Biochemistry (Moscow)

, Volume 81, Issue 12, pp 1429–1437 | Cite as

Study of age-dependent structural and functional changes of mitochondria in skeletal muscles and heart of naked mole rats (Heterocephalus glaber)

  • S. HoltzeEmail author
  • C. M. Eldarov
  • V. B. Vays
  • I. M. Vangeli
  • M. Yu. VysokikhEmail author
  • L. E. BakeevaEmail author
  • V. P. Skulachev
  • T. B. Hildebrandt
Phenoptosis (Special Issue)


Morphometric analysis of mitochondria in skeletal muscles and heart of 6- and 60-month-old naked mole rats (Heterocephalus glaber) revealed a significant age-dependent increase in the total area of mitochondrial cross-sections in studied muscle fibers. For 6- and 60-month-old animals, these values were 4.8 ± 0.4 and 12.7 ± 1.8%, respectively. This effect is mainly based on an increase in the number of mitochondria. In 6-month-old naked mole rats, there were 0.23 ± 0.02 mitochondrial cross-sections per μm2 of muscle fiber, while in 60-month-old animals this value was 0.47 ± 0.03. The average area of a single mitochondrial cross-section also increased with age in skeletal muscles–from 0.21 ± 0.01 to 0.29 ± 0.03 μm2. Thus, naked mole rats show a drastic enlargement of the mitochondrial apparatus in skeletal muscles with age due to an increase in the number of mitochondria and their size. They possess a neotenic type of chondriome accompanied by specific features of mitochondrial functioning in the state of oxidative phosphorylation and a significant decrease in the level of matrix adenine nucleotides.

Key words

naked mole rat morphometry respiration aging ultrastructure mitochondria neoteny 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bennett, N. C., and Faulkes, C. G. (2000) The Evolution of Sociality in African Mole-Rats, Cambridge University Press, Cambridge, UK.Google Scholar
  2. 2.
    Bennett, N. C., and Faulkes, C. G. (2000) Social Organization in African Mole Rats, Cambridge University Press, Cambridge, UK.Google Scholar
  3. 3.
    Brett, R. A. (1991) The Population Structure of Naked Mole Rat Colonies, Princeton University Press, Princeton, NJ.Google Scholar
  4. 4.
    Buffenstein, R., Park, R., Hanes, M., and Antwohl, J. E. (2012) in The Laboratory Rabbit, Guinea Pig, Hamster, and Other Rodents (Suckow, M. A., Stevens, K. A., and Wilson, R. P., eds.) Elsevier, London, pp. 1055–1074.Google Scholar
  5. 5.
    Jarvis, J. U. (1981) Eusociality in a mammal: cooperative breeding in naked mole-rat colonies, Science, 212, 571–573.CrossRefPubMedGoogle Scholar
  6. 6.
    Sherman, P. W., Jarvis, J. U., and Alexander, R. D. (1991) The Biology of the Naked Mole-Rat, Princeton University Press, Princeton, NJ.Google Scholar
  7. 7.
    Lacey, E. A., Patton, J. L., and Cameron, G. N. (2000) Life Underground: The Biology of Subterranean Rodents, University of Chicago Press, Chicago, IL.Google Scholar
  8. 8.
    Delaney, M. A., Nagy, L., Kinsel, M. J., and Treuting, P. M. (2013) Spontaneous histologic lesions of the adult naked mole rat (Heterocephalus glaber): a retrospective survey of lesions in a zoo population, Vet. Pathol., 50, 607–621.CrossRefPubMedGoogle Scholar
  9. 9.
    Buffenstein, R. (2000) Ecological and Physiological Responses to Underground Habitats, University of Chicago Press, Chicago, IL.Google Scholar
  10. 10.
    Larson, J., and Park, T. J. (2009) Extreme hypoxia tolerance of naked mole rat brain, Neuroreport, 20, 1634–1637.CrossRefPubMedGoogle Scholar
  11. 11.
    Maina, J. N., Gebreegziabher, Y., Woodley, R., and Buffenstein, R. (2001) Effects of change in environmental temperature and natural shifts in carbon dioxide and oxygen concentrations on the lungs of captive naked mole rats (Heterocephalus glaber): a morphological and morphometric study, J. Zool., 253, 371–382.CrossRefGoogle Scholar
  12. 12.
    Park, T. J., Lu, Y., Juttner, R., Smith, E. S., Hu, J., Brand, A., Wetzel, C., Milenkovic, N., Erdmann, B., Heppenstall, P. A., Laurito, C. E., Wilson, S. P., and Lewin, G. R. (2008) Selective inflammatory pain insensitivity in the African naked mole rat (Heterocephalus glaber), PLoS Biol., 6, e13.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Buffenstein, R. (2008) Negligible senescence in the longest living rodent, the naked mole rat: insights from a successfully aging species, J. Comp. Physiol. B, 178, 439–445.CrossRefPubMedGoogle Scholar
  14. 14.
    Harman, D. (1956) Aging: a theory based on free radical and radiation chemistry, J. Gerontol., 11, 298–300.CrossRefPubMedGoogle Scholar
  15. 15.
    Lenaz, G. (2001) The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology, IUBMB Life, 52, 159–164.CrossRefPubMedGoogle Scholar
  16. 16.
    Andreyev, A. Yu., Kushnareva, Yu. E., and Starkov, A. A. (2005) Mitochondrial metabolism of reactive oxygen species, Biochemistry (Moscow), 70, 200–214.CrossRefGoogle Scholar
  17. 17.
    Honda, H. M., Korge, P., and Weiss, J. N. (2005) Mitochondria and ischemia/reperfusion injury, Ann. N. Y. Acad. Sci., 1047, 248–258.CrossRefPubMedGoogle Scholar
  18. 18.
    Zweier, J. L., and Talukder, M. A. (2006) The role of oxidants and free radicals in reperfusion injury, Cardiovasc. Res., 70, 181–190.CrossRefPubMedGoogle Scholar
  19. 19.
    Yellon, D. M., and Hausenloy, D. J. (2007) Myocardial reperfusion injury, N. Engl. J. Med., 357, 1121–1135.CrossRefPubMedGoogle Scholar
  20. 20.
    Eltzschig, H. K., and Eckle, T. (2011) Ischemia and reperfusion − from mechanism to translation, Nat. Med., 17, 1391–1401.CrossRefPubMedGoogle Scholar
  21. 21.
    Borutaite, V., Toleikis, A., and Brown, G. C. (2013) In the eye of the storm: mitochondrial damage during heart and brain ischemia, FEBS J., 280, 4999–5014.CrossRefPubMedGoogle Scholar
  22. 22.
    Chouchani, E. T., Pell, V. R., Gaude, E., Aksentijevic, D., Sundier, S. Y., Robb, E. L., Logan, A., Nadtochiy, S. M., Ord, E. N., Smith, A. C., Eyassu, F., Shirley, R., Hu, C. H., Dare, A. J., James, A. M., Rogatti, S., Hartley, R. C., Eaton, S., Costa, A. S., Brookes, P. S., Davidson, S. M., Duchen, M. R., Saeb-Parsy, K., Shattock, M. J., Robinson, A. J., Work, L. M., Frezza, C., Krieg, T., and Murphy, M. P. (2014) Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS, Nature, 515, 431–435.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Harman, D. (1972) The biologic clock: the mitochondria? J. Am. Geriatr. Soc., 20, 145–147.CrossRefPubMedGoogle Scholar
  24. 24.
    Miquel, J., Economos, A. C., Fleming, J., and Johnson, J. E. (1980) Mitochondrial role in cell aging, Exp. Gerontol., 15, 575–591.CrossRefPubMedGoogle Scholar
  25. 25.
    Skulachev, V. P. (1997) Aging is a specific biological function rather than the result of a disorder in complex living systems: biochemical evidence in support of Weismann’s hypothesis, Biochemistry (Moscow), 62, 1191–1195.Google Scholar
  26. 26.
    Skulachev, V. P. (1999) Phenoptosis: programmed death of an organism, Biochemistry (Moscow), 64, 1418–1426.Google Scholar
  27. 27.
    Skulachev, V. P. (2001) Phenomena of programmed death. Mitochondria, cells and organs: role of reactive oxygen species, Soros. Obraz. Zh., 7, 4–10.Google Scholar
  28. 28.
    Labinskyy, N., Csiszar, A., Orosz, Z., Smith, K., Rivera, A., Buffenstein, R., and Ungvari, Z. (2006) Comparison of endothelial function, O2 and H2O2 production, and vascular oxidative stress resistance between the longest-living rodent, the naked mole rat, and mice, Am. J. Physiol. Heart. Circ. Physiol., 291, H2698–2704.CrossRefPubMedGoogle Scholar
  29. 29.
    Lambert, A. J., Boysen, H. M., Buckingham, J. A., Yang, T., Podlutsky, A., Austad, S. N., Kunz, T. H., Buffenstein, R., and Brand, M. D. (2007) Low rates of hydrogen peroxide production by isolated heart mitochondria associate with long maximum lifespan in vertebrate homeotherms, Aging Cell, 65, 607–618.CrossRefGoogle Scholar
  30. 30.
    Csiszar, A., Labinskyy, N., Orosz, Z., Xiangmin, Z., Buffenstein, R., and Ungvari, Z. (2007) Vascular aging in the longest-living rodent, the naked mole rat, Am. J. Physiol. Heart. Circ. Physiol., 293, H919–927.CrossRefPubMedGoogle Scholar
  31. 31.
    Vays, V. B., Eldarov, C. M., Vangely, I. M., Kolosova, N. G., Bakeeva, L. E., and Skulachev, V. P. (2014) Antioxidant SkQ1 delays sarcopenia-associated damage of mitochondrial ultrastructure, Aging (Albany, NY), 6, 140–148.CrossRefGoogle Scholar
  32. 32.
    Carter, H. N., Chen, C. C. W., and Hood, D. A. (2015) Mitochondria, muscle health, and exercise with advancing age, Physiology, 30, 208–223.CrossRefPubMedGoogle Scholar
  33. 33.
    Del Campo, A., Jaimovich, E., and Tevy, M. F. (2016) Mitochondria in the aging muscles of flies and mice: new perspectives for old characters, Oxid. Med. Cell. Longev., 2016, 9057593.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Onyango, D. W., and Oduorokelo, D. (1993) Ultrastructural study of the testis of non-breeding naked mole-rat (Heterocephalus glaber Ruppell), Ann. Anat., 175, 447–452.CrossRefPubMedGoogle Scholar
  35. 35.
    Brovko, L., Romanova, N. A., and Ugarova, N. N. (1994) Bioluminescent assay of bacterial intracellular AMP, ADP, and ATP with the use of a coimmobilized three-enzyme reagent (adenylate kinase, pyruvate kinase, and firefly luciferase), Anal. Biochem., 220, 410–414.CrossRefPubMedGoogle Scholar
  36. 36.
    Reynolds, E. S. (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy, J. Cell Biol., 17, 208–212.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Bakeeva, L. E., Chentsov, Y. S., and Skulachev, V. P. (1981) Ontogenesis of mitochondrial reticulum in rat diaphragm muscle, Eur. J. Cell. Biol., 25, 175–181.PubMedGoogle Scholar
  38. 38.
    Bakeeva, L. E. (2015) Age-related changes in ultrastructure of mitochondria. Effect of SkQ1, Biochemistry (Moscow), 80, 1582–1588.CrossRefGoogle Scholar
  39. 39.
    Glagolev, A. A. (1941) Geometric Methods of Quantitative Analysis of Aggregates under the Microscope [in Russian], Gosgeolizdat, Moscow.Google Scholar
  40. 40.
    McCallister, B. D., and Brown, A. L. (1965) A quantitative study of myocardial mitochondria in experimental cardiac hypertrophy, Lab. Invest., 14, 692–700.PubMedGoogle Scholar
  41. 41.
    McCallister, L. P., and Page, E. (1973) Effects of thyroxin on ultrastructure of rat myocardial cells: a stereological study, J. Ultrastruct. Res., 42, 136–55.CrossRefPubMedGoogle Scholar
  42. 42.
    McCallister, L. P., Page, E., and Power, B. (1971) Stereological measurements of cardiac ultrastructures implicated in excitation–contraction coupling, Proc. Natl. Acad. Sci. USA, 68, 1465–1466.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Weibel, E. R. (1979) Stereological Methods. Vol. 1. Practical Methods for Biological Morphometry, Academic Press, London.Google Scholar
  44. 44.
    Sachs, H. G., Colgan, J. A., and Lazarus, M. L. (1977) Ultrastructure of the aging myocardium: a morphometric approach, Am. J. Anat., 150, 63–71.CrossRefPubMedGoogle Scholar
  45. 45.
    Frenzel, H., and Feimann, J. (1984) Age-dependent structural changes in the myocardium of rats. A quantitative light- and electron-microscopic study on the right and left chamber wall, Mech. Ageing Dev., 27, 29–41.CrossRefPubMedGoogle Scholar
  46. 46.
    Maina, J. N. (1988) Morphology and morphometry of the normal lung of the adult vervet monkey (Cercopithecus aethiops), Am. J. Anat., 183, 258–267.CrossRefPubMedGoogle Scholar
  47. 47.
    Maina, J. N. (2002) Some recent advances on the study and understanding of the functional design of the avian lung: morphological and morphometric perspectives, Biol. Rev. Camb. Philos. Soc., 77, 97–152.CrossRefPubMedGoogle Scholar
  48. 48.
    Maina, J. N., and King, A. S. (1987) A morphometric study of the lung of a Humboldt penguin (Sphenicus humboldti), Anat. Histol. Embryol., 16, 293–297.PubMedGoogle Scholar
  49. 49.
    Maina, J. N., and Nathaniel, C. (2001) A qualitative and quantitative study of the lung of an ostrich Struthio camelus, J. Exp. Biol., 204, 2313–2330.PubMedGoogle Scholar
  50. 50.
    Maina, J. N., and Van Gils, P. (2001) Morphometric characterization of the airway and vascular systems of the lung of the domestic pig Sus scrofa: comparison of the airway, arterial and venous systems, Comp. Biochem. Physiol. A Mol. Integr. Physiol., 130, 781–798.CrossRefPubMedGoogle Scholar
  51. 51.
    Aprille, J. R., and Asimakis, G. K. (1980) Postnatal-development of rat-liver mitochondria-state-3 respiration, adenine nucleotide translocase activity, and the net accumulation of adenine nucleotides, Arch. Biochem. Biophys., 201, 564–575.CrossRefPubMedGoogle Scholar
  52. 52.
    Korshunov, S. S., Skulachev, V. P., and Starkov, A. A. (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria, FEBS Lett., 416, 15–18.CrossRefPubMedGoogle Scholar
  53. 53.
    Marzetti, E., Hwang, J. C. Y., Lees, H. A., Wohlgemuth, S. E., Dupont-Versteegden, E. E., Carter, C. S., Bernabei, R., and Leeuwenburgha, C. (2010) Mitochondrial death effectors: relevance to sarcopenia and disuse muscle atrophy, Biochim. Biophys. Acta, 1800, 235–244.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Leibniz Institute for Zoo and Wildlife Research, Department of Reproduction ManagementBerlinGermany
  2. 2.Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical BiologyMoscowRussia

Personalised recommendations