, J. T. (1992) Substrate specificity of myosin light chain kinases, J. Biol. Chem., 267, 25945–25950.PubMedGoogle Scholar
  89. 89.
    Sobieszek, A. (1991) Regulation of smooth-muscle myosin-light-chain kinase. Steady-state kinetic studies of the reaction mechanism, Eur. J. Biochem., 199, 735–743.PubMedCrossRefGoogle Scholar
  90. 90.
    Sobieszek, A., Andruchov, O. Y., and Nieznanski, K. (1997) Kinase-related protein (telokin) is phosphorylated by smooth-muscle myosin light-chain kinase and modulates the kinase activity, Biochem. J., 328 (Pt. 2), 425–430.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Davis, H. W., Crimmins, D. L., Thoma, R. S., and Garcia, J. G. (1996) Phosphorylation of calmodulin in the first calcium-binding pocket by myosin light chain kinase, Arch. Biochem. Biophys., 332, 101–109.PubMedCrossRefGoogle Scholar
  92. 92.
    Kemp, B. E., and Pearson, R. B. (1985) Spatial requirements for location of basic residues in peptide substrates for smooth muscle myosin light chain kinase, J. Biol. Chem., 260, 3355–3359.PubMedGoogle Scholar
  93. 93.
    Persechini, A., and Hartshorne, D. J. (1983) Ordered phosphorylation of the two 20,000 molecular weight light chains of smooth muscle myosin, Biochemistry, 22, 470–476.PubMedCrossRefGoogle Scholar
  94. 94.
    Ikebe, M., Hartshorne, D. J., and Elzinga, M. (1986) Identification, phosphorylation, and dephosphorylation of a second site for myosin light chain kinase on the 20,000dalton light chain of smooth muscle myosin, J. Biol. Chem., 261, 36–39.PubMedGoogle Scholar
  95. 95.
    Amano, M., Ito, M., Kimura, K., Fukata, Y., Chihara, K., Nakano, T., Matsuura, Y., and Kaibuchi, K. (1996) Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase), J. Biol. Chem., 271, 20246–20249.PubMedCrossRefGoogle Scholar
  96. 96.
    Murata-Hori, M., Suizu, F., Iwasaki, T., Kikuchi, A., and Hosoya, H. (1999) ZIP kinase identified as a novel myosin regulatory light chain kinase in HeLa cells, FEBS Lett., 451, 81–84.PubMedCrossRefGoogle Scholar
  97. 97.
    Uehara, R., Hosoya, H., and Mabuchi, I. (2008) In vivo phosphorylation of regulatory light chain of myosin II in sea urchin eggs and its role in controlling myosin localization and function during cytokinesis, Cell Motil. Cytoskelet., 65, 100–115.CrossRefGoogle Scholar
  98. 98.
    Puetz, S., Schroeter, M. M., Piechura, H., Reimann, L., Hunger, M. S., Lubomirov, L. T., Metzler, D., Warscheid, B., and Pfitzer, G. (2012) New insights into myosin phosphorylation during cyclic nucleotide-mediated smooth muscle relaxation, J. Muscle Res. Cell Motil., 33, 471–483.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Pearson, R. B., Wettenhall, R. E., Means, A. R., Hartshorne, D. J., and Kemp, B. E. (1988) Autoregulation of enzymes by pseudosubstrate prototopes: myosin light chain kinase, Science, 241, 970–973.PubMedCrossRefGoogle Scholar
  100. 100.
    Tanaka, M., Ikebe, R., Matsuura, M., and Ikebe, M. (1995) Pseudosubstrate sequence may not be critical for autoinhibition of smooth muscle myosin light chain kinase, EMBO J., 14, 2839–2846.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Lukas, T. J., Mirzoeva, S., Slomczynska, U., and Watterson, D. M. (1999) Identification of novel classes of protein kinase inhibitors using combinatorial peptide chemistry based on functional genomics knowledge, J. Med. Chem., 42, 910–919.PubMedCrossRefGoogle Scholar
  102. 102.
    Clayburgh, D. R., Barrett, T. A., Tang, Y., Meddings, J. B., Van Eldik, L. J., Watterson, D. M., Clarke, L. L., Mrsny, R. J., and Turner, J. R. (2005) Epithelial myosin light chain kinase-dependent barrier dysfunction mediates T cell activation-induced diarrhea in vivo, J. Clin. Invest., 115, 2702–2715.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Owens, S. E., Graham, W. V., Siccardi, D., Turner, J. R., and Mrsny, R. J. (2005) A strategy to identify stable membrane-permeant peptide inhibitors of myosin light chain kinase, Pharm. Res., 22, 703–709.PubMedCrossRefGoogle Scholar
  104. 104.
    Khapchaev, A. Y., Kazakova, O. A., Samsonov, M. V., Sidorova, M. V., Bushuev, V. N., Vilitkevich, E. L., Az’muko, A. A., Molokoedov, A. S., Bespalova, Z. D., and Shirinsky, V. P. (2016) Design of peptidase-resistant peptide inhibitors of myosin light chain kinase, J. Peptide Sci., in press.Google Scholar
  105. 105.
    Mirzapoiazova, T., Moitra, J., Moreno-Vinasco, L., Sammani, S., Turner, J. R., Chiang, E. T., Evenoski, C., Wang, T., Singleton, P. A., Huang, Y., Lussier, Y. A., Watterson, D. M., Dudek, S. M., and Garcia, J. G. (2011) Non-muscle myosin light chain kinase isoform is a viable molecular target in acute inflammatory lung injury, Am. J. Respir. Cell Mol. Biol., 44, 40–52.PubMedCrossRefGoogle Scholar
  106. 106.
    Johnson, J. D., Snyder, C., Walsh, M., and Flynn, M. (1996) Effects of myosin light chain kinase and peptides on Ca2+ exchange with the N- and C-terminal Ca2+ binding sites of calmodulin, J. Biol. Chem., 271, 761–767.PubMedCrossRefGoogle Scholar
  107. 107.
    Krueger, J. K., Zhi, G., Stull, J. T., and Trewhella, J. (1998) Neutron-scattering studies reveal further details of the Ca2+/calmodulin-dependent activation mechanism of myosin light chain kinase, Biochemistry, 37, 13997–14004.PubMedCrossRefGoogle Scholar
  108. 108.
    Pearson, R. B., Misconi, L. Y., and Kemp, B. E. (1986) Smooth muscle myosin kinase requires residues on the COOH-terminal side of the phosphorylation site. Peptide inhibitors, J. Biol. Chem., 261, 25–27.PubMedGoogle Scholar
  109. 109.
    Silver, D. L., Vorotnikov, A. V., Watterson, D. M., Shirinsky, V. P., and Sellers, J. R. (1997) Sites of interaction between kinase-related protein and smooth muscle myosin, J. Biol. Chem., 272, 25353–25359.PubMedCrossRefGoogle Scholar
  110. 110.
    Shirinsky, V. P., Vorotnikov, A. V., Birukov, K. G., Nanaev, A. K., Collinge, M., Lukas, T. J., Sellers, J. R., and Watterson, D. M. (1993) A kinase-related protein stabilizes unphosphorylated smooth muscle myosin minifilaments in the presence of ATP, J. Biol. Chem., 268, 16578–16583.PubMedGoogle Scholar
  111. 111.
    Nieznanski, K., and Sobieszek, A. (1997) Telokin (kinaserelated protein) modulates the oligomeric state of smoothmuscle myosin light-chain kinase and its interaction with myosin filaments, Biochem. J., 322 (Pt. 1), 65–71.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Shcherbakova, O. V., Serebryanaya, D. V., Postnikov, A. B., Schroeter, M. M., Zittrich, S., Noegel, A. A., Shirinsky, V. P., Vorotnikov, A. V., and Pfitzer, G. (2010) Kinase-related protein/telokin inhibits Ca2+-independent contraction in Triton-skinned guinea pig taenia coli, Biochem. J., 429, 291–302.PubMedCrossRefGoogle Scholar
  113. 113.
    Minajeva, A., Neagoe, C., Kulke, M., and Linke, W. A. (2002) Titin-based contribution to shortening velocity of rabbit skeletal myofibrils, J. Physiol., 540, 177–188.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Smith, L., Su, X., Lin, P., Zhi, G., and Stull, J. T. (1999) Identification of a novel actin binding motif in smooth muscle myosin light chain kinase, J. Biol. Chem., 274, 29433–29438.PubMedCrossRefGoogle Scholar
  115. 115.
    Smith, L., Parizi-Robinson, M., Zhu, M. S., Zhi, G., Fukui, R., Kamm, K. E., and Stull, J. T. (2002) Properties of long myosin light chain kinase binding to F-actin in vitro and in vivo, J. Biol. Chem., 277, 35597–35604.PubMedCrossRefGoogle Scholar
  116. 116.
    Hong, F., Brizendine, R. K., Carter, M. S., Alcala, D. B., Brown, A. E., Chattin, A. M., Haldeman, B. D., Walsh, M. P., Facemyer, K. C., Baker, J. E., and Cremo, C. R. (2015) Diffusion of myosin light chain kinase on actin: a mechanism to enhance myosin phosphorylation rates in smooth muscle, J. Gen. Physiol., 146, 267–280.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Hatch, V., Zhi, G., Smith, L., Stull, J. T., Craig, R., and Lehman, W. (2001) Myosin light chain kinase binding to a unique site on F-actin revealed by three-dimensional image reconstruction, J. Cell Biol., 154, 611–617.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Ye, L. H., Hayakawa, K., Kishi, H., Imamura, M., Nakamura, A., Okagaki, T., Takagi, T., Iwata, A., Tanaka, T., and Kohama, K. (1997) The structure and function of the actin-binding domain of myosin light chain kinase of smooth muscle, J. Biol. Chem., 272, 32182–32189.PubMedCrossRefGoogle Scholar
  119. 119.
    Lin, P., Luby-Phelps, K., and Stull, J. T. (1997) Binding of myosin light chain kinase to cellular actin-myosin filaments, J. Biol. Chem., 272, 7412–7420.PubMedCrossRefGoogle Scholar
  120. 120.
    Vilitkevich, E. L., Khapchaev, A. Y., Kudryashov, D. S., Nikashin, A. V., Schavocky, J. P., Lukas, T. J., Watterson, D. M., and Shirinsky, V. P. (2015) Phosphorylation regulates interaction of 210-kDa myosin light chain kinase Nterminal domain with actin cytoskeleton, Biochemistry (Moscow), 80, 1288–1297.CrossRefGoogle Scholar
  121. 121.
    Yang, C. X., Chen, H. Q., Chen, C., Yu, W. P., Zhang, W. C., Peng, Y. J., He, W. Q., Wei, D. M., Gao, X., and Zhu, M. S. (2006) Microfilament-binding properties of N-terminal extension of the isoform of smooth muscle long myosin light chain kinase, Cell Res., 16, 367–376.PubMedCrossRefGoogle Scholar
  122. 122.
    Kudryashov, D. S., Stepanova, O. V., Vilitkevich, E. L., Nikonenko, T. A., Nadezhdina, E. S., Shanina, N. A., Lukas, T. J., Van Eldik, L. J., Watterson, D. M., and Shirinsky, V. P. (2004) Myosin light chain kinase (210 kDa) is a potential cytoskeleton integrator through its unique Nterminal domain, Exp. Cell Res., 298, 407–417.PubMedCrossRefGoogle Scholar
  123. 123.
    Takizawa, N., Ikebe, R., Ikebe, M., and Luna, E. J. (2007) Supervillin slows cell spreading by facilitating myosin II activation at the cell periphery, J. Cell Sci., 120, 3792–3803.PubMedCrossRefGoogle Scholar
  124. 124.
    Garcia, J. G., Verin, A. D., Schaphorst, K., Siddiqui, R., Patterson, C. E., Csortos, C., and Natarajan, V. (1999) Regulation of endothelial cell myosin light chain kinase by Rho, cortactin, and p60(src), Am. J. Physiol., 276, L989-998.PubMedGoogle Scholar
  125. 125.
    Dudek, S. M., Birukov, K. G., Zhan, X., and Garcia, J. G. (2002) Novel interaction of cortactin with endothelial cell myosin light chain kinase, Biochem. Biophys. Res. Commun., 298, 511–519.PubMedCrossRefGoogle Scholar
  126. 126.
    Dudek, S. M., Jacobson, J. R., Chiang, E. T., Birukov, K. G., Wang, P., Zhan, X., and Garcia, J. G. (2004) Pulmonary endothelial cell barrier enhancement by sphingosine 1-phosphate: roles for cortactin and myosin light chain kinase, J. Biol. Chem., 279, 24692–24700.PubMedCrossRefGoogle Scholar
  127. 127.
    Wadgaonkar, R., Dudek, S. M., Zaiman, A. L., LinzMcGillem, L., Verin, A. D., Nurmukhambetova, S., Romer, L. H., and Garcia, J. G. (2005) Intracellular interaction of myosin light chain kinase with macrophage migration inhibition factor (MIF) in endothelium, J. Cell. Biochem., 95, 849–858.PubMedCrossRefGoogle Scholar
  128. 128.
    Shen, K., Ramirez, B., Mapes, B., Shen, G. R., Gokhale, V., Brown, M. E., Santarsiero, B., Ishii, Y., Dudek, S. M., Wang, T., and Garcia, J. G. (2015) Structure-function analysis of the non-muscle myosin light chain kinase (nmMLCK) isoform by NMR spectroscopy and molecular modeling: influence of MYLK variants, PLoS One, 10, e0130515.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Sobieszek, A., Borkowski, J., and Babiychuk, V. S. (1997) Purification and characterization of a smooth muscle myosin light chain kinase−phosphatase complex, J. Biol. Chem., 272, 7034–7041.PubMedCrossRefGoogle Scholar
  130. 130.
    Komatsu, S., Miyazaki, K., Tuft, R. A., and Ikebe, M. (2002) Translocation of telokin by cGMP signaling in smooth muscle cells, Am. J. Physiol. Cell Physiol., 283, C752-761.PubMedCrossRefGoogle Scholar
  131. 131.
    Khromov, A. S., Momotani, K., Jin, L., Artamonov, M. V., Shannon, J., Eto, M., and Somlyo, A. V. (2012) Molecular mechanism of telokin-mediated disinhibition of myosin light chain phosphatase and cAMP/cGMP-induced relaxation of gastrointestinal smooth muscle, J. Biol. Chem., 287, 20975–20985.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Faux, M. C., Mitchelhill, K. I., Katsis, F., Wettenhall, R. E., and Kemp, B. E. (1993) Chicken smooth muscle myosin light chain kinase is acetylated on its NH2-terminal methionine, Mol. Cell. Biochem., 127–128, 81–91.PubMedCrossRefGoogle Scholar
  133. 133.
    Shin, D. H., Chun, Y. S., Lee, K. H., Shin, H. W., and Park, J. W. (2009) Arrest defective-1 controls tumor cell behavior by acetylating myosin light chain kinase, PLoS One, 4, e7451.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Conti, M. A., and Adelstein, R. S. (1981) The relationship between calmodulin binding and phosphorylation of smooth muscle myosin kinase by the catalytic subunit of 3′:5′ cAMP-dependent protein kinase, J. Biol. Chem., 256, 3178–3181.PubMedGoogle Scholar
  135. 135.
    Lukas, T. J., Mirzoeva, S., and Watterson, D. M. (1998) Calmodulin-regulated protein kinases, in Calmodulin and Signal Transduction (Van Eldik, L. J., and Watterson, D. M., eds.) Academic Press, New York, pp. 66–168.Google Scholar
  136. 136.
    Nishikawa, M., Shirakawa, S., and Adelstein, R. S. (1985) Phosphorylation of smooth muscle myosin light chain kinase by protein kinase C. Comparative study of the phosphorylated sites, J. Biol. Chem., 260, 8978–8983.PubMedGoogle Scholar
  137. 137.
    Goeckeler, Z. M., Masaracchia, R. A., Zeng, Q., Chew, T. L., Gallagher, P., and Wysolmerski, R. B. (2000) Phosphorylation of myosin light chain kinase by p21-activated kinase PAK2, J. Biol. Chem., 275, 18366–18374.PubMedCrossRefGoogle Scholar
  138. 138.
    Birukov, K. G., Csortos, C., Marzilli, L., Dudek, S., Ma, S. F., Bresnick, A. R., Verin, A. D., Cotter, R. J., and Garcia, J. G. (2001) Differential regulation of alternatively spliced endothelial cell myosin light chain kinase isoforms by p60(Src), J. Biol. Chem., 276, 8567–8573.PubMedCrossRefGoogle Scholar
  139. 139.
    Dudek, S. M., Chiang, E. T., Camp, S. M., Guo, Y., Zhao, J., Brown, M. E., Singleton, P. A., Wang, L., Desai, A., Arce, F. T., Lal, R., Van Eyk, J. E., Imam, S. Z., and Garcia, J. G. (2010) Abl tyrosine kinase phosphorylates nonmuscle myosin light chain kinase to regulate endothelial barrier function, Mol. Biol. Cell, 21, 4042–4056.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Dulyaninova, N. G., and Bresnick, A. R. (2004) The long myosin light chain kinase is differentially phosphorylated during interphase and mitosis, Exp. Cell Res., 299, 303–314.PubMedCrossRefGoogle Scholar
  141. 141.
    McManus, M. J., Boerner, J. L., Danielsen, A. J., Wang, Z., Matsumura, F., and Maihle, N. J. (2000) An oncogenic epidermal growth factor receptor signals via a p21-activated kinase−caldesmon−myosin phosphotyrosine complex, J. Biol. Chem., 275, 35328–35334.PubMedCrossRefGoogle Scholar
  142. 142.
    Klemke, R. L., Cai, S., Giannini, A. L., Gallagher, P. J., De Lanerolle, P., and Cheresh, D. A. (1997) Regulation of cell motility by mitogen-activated protein kinase, J. Cell Biol., 137, 481–492.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Khapchaev, A. Y., Krymsky, M. A., Sidorova, M. V., Bespalova Zh, D., Wang, C. L., Shirinsky, V. P., and Vorotnikov, A. V. (2004) Novel phosphospecific antibodies for monitoring phosphorylation of proteins encoded by the myosin light chain kinase genetic locus, Biochemistry (Moscow), 69, 789–798.CrossRefGoogle Scholar
  144. 144.
    MacDonald, J. A., Walker, L. A., Nakamoto, R. K., Gorenne, I., Somlyo, A. V., Somlyo, A. P., and Haystead, T. A. (2000) Phosphorylation of telokin by cyclic nucleotide kinases and the identification of in vivo phosphorylation sites in smooth muscle, FEBS Lett., 479, 83–88.PubMedCrossRefGoogle Scholar
  145. 145.
    Wu, X., Haystead, T. A., Nakamoto, R. K., Somlyo, A. V., and Somlyo, A. P. (1998) Acceleration of myosin light chain dephosphorylation and relaxation of smooth muscle by telokin. Synergism with cyclic nucleotide-activated kinase, J. Biol. Chem., 273, 11362–11369.PubMedCrossRefGoogle Scholar
  146. 146.
    Webb, D. J., Donais, K., Whitmore, L. A., Thomas, S. M., Turner, C. E., Parsons, J. T., and Horwitz, A. F. (2004) FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly, Nat. Cell Biol., 6, 154–161.PubMedCrossRefGoogle Scholar
  147. 147.
    Levinson, H., Moyer, K. E., Saggers, G. C., and Ehrlich, H. P. (2004) Calmodulin-myosin light chain kinase inhibition changes fibroblast-populated collagen lattice contraction, cell migration, focal adhesion formation, and wound contraction, Wound Repair Regen., 12, 505–511.PubMedCrossRefGoogle Scholar
  148. 148.
    Hong, T., and Grabel, L. B. (2006) Migration of F9 parietal endoderm cells is regulated by the ERK pathway, J. Cell. Biochem., 97, 1339–1349.PubMedCrossRefGoogle Scholar
  149. 149.
    Totsukawa, G., Wu, Y., Sasaki, Y., Hartshorne, D. J., Yamakita, Y., Yamashiro, S., and Matsumura, F. (2004) Distinct roles of MLCK and ROCK in the regulation of membrane protrusions and focal adhesion dynamics during cell migration of fibroblasts, J. Cell Biol., 164, 427–439.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Katoh, K., Kano, Y., and Ookawara, S. (2007) Rho-kinase dependent organization of stress fibers and focal adhesions in cultured fibroblasts, Genes Cells, 12, 623–638.PubMedCrossRefGoogle Scholar
  151. 151.
    Smith, A., Bracke, M., Leitinger, B., Porter, J. C., and Hogg, N. (2003) LFA-1-induced T cell migration on ICAM-1 involves regulation of MLCK-mediated attachment and ROCK-dependent detachment, J. Cell Sci., 116, 3123–3133.PubMedCrossRefGoogle Scholar
  152. 152.
    Yokomori, H., Yoshimura, K., Nagai, T., Fujimaki, K., Nomura, M., Hibi, T., Ishii, H., and Oda, M. (2004) Sinusoidal endothelial fenestrae organization regulated by myosin light chain kinase and Rho-kinase in cultured rat sinusoidal endothelial cells, Hepatol. Res., 30, 169–174.PubMedCrossRefGoogle Scholar
  153. 153.
    Lou, S. S., Diz-Munoz, A., Weiner, O. D., Fletcher, D. A., and Theriot, J. A. (2015) Myosin light chain kinase regulates cell polarization independently of membrane tension or Rho kinase, J. Cell Biol., 209, 275–288.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Chen, C., Tao, T., Wen, C., He, W. Q., Qiao, Y. N., Gao, Y. Q., Chen, X., Wang, P., Chen, C. P., Zhao, W., Chen, H. Q., Ye, A. P., Peng, Y. J., and Zhu, M. S. (2014) Myosin light chain kinase (MLCK) regulates cell migration in a myosin regulatory light chain phosphorylation-independent mechanism, J. Biol. Chem., 289, 28478–28488.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Bessard, A., Coutant, A., Rescan, C., Ezan, F., Fremin, C., Courselaud, B., Ilyin, G., and Baffet, G. (2006) An MLCK-dependent window in late G1 controls S phase entry of proliferating rodent hepatocytes via ERK-p70S6K pathway, Hepatology, 44, 152–163.PubMedCrossRefGoogle Scholar
  156. 156.
    Barkan, D., Kleinman, H., Simmons, J. L., Asmussen, H., Kamaraju, A. K., Hoenorhoff, M. J., Liu, Z. Y., Costes, S. V., Cho, E. H., Lockett, S., Khanna, C., Chambers, A. F., and Green, J. E. (2008) Inhibition of metastatic outgrowth from single dormant tumor cells by targeting the cytoskeleton, Cancer Res., 68, 6241–6250.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Zhou, X., Liu, Y., You, J., Zhang, H., Zhang, X., and Ye, L. (2008) Myosin light-chain kinase contributes to the proliferation and migration of breast cancer cells through crosstalk with activated ERK1/2, Cancer Lett., 270, 312–327.PubMedCrossRefGoogle Scholar
  158. 158.
    Zou, D. B., Wei, X., Hu, R. L., Yang, X. P., Zuo, L., Zhang, S. M., Zhu, H. Q., Zhou, Q., Gui, S. Y., and Wang, Y. (2015) Melatonin inhibits the migration of colon cancer RKO cells by down-regulating myosin light chain kinase expression through cross-talk with p38 MAPK, Asian Pac. J. Cancer Prev., 16, 5835–5842.PubMedCrossRefGoogle Scholar
  159. 159.
    Wang, H. H., Nakamura, A., Yoshiyama, S., Ishikawa, R., Cai, N., Ye, L. H., Takano-Ohmuro, H., and Kohama, K. (2012) Down-regulation of myosin light chain kinase expression in vascular smooth muscle cells accelerates cell proliferation: requirement of its actin-binding domain for reversion to normal rates, J. Pharmacol. Sci., 119, 91–96.PubMedCrossRefGoogle Scholar
  160. 160.
    Dulyaninova, N. G., Patskovsky, Y. V., and Bresnick, A. R. (2004) The N-terminus of the long MLCK induces a disruption in normal spindle morphology and metaphase arrest, J. Cell Sci., 117, 1481–1493.PubMedCrossRefGoogle Scholar
  161. 161.
    Barfod, E. T., Moore, A. L., Van De Graaf, B. G., and Lidofsky, S. D. (2011) Myosin light chain kinase and Src control membrane dynamics in volume recovery from cell swelling, Mol. Biol. Cell, 22, 634–650.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Li, L., Wu, X., Yue, H. Y., Zhu, Y. C., and Xu, J. (2016) Myosin light chain kinase facilitates endocytosis of synaptic vesicles at hippocampal boutons, J. Neurochem., 138, 60–73.PubMedCrossRefGoogle Scholar
  163. 163.
    Yue, H. Y., and Xu, J. (2014) Myosin light chain kinase accelerates vesicle endocytosis at the calyx of Held synapse, J. Neurosci., 34, 295–304.PubMedCrossRefGoogle Scholar
  164. 164.
    Kumakura, K., Sasaki, K., Sakurai, T., Ohara-Imaizumi, M., Misonou, H., Nakamura, S., Matsuda, Y., and Nonomura, Y. (1994) Essential role of myosin light chain kinase in the mechanism for MgATP-dependent priming of exocytosis in adrenal chromaffin cells, J. Neurosci., 14, 7695–7703.PubMedGoogle Scholar
  165. 165.
    Arous, C., Rondas, D., and Halban, P. A. (2013) Nonmuscle myosin IIA is involved in focal adhesion and actin remodelling controlling glucose-stimulated insulin secretion, Diabetologia, 56, 792–802.PubMedCrossRefGoogle Scholar
  166. 166.
    Getz, T. M., Dangelmaier, C. A., Jin, J., Daniel, J. L., and Kunapuli, S. P. (2010) Differential phosphorylation of myosin light chain (Thr)18 and (Ser)19 and functional implications in platelets, J. Thromb. Haemost., 8, 2283–2293.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Miklavc, P., Ehinger, K., Sultan, A., Felder, T., Paul, P., Gottschalk, K. E., and Frick, M. (2015) Actin depolymerisation and crosslinking join forces with myosin II to contract actin coats on fused secretory vesicles, J. Cell Sci., 128, 1193–1203.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Cai, S., Pestic-Dragovich, L., O’Donnell, M. E., Wang, N., Ingber, D., Elson, E., and De Lanerolle, P. (1998) Regulation of cytoskeletal mechanics and cell growth by myosin light chain phosphorylation, Am. J. Physiol., 275, C1349-1356.PubMedGoogle Scholar
  169. 169.
    Ohlmann, P., Tesse, A., Loichot, C., Ralay Ranaivo, H., Roul, G., Philippe, C., Watterson, D. M., Haiech, J., and Andriantsitohaina, R. (2005) Deletion of MLCK210 induces subtle changes in vascular reactivity but does not affect cardiac function, Am. J. Physiol. Heart Circ. Physiol., 289, H2342-2349.PubMedCrossRefGoogle Scholar
  170. 170.
    Samsonov, M. V., Khalisov, M. M., Khapchaev, A. Y., Penniyaynen, V. A., Ankudinov, A. V., Krylov, B. V., and Shirinsky, V. P. (2016) The role of 210 kDa myosin light chain kinase and RhoA-activated protein kinase in control of microvascular endothelial cell stiffness, in Materials of Int. Symp. “Biological Motility”, Pushchino, Russia, pp. 208–209.Google Scholar
  171. 171.
    Shirinsky, V. P., Kazakova, O. A., Samsonov, M. V., Khalisov, M. M., Khapchaev, A. Y., Penniyaynen, V. A., Ankudinov, A. V., and Krylov, B. V. (2016) Spatiotemporal activity profiling of key myosin regulators in endothelial cells with regard to control of cell stiffness and barrier dysfunction, in Experimental and Computational Biomedicine: Russ. Conf. with Int. Participation in Memory of Prof. Vladimir S. Markhasin, Ekaterinburg, p. 53.Google Scholar
  172. 172.
    Shirinsky, V. P. (2011) Molecular physiology of endothelium and mechanisms of vascular permeability, Usp. Fiziol. Nauk, 42, 18–32.Google Scholar
  173. 173.
    Mehta, D., and Malik, A. B. (2006) Signaling mechanisms regulating endothelial permeability, Physiol. Rev., 86, 279–367.PubMedCrossRefGoogle Scholar
  174. 174.
    Wainwright, M. S., Rossi, J., Schavocky, J., Crawford, S., Steinhorn, D., Velentza, A. V., Zasadzki, M., Shirinsky, V., Jia, Y., Haiech, J., Van Eldik, L. J., and Watterson, D. M. (2003) Protein kinase involved in lung injury susceptibility: evidence from enzyme isoform genetic knockout and in vivo inhibitor treatment, Proc. Natl. Acad. Sci. USA, 100, 6233–6238.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Yu, Y., Lv, N., Lu, Z., Zheng, Y. Y., Zhang, W. C., Chen, C., Peng, Y. J., He, W. Q., Meng, F. Q., Zhu, M. S., and Chen, H. Q. (2012) Deletion of myosin light chain kinase in endothelial cells has a minor effect on the lipopolysaccharide-induced increase in microvascular endothelium permeability in mice, FEBS J., 279, 1485–1494.PubMedCrossRefGoogle Scholar
  176. 176.
    Moitra, J., Evenoski, C., Sammani, S., Wadgaonkar, R., Turner, J. R., Ma, S. F., and Garcia, J. G. (2008) A transgenic mouse with vascular endothelial over-expression of the non-muscle myosin light chain kinase-2 isoform is susceptible to inflammatory lung injury: role of sexual dimorphism and age, Transl. Res., 151, 141–153.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Marchiando, A. M., Shen, L., Graham, W. V., Weber, C. R., Schwarz, B. T., Austin, J. R., 2nd, Raleigh, D. R., Guan, Y., Watson, A. J., Montrose, M. H., and Turner, J. R. (2010) Caveolin-1-dependent occludin endocytosis is required for TNF-induced tight junction regulation in vivo, J. Cell Biol., 189, 111–126.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Wu, L. L., Peng, W. H., Kuo, W. T., Huang, C. Y., Ni, Y. H., Lu, K. S., Turner, J. R., and Yu, L. C. (2014) Commensal bacterial endocytosis in epithelial cells is dependent on myosin light chain kinase-activated brush border fanning by interferon-gamma, Am. J. Pathol., 184, 2260–2274.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Fazal, F., Bijli, K. M., Murrill, M., Leonard, A., Minhajuddin, M., Anwar, K. N., Finkelstein, J. N., Watterson, D. M., and Rahman, A. (2013) Critical role of non-muscle myosin light chain kinase in thrombininduced endothelial cell inflammation and lung PMN infiltration, PLoS One, 8, e59965.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Tan, J., Wang, Y., Xia, Y., Zhang, N., Sun, X., Yu, T., and Lin, L. (2014) Melatonin protects the esophageal epithelial barrier by suppressing the transcription, expression and activity of myosin light chain kinase through ERK1/2 signal transduction, Cell. Physiol. Biochem., 34, 2117–2127.PubMedCrossRefGoogle Scholar
  181. 181.
    Reynoso, R., Perrin, R. M., Breslin, J. W., Daines, D. A., Watson, K. D., Watterson, D. M., Wu, M. H., and Yuan, S. (2007) A role for long chain myosin light chain kinase (MLCK-210) in microvascular hyperpermeability during severe burns, Shock, 28, 589–595.PubMedGoogle Scholar
  182. 182.
    Marchenko, A. V., Sidorova, M. V., Sekridova, A. V., Bushuev, V. N., Lakomkin, V. L., Orlova, Ts. R., Stepanova, O. V., Kapel’ko, V. I., Watterson, D. M., Van Eldik, L. J., Bespalova, Zh. D., and Shirinskii, V. P. (2009) Penetrating peptide inhibitor of the myosin light chain kinase suppresses hyperpermeability of vascular endothelium, Ross. Fiziol. Zh. im. I. M. Sechenova, 95, 507–515.PubMedGoogle Scholar
  183. 183.
    Stephens, N. L., Cheng, Z. Q., and Fust, A. (2007) Sensitized airway smooth muscle plasticity and hyperreactivity: a review, Can. J. Physiol. Pharmacol., 85, 679–685.PubMedCrossRefGoogle Scholar
  184. 184.
    Azizi, P. M., Zyla, R. E., Guan, S., Wang, C., Liu, J., Bolz, S. S., Heit, B., Klip, A., and Lee, W. L. (2015) Clathrindependent entry and vesicle-mediated exocytosis define insulin transcytosis across microvascular endothelial cells, Mol. Biol. Cell, 26, 740–750.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Jerdeva, G. V., Wu, K., Yarber, F. A., Rhodes, C. J., Kalman, D., Schechter, J. E., and Hamm-Alvarez, S. F. (2005) Actin and non-muscle myosin II facilitate apical exocytosis of tear proteins in rabbit lacrimal acinar epithelial cells, J. Cell Sci., 118, 4797–4812.PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Choi, Y. O., Ryu, H. J., Kim, H. R., Song, Y. S., Kim, C., Lee, W., Choe, H., Leem, C. H., and Jang, Y. J. (2006) Implication of phosphorylation of the myosin II regulatory light chain in insulin-stimulated GLUT4 translocation in 3T3-F442A adipocytes, Exp. Mol. Med., 38, 180–189.PubMedCrossRefGoogle Scholar
  187. 187.
    Fulcher, F. K., Smith, B. T., Russ, M., and Patel, Y. M. (2008) Dual role for myosin II in GLUT4-mediated glucose uptake in 3T3-L1 adipocytes, Exp. Cell Res., 314, 3264–3274.PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Wu, F., Guo, X., Xu, J., Wang, W., Li, B., Huang, Q., Su, L., and Xu, Q. (2016) Role of myosin light chain and myosin light chain kinase in advanced glycation end product-induced endothelial hyperpermeability in vitro and in vivo, Diab. Vasc. Dis. Res., 13, 137–144.PubMedCrossRefGoogle Scholar
  189. 189.
    Tang, S. T., Su, H., Zhang, Q., Tang, H. Q., Wang, C. J., Zhou, Q., Wei, W., Zhu, H. Q., and Wang, Y. (2016) Melatonin attenuates aortic endothelial permeability and arteriosclerosis in streptozotocin-induced diabetic rats: possible role of MLCK- and MLCP-dependent MLC phosphorylation, J. Cardiovasc. Pharmacol. Ther., 21, 82–92.PubMedCrossRefGoogle Scholar
  190. 190.
    Hu, W., and Feng, P. (2012) Myosin light chain kinase is involved in the mechanism of gastrointestinal dysfunction in diabetic rats, Dig. Dis. Sci., 57, 1197–1202.PubMedCrossRefGoogle Scholar
  191. 191.
    Di, Y., Pan, W., and Li, X. (2015) Serum myosin light chain kinase in type 2 diabetes mellitus: a cross-sectional study, Ann. Clin. Lab. Sci., 45, 54–57.PubMedGoogle Scholar
  192. 192.
    Usatyuk, P. V., Singleton, P. A., Pendyala, S., Kalari, S. K., He, D., Gorshkova, I. A., Camp, S. M., Moitra, J., Dudek, S. M., Garcia, J. G., and Natarajan, V. (2012) Novel role for non-muscle myosin light chain kinase (MLCK) in hyperoxia-induced recruitment of cytoskeletal proteins, NADPH oxidase activation, and reactive oxygen species generation in lung endothelium, J. Biol. Chem., 287, 9360–9375.PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Kaneko, K., Satoh, K., Masamune, A., Satoh, A., and Shimosegawa, T. (2002) Myosin light chain kinase inhibitors can block invasion and adhesion of human pancreatic cancer cell lines, Pancreas, 24, 34–41.PubMedCrossRefGoogle Scholar
  194. 194.
    Khuon, S., Liang, L., Dettman, R. W., Sporn, P. H., Wysolmerski, R. B., and Chew, T. L. (2010) Myosin light chain kinase mediates transcellular intravasation of breast cancer cells through the underlying endothelial cells: a three-dimensional FRET study, J. Cell Sci., 123, 431–440.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Russian Cardiology Research and Production CenterMoscowRussia
  2. 2.Lomonosov Moscow State University, Faculty of Fundamental MedicineMoscowRussia

Personalised recommendations