Biochemistry (Moscow)

, Volume 81, Issue 12, pp 1461–1476 | Cite as

Is it possible to prove the existence of an aging program by quantitative analysis of mortality dynamics?

  • G. A. Shilovsky
  • T. S. Putyatina
  • S. N. Lysenkov
  • V. V. Ashapkin
  • O. S. Luchkina
  • A. V. Markov
  • V. P. Skulachev
Phenoptosis (Special Issue) Review


Accumulation of various types of lesions in the course of aging increases an organism’s vulnerability and results in a monotonous elevation of mortality rate, irrespective of the position of a species on the evolutionary tree. Stroustrup et al. (Nature, 530, 103–107) [1] showed in 2016 that in the nematode Caenorhabditis elegans, longevity-altering factors (e.g. oxidative stress, temperature, or diet) do not change the shape of the survival curve, but either stretch or shrink it along the time axis, which the authors attributed to the existence of an “aging program”. Modification of the accelerated failure time model by Stroustrup et al. uses temporal scaling as a basic approach for distinguishing between quantitative and qualitative changes in aging dynamics. Thus we analyzed data on the effects of various longevity-increasing genetic manipulations in flies, worms, and mice and used several models to choose a theory that would best fit the experimental results. The possibility to identify the moment of switch from a mortality-governing pathway to some other pathways might be useful for testing geroprotective drugs. In this work, we discuss this and other aspects of temporal scaling.

Key words

lifespan aging survival curves temporal scaling phenoptosis 


AFT model

accelerated failure time model


AMP-activated protein kinase


coefficient of variation


frailty index


hypoxia-inducible factor 1

PH model

Cox proportional hazards model


superoxide dismutase


tert-butyl hydroperoxide


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stroustrup, N., Anthony, W. E., Nash, Z. M., Gowda, V., Gomez, A., Lopez-Moyado, I. F., Apfeld, J., and Fontana, W. (2016) The temporal scaling of Caenorhabditis elegans ageing, Nature, 530, 103–107.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Jones, O. R., Scheuerlein, A., Salguero-Gomez, R., Camarda, C. G., Schaible, R., Casper, B. B., Dahlgren, J. P., Elen, J., Garcia, M. B., Menges, E. S., Quintana-Ascencio, P. F., Caswell, H., Baudisch, A., and Vaupel, J. W. (2014) Diversity of ageing across the tree of life, Nature, 505, 169–173.PubMedCrossRefGoogle Scholar
  3. 3.
    Baudisch, A. (2008) Inevitable Aging? Contributions to Evolutionary-Demographic Theory, Springer-Verlag, Berlin-Heidelberg.Google Scholar
  4. 4.
    Skulachev, M. V., and Skulachev, V. P. (2014) New data on programmed aging–slow phenoptosis, Biochemistry (Moscow), 79, 977–993.CrossRefGoogle Scholar
  5. 5.
    Skulachev, M. V., Severin, F. F., and Skulachev, V. P. (2015) Aging as an evolvability-increasing program, which can be switched off by organism to mobilize additional resources for survival, Curr. Aging Sci., 8, 95–109.PubMedCrossRefGoogle Scholar
  6. 6.
    Comfort, A. (1979) The Biology of Senescence, Churchill Livingstone, Edinbourgh-London.Google Scholar
  7. 7.
    Medvedev, Z. A. (1990) An attempt at a rational classification of theories of ageing, Biol. Rev. Camb. Philos. Soc., 65, 375–398.PubMedCrossRefGoogle Scholar
  8. 8.
    Kirkwood, T. B. L. (2010) Systems biology of ageing and longevity, Phil. Trans. R. Soc. B., 366, 64–70.CrossRefGoogle Scholar
  9. 9.
    Fisher, R. A. (1930) The Genetic Theory of Natural Selection, Clarendon Press, Oxford.Google Scholar
  10. 10.
    Medawar, P. B. (1952) An Unsolved Problem of Biology, H. K. Lewis, London.Google Scholar
  11. 11.
    Hamilton, W. D. (1966) The moulding of senescence by natural selection, J. Theor. Biol., 12, 12–45.PubMedCrossRefGoogle Scholar
  12. 12.
    Severtsov, A. S. (2005) Evolutional Theory [in Russian], Vlados, Moscow.Google Scholar
  13. 13.
    Putiatina, T. S. (2011) Effect of recreational pressure on ant communities of open biocenoses in Moscow, Moscow Univ. Biol. Sci. Bull., 66, 42–45.CrossRefGoogle Scholar
  14. 14.
    Zorina, Z. A., Poletaeva, I. I., and Reznikova, Zh. I. (1999) Principles of Ethology and Genetics of Behavior [in Russian], Moscow State University, Moscow.Google Scholar
  15. 15.
    Nusbaum, N. J. (1996) What good is it to get old? Med. Hypotheses, 47, 77–79.PubMedCrossRefGoogle Scholar
  16. 16.
    Williams, G. C. (1957) Pleiotropy, natural selection and the evolution of senescence, Evolution, 11, 398–411.CrossRefGoogle Scholar
  17. 17.
    Vijg, J., and Suh, Y. (2005) Genetics of longevity and aging, Annu. Rev. Med., 56, 193–212.PubMedCrossRefGoogle Scholar
  18. 18.
    Campisi, J. (2005) Aging, tumor suppression and cancer: high wire-act! Mech. Ageing Dev., 126, 51–58.PubMedCrossRefGoogle Scholar
  19. 19.
    Weinert, B. T., and Timiras, P. S. (2003) Invited review: theories of aging, J. Appl. Physiol., 95, 1706–1716.PubMedCrossRefGoogle Scholar
  20. 20.
    Skulachev, V. P. (1997) Aging is a specific biological function rather than the result of a disorder in complex living systems: biochemical evidence in support of Weismann’s hypothesis, Biochemistry (Moscow), 62, 1191–1195.Google Scholar
  21. 21.
    Skulachev, V. P. (1999) Phenoptosis: programmed death of an organism? Biochemistry (Moscow), 64, 1418–1426.Google Scholar
  22. 22.
    Weismann, A. (1889) Essays upon Heredity and Kindred Biological Problems, Clarendon Press, Oxford.CrossRefGoogle Scholar
  23. 23.
    Guarente, L., and Kenyon, C. (2000) Genetic pathways that regulate ageing in model organisms, Nature, 408, 255–262.PubMedCrossRefGoogle Scholar
  24. 24.
    Longo, V. D., Mitteldorf, J., and Skulachev, V. P. (2005) Programmed and altruistic ageing, Nature Rev. Genet., 6, 866–872.PubMedCrossRefGoogle Scholar
  25. 25.
    Ashapkin, V. V., Kutueva, L. I., and Vanyushin, B. F. (2015) Aging epigenetics: accumulation of errors or realization of a specific program? Biochemistry (Moscow), 80, 1406–1417.CrossRefGoogle Scholar
  26. 26.
    Boyd-Kirkup, J. D., Green, C. D., Wu, G., Wang, D., and Han, J. D. (2013) Epigenomics and the regulation of aging, Epigenomics, 5, 205–227.PubMedCrossRefGoogle Scholar
  27. 27.
    Zwaan, B., Bijlsma, R., and Hoekstra, R. E. (1995) Direct selection on life-span in Drosophila melanogaster, Evolution, 49, 649–659.CrossRefGoogle Scholar
  28. 28.
    Kenyon, C., Chang, J., Gensch, E., Rudner, A., and Tabtiang, R. A. (1993) C. elegans mutant that lives twice as long as wild type, Nature, 366, 461–464.PubMedCrossRefGoogle Scholar
  29. 29.
    Markov, A. V. (2012) Can kin selection facilitate the evolution of the genetic program of senescence? Biochemistry (Moscow), 77, 733–337.CrossRefGoogle Scholar
  30. 30.
    Bahar, R., Hartmann, C. H., Rodriguez, K. A., Denny, A. D., Busuttil, R. A., Dolle, M. E., Calder, R. B., Chisholm, G. B., Pollock, B. H., Klein, C. A., and Vijg, J. (2006) Increased cell-to-cell variation in gene expression in ageing mouse heart, Nature, 441, 1011–1014.PubMedCrossRefGoogle Scholar
  31. 31.
    Gavrilov, L. A., and Gavrilova, N. S. (1991) The Biology of Life Span: A Quantitative Approach, Harwood Academic Publisher, N. Y.Google Scholar
  32. 32.
    Khalyavkin, A. V (2001) Influence of environment on the mortality pattern of potentially non-senescent organisms. General approach and comparison with real populations, Adv. Gerontol., 7, 46–49.Google Scholar
  33. 33.
    Shilovsky, G. A., Putyatina, T. S., Markov, A. V., and Skulachev, V. P. (2015) Contribution of quantitative methods of estimating mortality dynamics to explaining mechanisms of aging, Biochemistry (Moscow), 80, 1547–1559.CrossRefGoogle Scholar
  34. 34.
    Pincus, Z. (2016) Ageing: a stretch in time, Nature, 530, 37–38.PubMedCrossRefGoogle Scholar
  35. 35.
    Herndon, L. A., Schmeissner, P. J., Dudaronek, J. M., Brown, P. A., Listner, K. M., Sakano, Y., Paupard, M. C., Hall, D. H., and Driscoll, M. (2002) Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans, Nature, 419, 808–814.PubMedCrossRefGoogle Scholar
  36. 36.
    Pincus, Z., Smith-Vikos, T., and Slack, F. J. (2011) MicroRNA predictors of longevity in Caenorhabditis elegans, PLoS Genet., 7, e1002306.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Cox, D. R. (1972) Regression models and life-tables, J. Roy. Statist. Soc. Ser., 34, 187–202.Google Scholar
  38. 38.
    Collett, D. (2003) Modelling Survival Data in Medical Research, Vol. 2, CRC Press, Boca Raton.Google Scholar
  39. 39.
    Swindell, W. R. (2009) Accelerated failure time models provide a useful statistical framework for aging research, Exp. Gerontol., 44, 190–200.PubMedCrossRefGoogle Scholar
  40. 40.
    Swindell, W. R. (2016) Meta-analysis of 29 experiments evaluating the effects of rapamycin on life span in the laboratory mouse, J. Gerontol. A Biol. Sci. Med. Sci., doi: 10.1093/gerona/glw153 (2016).Google Scholar
  41. 41.
    Kappeler, L., De Magalhaes Filho, C., Dupont, J., Leneuve, P., Cervera, P., Perin, L., Loudes, C., Blaise, A., Klein, R., Epelbaum, J., Le Bouc, Y., and Holzenberger, M. (2008) Brain IGF-1 receptors control mammalian growth and lifespan tough a neuroendocrine mechanism, PLoS Biol., 6, e254.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Huang, C., Xiong, C., and Kornfeld, K. (2004) Measurements of age-related changes of physiological processes that predict lifespan of Caenorhabditis elegans, Proc. Natl. Acad. Sci. USA, 101, 8084–8089.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Hosono, R., Sato, Y., Aizawa, S. I., and Mitsui, Y. (1980) Age-dependent changes in mobility and separation of the nematode Caenorhabditis elegans, Exp. Gerontol., 15, 285–289.PubMedCrossRefGoogle Scholar
  44. 44.
    Dambroise, E., Monnier, L., Ruisheng, L., Aguilaniu, H., Joly, J. S., Tricoire, H., and Rera, M. (2016) Two phases of aging separated by the Smurf transition as a public path to death, Sci. Rep., 6, 23523.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Kennedy, B. K. (2008) The genetics of ageing: insight from genome-wide approaches in invertebrate model organisms, J. Intern. Med., 263, 142–152.PubMedCrossRefGoogle Scholar
  46. 46.
    Smith, E. D., Tsuchiya, M., Fox, L. A., Dang, N., Hu, D., Kerr, E. O., Johnston, E. D., Tchao, B. N., Pak, D. N., Welton, K. L., Promislow, D. E., Thomas, J. H., Kaeberlein, M., and Kennedy, B. K. (2008) Quantitative evidence for conserved longevity pathways between divergent eukaryotic species, Genome Res., 18, 564–570.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Murakami, H., Bessinger, K., Hellmann, J., and Murakami, S. (2005) Aging-dependent and -independent modulation of associative learning behavior by insulin/ insulin-like growth factor-1 signal in Caenorhabditis elegans, J. Neurosci., 25, 10894–10904.PubMedCrossRefGoogle Scholar
  48. 48.
    Lee, S. S., Lee, R. Y., Fraser, A. G., Kamath, R. S., Ainger, J., and Ruvkun, G. (2003) A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity, Nat. Genet., 33, 40–48.PubMedCrossRefGoogle Scholar
  49. 49.
    Houthoofd, K., Braeckman, B. P., Johnson, T. E., and Vanfleteren, J. R. (2003) Life extension via dietary restriction is independent of the Ins/IGF-1 signaling pathway in Caenorhabditis elegans, Exp. Gerontol., 38, 947–954.PubMedCrossRefGoogle Scholar
  50. 50.
    De Cuyper, C., and Vanfleteren, J. R. (1982) Oxygen consumption during development and aging of the nematode Caenorhabditis elegans, Comp. Biochem. Physiol., 73A, 283–289.CrossRefGoogle Scholar
  51. 51.
    Chen, J., Senturk, D., Wang, J. L., Muller, H. G., Carey, J. R., Caswell, H., and Caswell-Chen, E. P. (2007) A demographic analysis of the fitness cost of extended longevity in Caenorhabditis elegans, J. Gerontol. A. Biol. Sci. Med. Sci., 62, 126–135.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Lakowski, B., and Hekimi, S. (1998) The genetics of caloric restriction in Caenorhabditis elegans, Proc. Natl. Acad. Sci. USA, 95, 13091–13096.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Klass, M. R. (1977) Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span, Mech. Ageing Dev., 6, 413–429.PubMedCrossRefGoogle Scholar
  54. 54.
    Melov, S., Ravenscroft, J., Malik, S., Gill, M. S., Walker, D. W., Clayton, P. E., Wallace, D. C., Malfroy, B., Doctrow, S. R., and Lithgow, G. J. (2000) Extension of lifespan with superoxide dismutase/catalase mimetics, Science, 289, 1567–1569.PubMedCrossRefGoogle Scholar
  55. 55.
    Feng, J., Bussiere, F., and Hekimi, S. (2001) Mitochondrial electron transport is a key determinant of life span in Caenorhabditis elegans, Dev. Cell, 1, 633–644.PubMedCrossRefGoogle Scholar
  56. 56.
    Johnson, T. E., Wu, D., Tedesco, P., Dames, S., and Vaupel, J. W. (2001) Age-specific demographic profiles of longevity mutants in Caenorhabditis elegans show segmental effects, J. Gerontol. Biol. Sci., 56A, 331–339.CrossRefGoogle Scholar
  57. 57.
    Hsin, H., and Kenyon, C. (1999) Signals from the reproductive system regulate the lifespan of C. elegans, Nature, 399, 362–366.PubMedCrossRefGoogle Scholar
  58. 58.
    Evason, K., Huang, C., Yamben, I., Covey, D. F., and Kornfeld, K. (2005) Anticonvulsant medications extend worm life-span, Science, 307, 258–262.PubMedCrossRefGoogle Scholar
  59. 59.
    Yokoyama, K., Fukumoto, K., Murakami, T., Harada, S., Hosono, R., Wadhwa, R., Mitsui, Y., and Ohkuma, S. (2002) Extended longevity of Caenorhabditis elegans by knocking in extra copies of hsp70F, a homolog of mot-2 (mortalin)/mthsp70/Grp75, FEBS Lett., 516, 53–57.PubMedCrossRefGoogle Scholar
  60. 60.
    Henderson, S. T., Bonafe, M., and Johnson, T. E. (2006) Daf-16 protects the nematode Caenorhabditis elegans during food deprivation, J. Gerontol. A Biol. Sci. Med. Sci., 61, 444–460.PubMedCrossRefGoogle Scholar
  61. 61.
    Viswanathan, M., Kim, S. K., Berdichevsky, A., and Guarente, L. (2005) A role for SIR-2.1 regulation of ER stress response genes in determining C. elegans life span, Dev. Cell, 9, 605–615.PubMedCrossRefGoogle Scholar
  62. 62.
    Wood, J. G., Rogina, B., Lavu, S., Howitz, K., Helfand, S. L., Tatar, M., and Sinclair, D. (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans, Nature, 430, 686–698.PubMedCrossRefGoogle Scholar
  63. 63.
    Babar, P., Adamson, C., Walker, G. A., Walker, D. W., and Lithgow, G. J. (1999) P13-kinase inhibition induces dauer formation, thermotolerance and longevity in C. elegans, Neurobiol. Aging, 20, 513–519.PubMedCrossRefGoogle Scholar
  64. 64.
    Lin, K., Dorman, J. B., Rodan, A., and Kenyon, C. (1997) daf-16: an HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans, Science, 278, 1319–1322.PubMedCrossRefGoogle Scholar
  65. 65.
    Boehm, M., and Slack, F. (2005) A developmental timing microRNA and its target regulate life span in C. elegans, Science, 310, 1954–1957.PubMedCrossRefGoogle Scholar
  66. 66.
    Hsu, A. L., Murphy, C. T., and Kenyon, C. (2003) Regulation of aging and age-related disease by DAF-16 and heat-shock factor, Science, 300, 1142–1145.PubMedCrossRefGoogle Scholar
  67. 67.
    Uno, M., and Nishida, E. (2016) Lifespan-regulating genes in C. elegans, Aging Mech. Dis., 2, 16010.CrossRefGoogle Scholar
  68. 68.
    Friedman, D. B., and Johnson, T. E. (1988) Three mutants that extend both mean and maximum life span of the nematod, Caenorhabditis elegans, define the age-1 gene, J. Gerontol., 43, 102–109.CrossRefGoogle Scholar
  69. 69.
    Ogg, S., Paradis, S., Gottlieb, S., Patterson, G. I., Lee, L., Tissenbaum, H. A., and Ruvkun, G. (1997) The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans, Nature, 389, 994–999.PubMedCrossRefGoogle Scholar
  70. 70.
    Henderson, S. T., and Johnson, T. E. (2001) Daf-16 integrates developmental and environmental inputs to mediate aging in the nematode Caenorhabditis elegans, Curr. Biol., 11, 1975–1980.PubMedCrossRefGoogle Scholar
  71. 71.
    Murphy, C. T., McCarroll, S. A., Bargmann, C. I., Fraser, A., Kamath, R. S., Ainger, J., Li, H., and Kenyon, C. (2003) Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans, Nature, 424, 277–283.PubMedCrossRefGoogle Scholar
  72. 72.
    Shaw, W. M., Luo, S., Landis, J., Asaf, J., and Murphy, C. T. (2007) The C. elegans TGF-beta Dauer pathway regulates longevity via insulin signaling, Curr. Biol., 17, 1635–1645.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Li, W., Gao, B., Lee, S. M., Bennett, K., and Fang, D. (2007) RLE-1, an E3 ubiquitin ligase, regulates C. elegans aging by catalyzing DAF-16 polyubiquitination, Dev. Cell, 12, 235–246.PubMedCrossRefGoogle Scholar
  74. 74.
    Heimbucher, T., Liu, Z., Bossard, C., McCloskey, R., Carrano, A. C., Riedel, C. G., Tanasa, B., Klammt, C., Fonslow, B. R., Riera, C. E., Lillemeier, B. F., Kemphues, K., Yates, J. R., 3rd, O’Shea, C., Hunter, T., and Dillin, A. (2015) The deubiquitylase MATH-33 controls DAF-16 stability and function in metabolism and longevity, Cell Metab., 22, 151–163.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Tullet, J. M., Hertweck, M., An, J. H., Baker, J., Hwang, J. Y., Liu, S., Oliveira, R. P., Baumeister, R., and Blackwell, T. K. (2008) Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans, Cell, 132, 1025–1038.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Tepper, R. G., Asaf, J., Kaletsky, R., Kleemann, G., Murphy, C. T., and Bussemaker, H. J. (2013) PQM-1 complements DAF-16 as a key transcriptional regulator of DAF-2-mediated development and longevity, Cell, 154, 676–690.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Wolkow, C. A., Kimura, K. D., Lee, M. S., and Ruvkun, G. (2000) Regulation of C. elegans lifespan by insulin-like signaling in the nervous system, Science, 290, 147–150.PubMedCrossRefGoogle Scholar
  78. 78.
    Wullschleger, S., Loewith, R., and Hall, M. N. (2006) TOR signaling in growth and metabolism, Cell, 124, 471–484.PubMedCrossRefGoogle Scholar
  79. 79.
    Vellai, T., Takacs-Vellai, K., Zhang, Y., Kovacs, A. L., Orosz, L., and Muller, F. (2003) Genetics: influence of TOR kinase on lifespan in C. elegans, Nature, 426, 620–627.PubMedCrossRefGoogle Scholar
  80. 80.
    Chen, D., Li, P. W.-L., Goldstein, B. A., Goldstein, B. A., Cai, W., Thomas, E. L., Chen, F., Hubbard, A. E., Melov, S., and Kapahi, P. (2013) Germline signaling mediates the synergistically prolonged longevity produced by double mutations in daf-2 and rsks-1 in C. elegans, Cell Rep., 5, 1600–1610.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Berdichevsky, A., Viswanathan, M., Horvitz, H. R., and Guarente, L. (2006) C. elegans SIR-2.1 interacts with 14-3-3 proteins to activate DAF-16 and extend life span, Cell, 125, 1165–1177.PubMedCrossRefGoogle Scholar
  82. 82.
    Apfeld, J., O’Connor, G., McDonagh, T., DiStefano, P. S., and Curtis, R. (2004) The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans, Genes Dev., 18, 3004–3009.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Greer, E. L., Maures, T. J., Ucar, D., Hauswirth, A. G., Mancini, E., Lim, J. P., Benayoun, B. A., Shi, Y., and Brunet, A. (2011) Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans, Nature, 479, 365–371.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Jin, C., Li, J., Green, C. D., Yu, X., Tang, X., Han, D., Xian, B., Wang, D., Huang, X., Cao, X., Yan, Z., Hou, L., Liu, J., Shukeir, N., Khaitovich, P., Chen, C. D., Zhang, H., Jenuwein, T., and Han, J. D. (2011) Histone demethylase UTX-1 regulates C. elegans life span by targeting the insulin/IGF-1 signaling pathway, Cell Metab., 14, 161–172.PubMedCrossRefGoogle Scholar
  85. 85.
    Smith-Vikos, T., De Lencastre, A., Inukai, S., Shlomchik, M., Holtrup, B., and Slack, F. J. (2014) MicroRNAs mediate dietary-restriction-induced longevity tough PHA-4/FOXA and SKN-1/Nrf transcription factors, Curr. Biol., 24, 2238–2246.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Zhang, Y., Shao, Z., Zhai, Z., Shen, C., and Powell-Coffman, J. A. (2009) The HIF-1 hypoxia-inducible factor modulates lifespan in C. elegans, PLoS One, 4, e6348.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Leiser, S. F., Miller, H., Rossner, R., Rossner, R., Fletcher, M., Leonard, A., Primitivo, M., Rintala, N., Ramos, F. J., Miller, D. L., and Kaeberlein, M. (2015) Cell nonautonomous activation of flavin-containing monooxygenase promotes longevity and health span, Science, 350, 1375–1378.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Walker, G., Houthoofd, K., Vanfleteren, J. R., and Gems, D. (2005) Dietary restriction in C. elegans: from rate-of-living effects to nutrient sensing pathways, Mech. Ageing Dev., 126, 929–937.PubMedCrossRefGoogle Scholar
  89. 89.
    McColl, G., Rogers, A. N., Alavez, S., Hubbard, A. E., Melov, S., Link, C. D., Bush, A. I., Kapahi, P., and Lithgow, G. J. (2010) Insulin-like signaling determines survival during stress via posttranscriptional mechanisms in C. elegans, Cell Metab., 12, 260–272.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Oliveira, R. P., Porter Abate, J., Dilks, K., Landis, J., Asaf, J., Murphy, C. T., and Blackwell, T. K. (2009) Conditionadapted stress and longevity gene regulation by Caenorhabditis elegans SKN-1/Nrf, Aging Cell, 8, 524–541.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Kirstein, J., Morito, D., Kakihana, T., Sugihara, M., Minnen, A., Hipp, M. S., Nussbaum-Krammer, C., Kasturi, P., Hartl, F. U., Nagata, K., and Morimoto, R. I. (2015) Proteotoxic stress and ageing triggers the loss of redox homeostasis across cellular compartments, EMBO J., 34, 2334–2349.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Vilchez, D., Simic, M. S., and Dillin, A. (2014) Proteostasis and aging of stem cells, Trends Cell Biol., 24, 161–170.PubMedCrossRefGoogle Scholar
  93. 93.
    Atlan, H., Miquel, J., Helmle, L. C., and Dolkas, C. B. (1976) Thermodynamics of aging in Drosophila melanogaster, Mech. Ageing Dev., 5, 371–387.PubMedCrossRefGoogle Scholar
  94. 94.
    Markov, A. V., Naimark, E. B., and Yakovleva, E. U. (2016) Temporal scaling of age-dependent mortality: dynamics of aging in Caenorhabditis elegans is easy to speed up or slow down, but its overall trajectory is stable (Commentary to the paper by Stroustrup et al. (2016) Nature, 530, 103–107), Biochemistry (Moscow), 81, 1148–1155.CrossRefGoogle Scholar
  95. 95.
    Asgharian, H., Chang, P. L., Lysenkov, S., Scobeyeva, V. A., Reisen, W. K., and Nuzhdin, S. V. (2015) Evolutionary genomics of Culex pipiens: global and local adaptations associated with climate, life-history traits and antopogenic factors, Proc. Biol. Sci., 282, 20150728.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Akaike, A. (1974) A new look at the statistical model identification, IEEE Trans. Autom. Control., 19, 716–723.CrossRefGoogle Scholar
  97. 97.
    Gavrilova, N. S., Gavrilov, L. A., Severin, F. F., and Skulachev, V. P. (2012) Testing predictions of the programmed and stochastic theories of aging: comparison of variation in age at death, menopause, and sexual maturation, Biochemistry (Moscow), 77, 754–760.CrossRefGoogle Scholar
  98. 98.
    Austad, S. N. (2004) Is aging programmed? Aging Cell, 3, 249–251.PubMedCrossRefGoogle Scholar
  99. 99.
    Gladyshev, V. N. (2013) The origin of aging: imperfectness-driven non-random damage defines the aging process and control of lifespan, Trends Genet., 29, 506–512.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Mitnitski, A., and Rockwood, K. (2016) The rate of aging: the rate of deficit accumulation does not change over the adult life span, Biogerontology, 17, 199–204.PubMedCrossRefGoogle Scholar
  101. 101.
    Khokhlov, A. N. (2010) Does aging need an own program or the existing development program is more than enough, Russ. J. Gen. Chem., 80, 1507–1513.CrossRefGoogle Scholar
  102. 102.
    Blagosklonny, M. V. (2007) Program-like aging and mitochondria: instead of random damage by free radicals, J. Cell. Biochem., 102, 1389–1399.PubMedCrossRefGoogle Scholar
  103. 103.
    Goldsmith, T. C. (2008) Aging, evolvability, and the individual benefit requirement; medical implications of aging theory controversies, J. Theor. Biol., 252, 764–768.PubMedCrossRefGoogle Scholar
  104. 104.
    Libertini, G. (2008) Empirical evidence for various evolutionary hypotheses on species demonstrating increasing mortality with increasing chronological age in the wild, Sci. World J., 8, 182–193.CrossRefGoogle Scholar
  105. 105.
    Curtis, R., O’Connor, G., and DiStefano, P. S. (2006) Aging networks in Caenorhabditis elegans: AMP-activated protein kinase (aak-2) links multiple aging and metabolism pathways, Aging Cell, 5, 119–126.PubMedCrossRefGoogle Scholar
  106. 106.
    Jenkins, N. L., McColl, G., and Lithgow, G. J. (2004) Fitness cost of extended lifespan in Caenorhabditis elegans, Proc. Biol. Sci., 271, 2523–2526.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Fang, X., Seim, I., Huang, Z., Gerashchenko, M. V., Xiong, Z., Turanov, A. A., Zhu, Y., Lobanov, A. V., Fan, D, Yim, S. H., Yao, X., Ma, S., Yang, L., Lee, S. G., Kim, E. B., Bronson, R. T., Sumbera, R., Buffenstein, R., Zhou, X., Krogh, A., Park, T. J., Zhang, G., Wang, J., and Gladyshev, V. N. (2014) Adaptations to a subterranean environment and longevity revealed by the analysis of mole rat genomes, Cell. Rep., 8, 1354–1364.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • G. A. Shilovsky
    • 1
    • 2
  • T. S. Putyatina
    • 2
  • S. N. Lysenkov
    • 2
    • 3
  • V. V. Ashapkin
    • 1
  • O. S. Luchkina
    • 4
  • A. V. Markov
    • 2
  • V. P. Skulachev
    • 1
  1. 1.Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical BiologyMoscowRussia
  2. 2.Lomonosov Moscow State University, Faculty of BiologyMoscowRussia
  3. 3.Russian Clinical Research Center for GerontologyMoscowRussia
  4. 4.Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesMoscowRussia

Personalised recommendations