Advertisement

Biochemistry (Moscow)

, Volume 81, Issue 11, pp 1384–1395 | Cite as

Study of immunomodulatory effects of extracellular HSP70 in a mouse model of allergic airway inflammation

  • M. A. Shevchenko
  • N. I. Troyanova
  • E. A. Servuli
  • E. L. Bolkhovitina
  • A. S. Fedorina
  • A. M. SapozhnikovEmail author
Molecular and Cellular Mechanisms of Inflammation (Special Issue) Guest Editors S. A. Nedospasov and D. V. Kuprash

Abstract

Immunostimulatory properties of extracellular heat shock proteins 70 kDa (HSP70) became interesting for investigators a long time ago. However, in recent years a series of works showing a significant relation of the immunostimulating effects of recombinant HSP70 to contamination of the protein samples with bacterial endotoxins (lipopolysaccharide, LPS) has been published. The authors showed that intensive elimination of LPS from the protein samples resulted in inversion of immunostimulating effects of HSP70 to immunosuppressive activity of the protein. Nevertheless, at present the conception of immunostimulating, proinflammatory action of extracellular HSP70 is the most common. In this work, we studied immunomodulatory effects of exogenous HSP70 in a mouse model of allergic inflammation of airways. We also analyzed the dynamics of the level of the extracellular pool of HSP70 in the site of inflammation. The results demonstrated a considerable content of extracellular HSP70 in bronchoalveolar lavages with dynamics reflecting the stages of development of the induced inflammation. Oropharyngeal injection of exogenous HSP70 in the acute phase of allergic inflammation of airways resulted in significant suppression of the inflammatory process, which conforms to published data demonstrating an immunosuppressive activity of the extracellular pool of HSP70.

Keywords

heat shock protein 70 kDa HSP70 airway allergic inflammation immunomodulatory effects 

Abbreviations

APC

antigen presenting cells

BAL

bronchoalveolar lavage

BSA

bovine serum albumin

EDTA

ethylenediaminetetraacetic acid

ELISA

enzyme-linked immunosorbent assay

EU

endotoxin units

FDA

USA Food and Drug Administration

FSC/SSC

forward small-angle light scattering/side light scattering

HSP70

heat shock protein 70 kDa

Ig

immunoglobulin

IL

interleukin

LPS

lipopolysaccharide

OVA

chicken egg albumin

OVA/OVA mice

mice with ovainduced allergic airway inflammation (ones that got ova both i.p. and o.p.)

PBS

phosphate buffered saline

Th2

T-helper type 2.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asea, A., Kraeft, S. K., Kurt-Jones, E. A., Stevenson, M. A., Chen, L. B., Finberg, R. W., Koo, G. C., and Calderwood, S. K. (2000) HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine, Nat. Med., 6, 435–442.PubMedGoogle Scholar
  2. 2.
    Quintana, F. J., and Cohen, I. R. (2005) Heat shock proteins as endogenous adjuvants in sterile and septic inflammation, J. Immunol., 175, 2777–2782.CrossRefPubMedGoogle Scholar
  3. 3.
    Borges, T. J., Wieten, L., Van Herwijnen, M. J., Broere, F., Van der Zee, R., Bonorino, C., and Van Eden, W. (2012) The anti-inflammatory mechanisms of Hsp70, Front. Immunol., 3, 95.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Stocki, P., and Dickinson, A. M. (2012) The immunosuppressive activity of heat shock protein 70, Autoimmune Dis., 2012, doi:10.1155/2012/617213.Google Scholar
  5. 5.
    Gao, B., and Tsan, M. F. (2003) Endotoxin contamination in recombinant human heat shock protein 70 (Hsp70) preparation is responsible for the induction of tumor necrosis factor alpha release by murine macrophages, J. Biol. Chem., 278, 174–179.CrossRefPubMedGoogle Scholar
  6. 6.
    Pockley, A. G., Muthana, M., and Calderwood, S. K. (2008) The dual immunoregulatory roles of stress proteins, Trends Biochem. Sci., 33, 71–79.CrossRefPubMedGoogle Scholar
  7. 7.
    Qu, B., Jia, Y., Liu, Y., Wang, H., and Ren, G. (2015) The detection and role of heat shock protein 70 in various nondisease conditions and disease conditions: a literature review, Cell Stress Chaperones, 20, 885–892.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Yang, M., Wu, T., Cheng, L., Wang, F., Wei, Q., and Tanguay, R. M. (2005) Plasma antibodies against heat shock protein 70 correlate with the incidence and severity of asthma in a Chinese population, Resp. Res., 6, 18.CrossRefGoogle Scholar
  9. 9.
    Shevchenko, M. A., Bolkhovitina, E. L., Servuli, E. A., and Sapozhnikov, A. M. (2013) Elimination of Aspergillus fumigatus conidia from the airways of mice with allergic airway inflammation, Resp. Res., 14, 78.CrossRefGoogle Scholar
  10. 10.
    Menoret, A. (2004) Purification of recombinant and endogenous HSP70s, Methods, 32, 7–12.CrossRefPubMedGoogle Scholar
  11. 11.
    Barrientos, L., Marin-Esteban, V., De Chaisemartin, L., Le-Moal, V. L., Sandre, C., Bianchini, E., Nicolas, V., Pallardy, M., and Chollet-Martin, S. (2013) An improved strategy to recover large fragments of functional human neutrophil extracellular traps, Front. Immunol., 4, doi: 10.3389/fimmu.2013.00166.Google Scholar
  12. 12.
    De Maio, A. (2011) Extracellular heat shock proteins, cellular export vesicles, and the Stress Observation System: a form of communication during injury, infection, and cell damage. It is never known how far a controversial finding will go! Dedicated to Ferruccio Ritossa, Cell Stress Chaperones, 16, 235–249.Google Scholar
  13. 13.
    Kusmartsev, S. A., Li, Y., and Chen, S. H. (2000) Gr-1+ myeloid cells derived from tumor-bearing mice inhibit primary T cell activation induced through CD3/CD28 costimulation, J. Immunol., 165, 779–785.CrossRefPubMedGoogle Scholar
  14. 14.
    Lambrecht, B. N., and Hammad, H. (2015) The immunology of asthma, Nat. Immunol., 16, 45–56.CrossRefPubMedGoogle Scholar
  15. 15.
    Troyanova, N. I., Postovskaya, A. M., Servuli, E. A., Sapozhnikov, A. M., and Shevchenko, M. A. (2015) Characteristics of acute and effector phase of allergic inflammation of the airways in order to select the parameters for the assessment of regulatory properties of HSP70, Russ. J. Immunol., 9, 328–330.Google Scholar
  16. 16.
    Lu, T., Kobayashi, S. D., Quinn, M. T., and Deleo, F. R. (2015) A NET outcome, Front. Immunol., 3, 365.Google Scholar
  17. 17.
    Kobayashi, Y. (2015) Neutrophil biology: an update, EXCLI J., 14, 220–227.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Dworski, R., Simon, H. U., Hoskins, A., and Yousefi, S. (2011) Eosinophil and neutrophil extracellular DNA traps in human allergic asthmatic airways, J. Allergy Clin. Immunol., 127, 1260–1266.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Mosca, T., Menezes, M. C., Silva, A. V., Stirbulov, R., and Forte, W. C. (2015) Chemotactic and phagocytic activity of blood neutrophils in allergic asthma, Immunol. Invest., 44, 509–520.CrossRefPubMedGoogle Scholar
  20. 20.
    Fox, S., Leitch, A. E., Duffin, R., Haslett, C., and Rossi, A. G. (2010) Neutrophil apoptosis: relevance to the innate immune response and inflammatory disease, J. Innate Immun., 2, 216–227.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Radauer, C., Bublin, M., Wagner, S., Mari, A., and Breiteneder, H. (2008) Allergens are distributed into few protein families and possess a restricted number of biochemical functions, J. Allergy Clin. Immunol., 121, 847852.CrossRefGoogle Scholar
  22. 22.
    Stavnezer, J. (1996) Immunoglobulin class switching, Curr. Opin. Immunol., 8, 199–205.CrossRefPubMedGoogle Scholar
  23. 23.
    Durrant, D. M., and Metzger, D. W. (2010) Emerging roles of T helper subsets in the pathogenesis of asthma, Immunol. Invest., 39, 526–549.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Idzko, M., Hammad, H., Van Nimwegen, M., Kool, M., Willart, M. A., Muskens, F., Hoogsteden, H. C., Luttmann, W., Ferrari, D., Di Virgilio, F., Virchow, J. C., and Lambrecht, B. N. (2007) Extracellular ATP triggers and maintains asthmatic airway inflammation by activating dendritic cells, Nat. Med., 13, 913–919.CrossRefPubMedGoogle Scholar
  25. 25.
    Srivastava, P. (2002) Roles of heat-shock proteins in innate and adaptive immunity, Nat. Rev. Immunol., 2, 185–194.CrossRefPubMedGoogle Scholar
  26. 26.
    Collins, L. M., Thomas, A. T., Connor, J., and Nolan, Y. M. (2012) Contributions of central and systemic inflammation to the pathophysiology of Parkinson’s disease, Neuropharmacology, 62, 2154–2168.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • M. A. Shevchenko
    • 1
  • N. I. Troyanova
    • 1
  • E. A. Servuli
    • 1
  • E. L. Bolkhovitina
    • 1
  • A. S. Fedorina
    • 1
  • A. M. Sapozhnikov
    • 1
    • 2
    Email author
  1. 1.Shemyakin–Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations