Biochemistry (Moscow)

, Volume 81, Issue 12, pp 1480–1487 | Cite as

Molecular and cellular interactions between mother and fetus. Pregnancy as a rejuvenating factor

  • V. A. Popkov
  • D. N. Silachev
  • S. S. Jankauskas
  • L. D. Zorova
  • I. B. Pevzner
  • V. A. Babenko
  • E. Y. Plotnikov
  • D. B. Zorov
Phenoptosis (Special Issue) Review

Abstract

Aging is associated with a decline of various body functions, including ability to regenerate. Over recent decades, it has been demonstrated that some of these changes could be reversed in response to factors originating from a young organism, for example, fetal stem cells or “young blood” in models of heterochronic parabiosis. Pregnancy might be considered as parabiotic model of the interaction between two organisms of different age. In this work, we analyzed and summarized data on the effects of pregnancy on the maternal organism that confirm the hypothesis that pregnancy rejuvenates the mother’s organism or slows its aging.

Key words

pregnancy rejuvenation aging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McCay, C. M., Pope, F., Lunsford, W., Sperling, G., and Sambhavaphol, P. (1957) Parabiosis between old and young rats, Gerontologia, 1, 7–17.CrossRefPubMedGoogle Scholar
  2. 2.
    Sinha, M., Jang, Y. C., Oh, J., Khong, D., Wu, E. Y., Manohar, R., Miller, C., Regalado, S. G., Loffredo, F. S., Pancoast, J. R., Hirshman, M. F., Lebowitz, J., Shadrach, J. L., Cerletti, M., Kim, M. J., Serwold, T., Goodyear, L. J., Rosner, B., Lee, R. T., and Wagers, A. J. (2014) Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle, Science, 344, 649–652.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Poggioli, T., Vujic, A., Yang, P., Macias-Trevino, C., Uygur, A., Loffredo, F. S., Pancoast, J. R., Cho, M., Goldstein, J., Tandias, R. M., Gonzalez, E., Walker, R. G., Thompson, T. B., Wagers, A. J., Fong, Y. W., and Lee, R. T. (2016) Circulating growth differentiation factor 11/8 levels decline with age, Circ. Res., 118, 29–37.CrossRefPubMedGoogle Scholar
  4. 4.
    Loffredo, F. S., Steinhauser, M. L., Jay, S. M., Gannon, J., Pancoast, J. R., Yalamanchi, P., Sinha, M., Dall’Osso, C., Khong, D., Shadrach, J. L., Miller, C. M., Singer, B. S., Stewart, A., Psychogios, N., Gerszten, R. E., Hartigan, A. J., Kim, M. J., Serwold, T., Wagersm, A. J., and Lee, R. T. (2013) Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy, Cell, 153, 828–839.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Hinken, A. C., Powers, J. M., Luo, G., Holt, J. A., and Billin, A. N. (2016) Lack of evidence for GDF11 as a rejuvenator of aged skeletal muscle satellite cells, Aging Cell, 15, 582–584.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Glass, D. J. (2016) Elevated GDF11 is a risk factor for agerelated frailty and disease in humans, Cell Metab., 24, 7–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Freitas-Rodriguez, S., Rodriguez, F., and Folgueras, A. R. (2016) GDF11 administration does not extend lifespan in a mouse model of premature aging, Oncotarget, doi: 10.18632/oncotarget.11096.Google Scholar
  8. 8.
    Gielchinsky, Y., Laufer, N., Weitman, E., Abramovitch, R., Granot, Z., Bergman, Y., and Pikarsky, E. (2010) Pregnancy restores the regenerative capacity of the aged liver via activation of an mTORC1-controlled hyperplasia/hypertrophy switch, Genes Dev., 24, 543–548.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Falick Michaeli, T., Laufer, N., Sagiv, J. Y., Dreazen, A., Granot, Z., Pikarsky, E., Bergman, Y., and Gielchinsky, Y. (2015) The rejuvenating effect of pregnancy on muscle regeneration, Aging Cell, 14, 698–700.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Conboy, I. M., Conboy, M. J., Smythe, G. M., and Rando, T. A. (2003) Notch-mediated restoration of regenerative potential to aged muscle, Science, 302, 1575–1577.CrossRefPubMedGoogle Scholar
  11. 11.
    Felker, G. M., Thompson, R. E., Hare, J. M., Hruban, R. H., Clemetson, D. E., Howard, D. L., Baughman, K. L., and Kasper, E. K. (2000) Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy, N. Engl. J. Med., 342, 1077–1084.CrossRefPubMedGoogle Scholar
  12. 12.
    James, P. R. (2004) A review of peripartum cardiomyopathy, Int. J. Clin. Pract., 58, 363–365.CrossRefPubMedGoogle Scholar
  13. 13.
    Ro, A., and Frishman, W. H. (2006) Peripartum cardiomyopathy, Cardiol. Rev., 14, 35–42.CrossRefPubMedGoogle Scholar
  14. 14.
    Vukusic, S., and Confavreux, C. (2006) Pregnancy and multiple sclerosis: the children of PRIMS, Clin. Neurol. Neurosurg., 108, 266–270.CrossRefPubMedGoogle Scholar
  15. 15.
    Vukusic, S., Hutchinson, M., Hours, M., Moreau, T., Cortinovis-Tourniaire, P., Adeleine, P., and Confavreux, C. (2004) Pregnancy and multiple sclerosis (the PRIMS study): clinical predictors of post-partum relapse, Brain, 127, 1353–1360.CrossRefPubMedGoogle Scholar
  16. 16.
    Van Walderveen, M. A., Tas, M. W., Barkhof, F., Polman, C. H., Frequin, S. T., Hommes, O. R., and Valk, J. (1994) Magnetic resonance evaluation of disease activity during pregnancy in multiple sclerosis, Neurology, 44, 327–329.CrossRefPubMedGoogle Scholar
  17. 17.
    Runmarker, B., and Andersen, O. (1995) Pregnancy is associated with a lower risk of onset and a better prognosis in multiple sclerosis, Brain, 118 (Pt. 1), 253–261.CrossRefPubMedGoogle Scholar
  18. 18.
    Ponsonby, A. L., Lucas, R. M., Van der Mei, I. A., Dear, K., Valery, P. C., Pender, M. P., Taylor, B. V., Kilpatrick, T. J., Coulthard, A., Chapman, C., Williams, D., McMichael, A. J., and Dwyer, T. (2012) Offspring number, pregnancy, and risk of a first clinical demyelinating event: the AusImmune Study, Neurology, 78, 867–874.CrossRefPubMedGoogle Scholar
  19. 19.
    Gregg, C., Shikar, V., Larsen, P., Mak, G., Chojnacki, A., Yong, V. W., and Weiss, S. (2007) White matter plasticity and enhanced remyelination in the maternal CNS, J. Neurosci., 27, 1812–1823.CrossRefPubMedGoogle Scholar
  20. 20.
    Liu, S., Zhou, J., Zhang, X., Liu, Y., Chen, J., Hu, B., Song, J., and Zhang, Y. (2016) Strategies to optimize adult stem cell therapy for tissue regeneration, Int. J. Mol. Sci., 17, doi: 10.3390/ijms17060982.Google Scholar
  21. 21.
    Ishii, T., and Eto, K. (2014) Fetal stem cell transplantation: Past, present, and future, World J. Stem Cells, 6, 404–420.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Bianchi, D. W., Zickwolf, G. K., Weil, G. J., Sylvester, S., and DeMaria, M. A. (1996) Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum, Proc. Natl. Acad. Sci. USA, 93, 705–708.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Nassar, D., Khosrotehrani, K., and Aractingi, S. (2012) Fetal microchimerism in skin wound healing, Chimerism, 3, 45–47.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kara, R. J., Bolli, P., Karakikes, I., Matsunaga, I., Tripodi, J., Tanweer, O., Altman, P., Shachter, N. S., Nakano, A., Najfeld, V., and Chaudhry, H. W. (2012) Fetal cells traffic to injured maternal myocardium and undergo cardiac differentiation, Circ. Res., 110, 82–93.CrossRefPubMedGoogle Scholar
  25. 25.
    Zeng, X. X., Tan, K. H., Yeo, A., Sasajala, P., Tan, X., Xiao, Z. C., Dawe, G., and Udolph, G. (2010) Pregnancy-associated progenitor cells differentiate and mature into neurons in the maternal brain, Stem Cells Dev., 19, 1819–1830.CrossRefPubMedGoogle Scholar
  26. 26.
    Wang, Y., Iwatani, H., Ito, T., Horimoto, N., Yamato, M., Matsui, I., Imai, E., and Hori, M. (2004) Fetal cells in mother rats contribute to the remodeling of liver and kidney after injury, Biochem. Biophys. Res. Commun., 325, 961–967.CrossRefPubMedGoogle Scholar
  27. 27.
    Khosrotehrani, K., Reyes, R. R., Johnson, K. L., Freeman, R. B., Salomon, R. N., Peter, I., Stroh, H., Guegan, S., and Bianchi, D. W. (2007) Fetal cells participate over time in the response to specific types of murine maternal hepatic injury, Hum. Reprod., 22, 654–661.CrossRefPubMedGoogle Scholar
  28. 28.
    Kleeberger, W., Versmold, A., Rothamel, T., Glockner, S., Bredt, M., Haverich, A., Lehmann, U., and Kreipe, H. (2003) Increased chimerism of bronchial and alveolar epithelium in human lung allografts undergoing chronic injury, Am. J. Pathol., 162, 1487–1494.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Conboy, I. M., and Rando, T. A. (2005) Aging, stem cells and tissue regeneration: lessons from muscle, Cell Cycle, 4, 407–410.CrossRefPubMedGoogle Scholar
  30. 30.
    Conboy, I. M., Conboy, M. J., Wagers, A. J., Girma, E. R., Weissman, I. L., and Rando, T. A. (2005) Rejuvenation of aged progenitor cells by exposure to a young systemic environment, Nature, 433, 760–764.CrossRefPubMedGoogle Scholar
  31. 31.
    Villeda, S. A., Plambeck, K. E., Middeldorp, J., Castellano, J. M., Mosher, K. I., Luo, J., Smith, L. K., Bieri, G., Lin, K., Berdnik, D., Wabl, R., Udeochu, J., Wheatley, E. G., Zou, B., Simmons, D. A., Xie, X. S., Longo, F. M., and Wyss-Coray, T. (2014) Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice, Nat. Med., 20, 659–663.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Villeda, S. A., Luo, J., Mosher, K. I., Zou, B., Britschgi, M., Bieri, G., Stan, T. M., Fainberg, N., Ding, Z., Eggel, A., Lucin, K. M., Czirr, E., Park, J. S., Couillard-Despres, S., Aigner, L., Li, G., Peskind, E. R., Kaye, J. A., Quinn, J. F., Galasko, D. R., Xie, X. S., Rando, T. A., and Wyss-Coray, T. (2011) The ageing systemic milieu negatively regulates neurogenesis and cognitive function, Nature, 477, 90–94.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Katsimpardi, L., Litterman, N. K., Schein, P. A., Miller, C. M., Loffredo, F. S., Wojtkiewicz, G. R., Chen, J. W., Lee, R. T., Wagers, A. J., and Rubin, L. L. (2014) Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors, Science, 344, 630–634.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Ruckh, J. M., Zhao, J. W., Shadrach, J. L., van Wijngaarden, P., Rao, T. N., Wagers, A. J., and Franklin, R. J. (2012) Rejuvenation of regeneration in the aging central nervous system, Cell Stem Cell, 10, 96–103.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Olson, K. A., Beatty, A. L., Heidecker, B., Regan, M. C., Brody, E. N., Foreman, T., Kato, S., Mehler, R. E., Singer, B. S., Hveem, K., Dalen, H., Sterling, D. G., Lawn, R. M., Schiller, N. B., Williams, S. A., Whooley, M. A., and Ganz, P. (2015) Association of growth differentiation factor 11/8, putative anti-ageing factor, with cardiovascular outcomes and overall mortality in humans: analysis of the Heart and Soul and HUNT3 cohorts, Eur. Heart J., 36, 3426–3434.CrossRefPubMedGoogle Scholar
  36. 36.
    Popkov, V. A., Plotnikov, E. Y., Silachev, D. N., Zorova, L. D., Pevzner, I. B., Jankauskas, S. S., Zorov, S. D., Babenko, V. A., and Zorov, D. B. (2015) Diseases and aging: gender matters, Biochemistry (Moscow), 80, 1560–1570.CrossRefGoogle Scholar
  37. 37.
    World Health Organization (2012) Annual report.Google Scholar
  38. 38.
    Anand, S. S., Islam, S., Rosengren, A., Franzosi, M. G., Steyn, K., Yusufali, A. H., Keltai, M., Diaz, R., Rangarajan, S., Yusuf, S., and INTERHEART Investigators (2008) Risk factors for myocardial infarction in women and men: insights from the INTERHEART study, Eur. Heart J., 29, 932–940.CrossRefPubMedGoogle Scholar
  39. 39.
    Hochman, J. S., McCabe, C. H., Stone, P. H., Becker, R. C., Cannon, C. P., DeFeo-Fraulini, T., Thompson, B., Steingart, R., Knatterud, G., and Braunwald, E. (1997) Outcome and profile of women and men presenting with acute coronary syndromes: a report from TIMI IIIB. TIMI Investigators. Thrombolysis in myocardial infarction, J. Am. Coll. Cardiol., 30, 141–148.CrossRefPubMedGoogle Scholar
  40. 40.
    Heer, T., Gitt, A. K., Juenger, C., Schiele, R., Wienbergen, H., Towae, F., Gottwitz, M., Zahn, R., Zeymer, U., Senges, J., and ACOS Investigators (2006) Gender differences in acute non-ST-segment elevation myocardial infarction, Am. J. Cardiol., 98, 160–166.CrossRefPubMedGoogle Scholar
  41. 41.
    Deswal, A., and Bozkurt, B. (2006) Comparison of morbidity in women versus men with heart failure and preserved ejection fraction, Am. J. Cardiol., 97, 1228–1231.CrossRefPubMedGoogle Scholar
  42. 42.
    Dimitrow, P. P., Czarnecka, D., Jaszcz, K. K., and Dubiel, J. S. (1997) Sex differences in age at onset of symptoms in patients with hypertrophic cardiomyopathy, J. Cardiovasc. Risk, 4, 33–35.CrossRefPubMedGoogle Scholar
  43. 43.
    Humphries, K. H., Kerr, C. R., Connolly, S. J., Klein, G., Boone, J. A., Green, M., Sheldon, R., Talajic, M., Dorian, P., and Newman, D. (2001) New-onset atrial fibrillation: sex differences in presentation, treatment, and outcome, Circulation, 103, 2365–2370.CrossRefPubMedGoogle Scholar
  44. 44.
    Costenbader, K. H., Feskanich, D., Stampfer, M. J., and Karlson, E. W. (2007) Reproductive and menopausal factors and risk of systemic lupus erythematosus in women, Arthritis Rheum., 56, 1251–1262.CrossRefPubMedGoogle Scholar
  45. 45.
    Sandberg, K. (2008) Mechanisms underlying sex differences in progressive renal disease, Gend. Med., 5, 10–23.CrossRefPubMedGoogle Scholar
  46. 46.
    Grodstein, F., Stampfer, M. J., Manson, J. E., Colditz, G. A., Willett, W. C., Rosner, B., Speizer, F. E., and Hennekens, C. H. (1996) Postmenopausal estrogen and progestin use and the risk of cardiovascular disease, N. Engl. J. Med., 335, 453–461.CrossRefPubMedGoogle Scholar
  47. 47.
    Harrison-Bernard, L. M., and Raij, L. (2000) Postmenopausal hypertension, Curr. Hypertens. Rep., 2, 202–207.CrossRefPubMedGoogle Scholar
  48. 48.
    Rosen, C. J. (2005) Clinical practice. Postmenopausal osteoporosis, N. Engl. J. Med., 353, 595–603.CrossRefPubMedGoogle Scholar
  49. 49.
    Szekacs, B., Vajo, Z., Varbiro, S., Kakucs, R., Vaslaki, L., Acs, N., Mucsi, I., and Brinton, E. A. (2000) Postmenopausal hormone replacement improves proteinuria and impaired creatinine clearance in type 2 diabetes mellitus and hypertension, BJOG, 107, 1017–1021.CrossRefPubMedGoogle Scholar
  50. 50.
    Cavasin, M. A., Tao, Z. Y., Yu, A. L., and Yang, X. P. (2006) Testosterone enhances early cardiac remodeling after myocardial infarction, causing rupture and degrading cardiac function, Am. J. Physiol. Heart Circ. Physiol., 290, H2043–2050.CrossRefPubMedGoogle Scholar
  51. 51.
    Singh, H., Cheng, J., Deng, H., Kemp, R., Ishizuka, T., Nasjletti, A., and Schwartzman, M. L. (2007) Vascular cytochrome P450 4A expression and 20-hydroxyeicosatetraenoic acid synthesis contribute to endothelial dysfunction in androgen-induced hypertension, Hypertension, 50, 123–129.CrossRefPubMedGoogle Scholar
  52. 52.
    Bae, S., and Zhang, L. (2005) Gender differences in cardioprotection against ischemia/reperfusion injury in adult rat hearts: focus on Akt and protein kinase C signaling, J. Pharmacol. Exp. Ther., 315, 1125–1135.CrossRefPubMedGoogle Scholar
  53. 53.
    Hsieh, Y. C., Choudhry, M. A., Yu, H. P., Shimizu, T., Yang, S., Suzuki, T., Chen, J., Bland, K. I., and Chaudry, I. H. (2006) Inhibition of cardiac PGC-1alpha expression abolishes ERbeta agonist-mediated cardioprotection following trauma-hemorrhage, FASEB J., 20, 1109–1117.CrossRefPubMedGoogle Scholar
  54. 54.
    Gold, J. J., and Josimovich, J. B. (eds.) (1987) Gynecologic Endocrinology, 4th Edn., Plenum Press, N.Y.-London.Google Scholar
  55. 55.
    Xiao, J., Li, J., Xu, T., Lv, D., Shen, B., Song, Y., and Xu, J. (2014) Pregnancy-induced physiological hypertrophy protects against cardiac ischemia-reperfusion injury, Int. J. Clin. Exp. Pathol., 7, 229–235.PubMedGoogle Scholar
  56. 56.
    Chen, J., Crawford, R., Chen, C., and Xiao, Y. (2013) The key regulatory roles of the PI3K/Akt signaling pathway in the functionalities of mesenchymal stem cells and applications in tissue regeneration, Tissue Eng. Part B Rev., 19, 516–528.CrossRefPubMedGoogle Scholar
  57. 57.
    Lee, J., Bae, E. H., Ma, S. K., and Kim, S. W. (2016) Altered nitric oxide system in cardiovascular and renal diseases, Chonnam Med. J., 52, 81–90.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Pandey, M. K., and DeGrado, T. R. (2016) Glycogen Synthase Kinase-3 (GSK-3)-targeted therapy and imaging, Theranostics, 6, 571–593.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Smith, G. A., Fearnley, G. W., Harrison, M. A., Tomlinson, D. C., Wheatcroft, S. B., and Ponnambalam, S. (2015) Vascular endothelial growth factors: multitasking functionality in metabolism, health and disease, J. Inherit. Metab. Dis., 38, 753–763.CrossRefPubMedGoogle Scholar
  60. 60.
    Sun, X. F., and Zhang, H. (2007) NF-κB and NF-κBI polymorphisms in relation to susceptibility of tumour and other diseases, Histol. Histopathol., 22, 1387–1398.PubMedGoogle Scholar
  61. 61.
    Hybertson, B. M., and Gao, B. (2014) Role of the Nrf2 signaling system in health and disease, Clin. Genet., 86, 447–452.CrossRefPubMedGoogle Scholar
  62. 62.
    Johnson, S. C., Sangesland, M., Kaeberlein, M., and Rabinovitch, P. S. (2015) Modulating mTOR in aging and health, Interdiscip. Top. Gerontol., 40, 107–127.CrossRefPubMedGoogle Scholar
  63. 63.
    Sorenson, C. M. (2004) Bcl-2 family members and disease, Biochim. Biophys. Acta, 1644, 169–177.CrossRefPubMedGoogle Scholar
  64. 64.
    Vellai, T., Takacs-Vellai, K., Zhang, Y., Kovacs, A. L., Orosz, L., and Muller, F. (2003) Genetics: influence of TOR kinase on lifespan in C. elegans, Nature, 426, 620.CrossRefPubMedGoogle Scholar
  65. 65.
    Chen, C., Liu, Y., Liu, Y., and Zheng, P. (2009) mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells, Sci. Signal., 2, ra75.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Harrison, D. E., Strong, R., Sharp, Z. D., Nelson, J. F., Astle, C. M., Flurkey, K., Nadon, N. L., Wilkinson, J. E., Frenkel, K., Carter, C. S., Pahor, M., Javors, M. A., Fernandez, E., and Miller, R. A. (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice, Nature, 460, 392–395.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Balistreri, C. R., Madonna, R., Melino, G., and Caruso, C. (2016) The emerging role of Notch pathway in ageing: focus on the related mechanisms in age-related diseases, Ageing Res. Rev., 29, 50–65.CrossRefPubMedGoogle Scholar
  68. 68.
    Kirkwood, T. B. (1977) Evolution of ageing, Nature, 270, 301–304.CrossRefPubMedGoogle Scholar
  69. 69.
    Austad, S. N. (1993) Retarded senescence in an insular population of Virginia opossums (Didelphis virginiana), J. Zool., 229, 695–708.CrossRefGoogle Scholar
  70. 70.
    Reznick, D., Butler Iv, M. J., and Rodd, H. (2001) Life-history evolution in guppies. VII. The comparative ecology of highand low-predation environments, Am. Nat., 157, 126–140.CrossRefPubMedGoogle Scholar
  71. 71.
    Min, K. J., Lee, C. K., and Park, H. N. (2012) The lifespan of Korean eunuchs, Curr. Biol., 22, 792–793.CrossRefGoogle Scholar
  72. 72.
    Westendorp, R. G., and Kirkwood, T. B. (1998) Human longevity at the cost of reproductive success, Nature, 396, 743–746.CrossRefPubMedGoogle Scholar
  73. 73.
    Chereji, E., Gatz, M., Pedersen, N. L., and Prescott, C. A. (2013) Reexamining the association between fertility and longevity: testing the disposable soma theory in a modern human sample of twins, J. Gerontol. A Biol. Sci. Med. Sci., 68, 499–509.CrossRefPubMedGoogle Scholar
  74. 74.
    Helle, S., Lummaa, V., and Jokela, J. (2005) Are reproductive and somatic senescence coupled in humans? Late, but not early, reproduction correlated with longevity in historical Sami women, Proc. Biol. Sci., 272, 29–37.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    McArdle, P. F., Pollin, T. I., O’Connell, J. R., Sorkin, J. D., Agarwala, R., Schaffer, A. A., Streeten, E. A., King, T. M., Shuldiner, A. R., and Mitchell, B. D. (2006) Does having children extend lifespan? A genealogical study of parity and longevity in the Amish, J. Gerontol. A Biol. Sci. Med. Sci., 61, 190–195.CrossRefPubMedGoogle Scholar
  76. 76.
    Gagnon, A., Smith, K. R., Tremblay, M., Vezina, H., Pare, P. P., and Desjardins, B. (2009) Is there a trade-off between fertility and longevity? A comparative study of women from three large historical databases accounting for mortality selection, Am. J. Hum. Biol., 21, 533–540.CrossRefPubMedGoogle Scholar
  77. 77.
    Smith, K. R., Mineau, G. P., and Bean, L. L. (2002) Fertility and post-reproductive longevity, Soc. Biol., 49, 185–205.PubMedGoogle Scholar
  78. 78.
    Grundy, E., and Tomassini, C. (2005) Fertility history and health in later life: a record linkage study in England and Wales, Soc. Sci. Med., 61, 217–228.CrossRefPubMedGoogle Scholar
  79. 79.
    Jaffe, D., Kogan, L., Manor, O., Gielchinsky, Y., Dior, U., and Laufer, N. (2015) Influence of late-age births on maternal longevity, Ann. Epidemiol., 25, 387–391.CrossRefPubMedGoogle Scholar
  80. 80.
    Sarkar, S., and Plutynski, A. (eds.) (2008) A Companion to the Philosophy of Biology, Wiley, London.Google Scholar
  81. 81.
    Whitehead, H. (2015) Life history evolution: what does a menopausal killer whale do? Curr. Biol., 25, R225–227.CrossRefPubMedGoogle Scholar
  82. 82.
    Zorov, D. B., Plotnikov, E. Y., Jankauskas, S. S., Isaev, N. K., Silachev, D. N., Zorova, L. D., Pevzner, I. B., Pulkova, N. V., Zorov, S. D., and Morosanova, M. A. (2012) The phenoptosis problem: what is causing the death of an organism? Lessons from acute kidney injury, Biochemistry (Moscow), 77, 742–753.CrossRefGoogle Scholar
  83. 83.
    Zorov, D. B., Isaev, N. K., Plotnikov, E. Y., Silachev, D. N., Zorova, L. D., Pevzner, I. B., Morosanova, M. A., Jankauskas, S. S., Zorov, S. D., and Babenko, V. A. (2013) Perspectives of mitochondrial medicine, Biochemistry (Moscow), 78, 979–990.CrossRefGoogle Scholar
  84. 84.
    Zorov, D. B., Plotnikov, E. Y., Silachev, D. N., Zorova, L. D., Pevzner, I. B., Zorov, S. D., Babenko, V. A., Jankauskas, S. S., Popkov, V. A., and Savina, P. S. (2014) Microbiota and mitobiota. Putting an equal sign between mitochondria and bacteria, Biochemistry (Moscow), 79, 1017–1031.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • V. A. Popkov
    • 1
    • 2
  • D. N. Silachev
    • 1
  • S. S. Jankauskas
    • 1
  • L. D. Zorova
    • 3
  • I. B. Pevzner
    • 1
  • V. A. Babenko
    • 2
    • 4
  • E. Y. Plotnikov
    • 1
  • D. B. Zorov
    • 1
  1. 1.Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical BiologyMoscowRussia
  2. 2.Lomonosov Moscow State University, Faculty of Bioengineering and BioinformaticsMoscowRussia
  3. 3.Lomonosov Moscow State University, International Laser CenterMoscowRussia
  4. 4.Research Center of Obstetrics, Gynecology and PerinatologyMoscowRussia

Personalised recommendations