Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

  • Molecular and Cellular Mechanisms of Inflammation (Special Issue) Guest Editors S. A. Nedospasov and D. V. Kuprash
  • Published:

Recombinant MHC tetramers for isolation of virus-specific CD8+ cells from healthy donors: Potential approach for cell therapy of posttransplant cytomegalovirus infection


Patients undergoing allogeneic hematopoietic stem cell transplantation have a high risk of cytomegalovirus reactivation, which in the absence of T-cell immunity can result in the development of an acute inflammatory reaction and damage of internal organs. Transfusion of the virus-specific donor T-lymphocytes represents an alternative to a highly toxic and often ineffective antiviral therapy. Potentially promising cell therapy approach comprises transfusion of cytotoxic T-lymphocytes, specific to the viral antigens, immediately after their isolation from the donor’s blood circulation without any in vitro expansion. Specific T-cells could be separated from potentially alloreactive lymphocytes using recombinant major histocompatibility complex (MHC) multimers, carrying synthetic viral peptides. Rapid transfusion of virus-specific T-cells to patients has several crucial advantages in comparison with methods based on the in vitro expansion of the cells. About 30% of hematopoietic stem cell donors and 46% of transplant recipients at the National Research Center for Hematology were carriers of the HLA-A*02 allele. Moreover, 94% of Russian donors have an immune response against the cytomegalovirus (CMV). Using recombinant HLA-A*02 multimers carrying an immunodominant cytomegalovirus peptide (NLV), we have shown that the majority of healthy donors have pronounced T-cell immunity against this antigen, whereas shortly after the transplantation the patients do not have specific T-lymphocytes. The donor cells have the immune phenotype of memory cells and can be activated and proliferate after stimulation with the specific antigen. Donor lymphocytes can be substantially enriched to significant purity by magnetic separation with recombinant MHC multimers and are not activated upon cocultivation with the antigen-presenting cells from HLA-incompatible donors without addition of the specific antigen. This study demonstrated that strong immune response to CMV of healthy donors and prevalence of HLA-A*02 allele in the Russian population make it possible to isolate a significant number of virus-specific cells using HLA-A*02–NLV multimers. After the transfusion, these cells should protect patients from CMV without development of allogeneic immune response.

This is a preview of subscription content, log in to check access.



allogeneic hematopoietic stem cell transplantation






carboxyfluorescein succinimidyl ester


“graft-versus-host” disease


hematopoietic stem cells




major histocompatibility complex


immunodominant peptide of cytomegalovirus (NLVPMVATV)




side-scattered light


tumor necrosis factor


  1. 1.

    Vilibic-Cavlek, T., Kolaric, B., Ljubin-Sternak, S., Kos, M., Kaic, B., and Mlinaric-Galinovic, G. (2015) Prevalence and dynamics of cytomegalovirus infection among patients undergoing chronic hemodialysis, Indian J. Nephrol., 25, 95–98.

  2. 2.

    Zebrun, A. B., Kuliasheva, L. B., Ermolenko, K. D., and Zakrevskaia, A. V. (2013) Spread of herpesvirus infections in children and adults in St. Petersburg according to seroepidemiologic study data, Zh. Mikrobiol. Epidemiol. Immunobiol., 6, 30–36.

  3. 3.

    Compton, T., Kurt-Jones, E. A., Boehme, K. W., Belko, J., Latz, E., Golenbock, D. T., and Finberg, R. W. (2003) Human cytomegalovirus activates inflammatory cytokine responses via CD14 and Toll-like receptor 2, J. Virol., 77, 4588–4596.

  4. 4.

    Humar, A., St Louis, P., Mazzulli, T., McGeer, A., Lipton, J., Messner, H., and MacDonald, K. S. (1999) Elevated serum cytokines are associated with cytomegalovirus infection and disease in bone marrow transplant recipients, J. Infect. Dis., 179, 484–488.

  5. 5.

    Barry, S. M., Johnson, M. A., and Janossy, G. (2000) Cytopathology or immunopathology? The puzzle of cytomegalovirus pneumonitis revisited, Bone Marrow Transplant., 26, 591–597.

  6. 6.

    Efimov, G. A., Vdovin, A. S., Grigor’ ev, A. A., Filkin, S. Y., Bykova, N. A., and Savchenko, V. G. (2015) Immunobiology of acute reaction “graft-versus-host”, Med. Immunol., 17, 499–516.

  7. 7.

    Varani, S., and Landini, M. P. (2011) Cytomegalovirusinduced immunopathology and its clinical consequences, Herpesviridae, 2, 6.

  8. 8.

    Ariza-Heredia, E. J., Nesher, L., and Chemaly, R. F. (2014) Cytomegalovirus diseases after hematopoietic stem cell transplantation: a mini-review, Cancer Lett., 342, 1–8.

  9. 9.

    Meijer, E., Boland, G. J., and Verdonck, L. F. (2003) Prevention of cytomegalovirus disease in recipients of allogeneic stem cell transplants, Clin. Microbiol. Rev., 16, 647657.

  10. 10.

    Bykova, N. A., Malko, D. B., Vdovin, A. S., and Efimov, G. A. (2016) In silico analysis of immunogenic potential of one-nucleotide polimorphism at the fully HLA-compatible transplantation, Ros. Immunol. Zh., 10, 38–48.

  11. 11.

    Kryuchkov, N. A., and Khaitov, M. R. (2008) Detection of antigen-specific populations of T-cells using MHC-peptide tetramers, Immunologiya, 29, 187–190.

  12. 12.

    Karpenko, L. I., Mechetina, L. V., and Reguzova, A. Iu. (2011) MHC-multimers and their application in studies of antiviral immune response, Zh. Mikrobiol. Epidemiol. Immunobiol., 2, 112–119.

  13. 13.

    Riddell, S. R., Watanabe, K. S., Goodrich, J. M., Li, C. R., Agha, M. E., and Greenberg, P. D. (1992) Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T-cell clones, Science, 257, 238–241.

  14. 14.

    Rooney, C. M., Smith, C. A., Ng, C. Y., Loftin, S., Li, C., Krance, R. A., Brenner, M. K., and Heslop, H. E. (1995) Use of gene-modified virus-specific T lymphocytes to control Epstein–Barr-virus-related lymphoproliferation, Lancet, 345, 9–13.

  15. 15.

    Leen, A. M., Bollard, C. M., Mendizabal, A. M., Shpall, E. J., Szabolcs, P., Antin, J. H., Kapoor, N., Pai, S. Y., Rowley, S. D., Kebriaei, P., Dey, B. R., Grilley, B. J., Gee, A. P., Brenner, M. K., Rooney, C. M., and Heslop, H. E. (2013) Multicenter study of banked third-party virusspecific T-cells to treat severe viral infections after hematopoietic stem cell transplantation, Blood, 121, 51135123.

  16. 16.

    Peggs, K. S., Thomson, K., Samuel, E., Dyer, G., Armoogum, J., Chakraverty, R., Pang, K., Mackinnon, S., and Lowdell, M. W. (2011) Directly selected cytomegalovirus-reactive donor T cells confer rapid and safe systemic reconstitution of virus-specific immunity following stem cell transplantation, Clin. Infect. Dis., 52, 4957.

  17. 17.

    Bao, L., Cowan, M. J., Dunham, K., Horn, B., McGuirk, J., Gilman, A., and Lucas, K. G. (2012) Adoptive immunotherapy with CMV-specific cytotoxic T-lymphocytes for stem cell transplant patients with refractory CMV infections, J. Immunother., 35, 293–298.

  18. 18.

    O’Reilly, R. J., Prockop, S., Hasan, A. N., Koehne, G., and Doubrovina, E. (2016) Virus-specific T-cell banks for “off the shelf” adoptive therapy of refractory infections, Bone Marrow Transplant., doi: 10.1038/bmt.2016.17.

  19. 19.

    McGoldrick, S. M., Bleakley, M. E., Guerrero, A., Turtle, C. J., Yamamoto, T. N., Pereira, S. E., Delaney, C. S., and Riddell, S. R. (2013) Cytomegalovirus-specific T cells are primed early after cord blood transplant but fail to control virus in vivo, Blood, 121, 2796–2803.

  20. 20.

    Ljungman, P., Hakki, M., and Boeckh, M. (2011) Cytomegalovirus in hematopoietic stem cell transplant recipients, Hematol. Oncol. Clin. North Am., 25, 151–169.

  21. 21.

    Gratama, J. W., Van Esser, J. W., Lamers, C. H., Tournay, C., Lowenberg, B., Bolhuis, R. L., and Cornelissen, J. J. (2001) Tetramer-based quantification of cytomegalovirus (CMV)-specific CD8+ T-lymphocytes in T-cell-depleted stem cell grafts and after transplantation may identify patients at risk for progressive CMV infection, Blood, 98, 1358–1364.

  22. 22.

    Nunes, J. M., Buhler, S., Roessli, D., Sanchez-Mazas, A., and HLA-net 2013 collaboration (2014) The HLA-net Gene[rate] pipeline for effective HLA data analysis and its application to 145 population samples from Europe and neighbouring areas, Tissue Antigens, 83, 307–323.

  23. 23.

    Hebart, H., Rauser, G., Stevanovic, S., Haenle, C., Nussbaum, A. K., Meisner, C., Bissinger, A. L., Tenzer, S., Jahn, G., Loeffler, J., Rammensee, H. G., Schild, H., and Einsele, H. (2003) A CTL epitope from human cytomegalovirus IE1 defined by combining prediction of HLA binding and proteasomal processing is the target of dominant immune responses in patients after allogeneic stem cell transplantation, Exp. Hematol., 31, 966–973.

  24. 24.

    Cobbold, M., Khan, N., Pourgheysari, B., Tauro, S., McDonald, D., Osman, H., Assenmacher, M., Billingham, L., Steward, C., Crawley, C., Olavarria, E., Goldman, J., Chakraverty, R., Mahendra, P., Craddock, C., and Moss, P. A. (2005) Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-pepti De tetramers, J. Exp. Med., 202, 379–386.

  25. 25.

    Ramirez, N., and Olavarria, E. (2013) Viral-specific adoptive immunotherapy after allo-SCT: the role of multimerbased selection strategies, Bone Marrow Transplant., 48, 1265–1270.

  26. 26.

    Casalegno-Garduno, R., Schmitt, A., Yao, J., Wang, X., Xu, X., Freund, M., and Schmitt, M. (2010) Multimer technologies for detection and adoptive transfer of antigenspecific T-cells, Cancer Immunol. Immunother., 59, 195202.

  27. 27.

    Yee, C. (2003) Adoptive T-cell therapy–immune monitoring and MHC multimers, Clin. Immunol., 106, 5–9.

  28. 28.

    Stemberger, C., Graef, P., Odendahl, M., Albrecht, J., Dossinger, G., Anderl, F., Buchholz, V. R., Gasteiger, G., Schiemann, M., Grigoleit, G. U., Schuster, F. R., Borkhardt, A., Versluys, B., Tonn, T., Seifried, E., Einsele, H., Germeroth, L., Busch, D. H., and Neuenhahn, M. (2014) Lowest numbers of primary CD8+ T-cells can reconstitute protective immunity upon adoptive immunotherapy, Blood, 124, 628–637.

  29. 29.

    Garboczi, D. N., Hung, D. T., and Wiley, D. C. (1992) HLA-A2-peptide complexes: refolding and crystallization of molecules expressed in Escherichia coli and complexed with single antigenic peptides, Proc. Natl. Acad. Sci. USA, 89, 3429–3433.

  30. 30.

    Rodenko, B., Toebes, M., Hadrup, S. R., Van Esch, W. J., Molenaar, A. M., Schumacher, T. N., and Ovaa, H. (2006) Generation of peptide-MHC class I complexes through UV-mediated ligand exchange, Nat. Protoc., 1, 1120–1132.

  31. 31.

    Excoffier, L., and Lischer, H. E. (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows, Mol. Ecol. Res., 10, 564–567.

  32. 32.

    Uhlin, M., Gertow, J., Uzunel, M., Okas, M., Berglund, S., Watz, E., Brune, M., Ljungman, P., Maeurer, M., and Mattsson, J. (2012) Rapid salvage treatment with virus-specific T-cells for therapy-resistant disease, Clin. Infect. Dis., 55, 1064–1073.

  33. 33.

    Uhlin, M., Okas, M., Gertow, J., Uzunel, M., Brismar, T. B., and Mattsson, J. (2010) A novel haplo-identical adoptive CTL therapy as a treatment for EBV-associated lymphoma after stem cell transplantation, Cancer Immunol. Immunother., 59, 473–477.

  34. 34.

    Mahnke, Y. D., Brodie, T. M., Sallusto, F., Roederer, M., and Lugli, E. (2013) The who’s who of T-cell differentiation: human memory T-cell subsets, Eur. J. Immunol., 43, 2797–2809.

  35. 35.

    Amir, A. L., D’Orsogna, L. J., Roelen, D. L., Van Loenen, M. M., Hagedoorn, R. S., De Boer, R., Van der Hoorn, M. A., Kester, M. G., Doxiadis, I. I., Falkenburg, J. H., Claas, F. H., and Heemskerk, M. H. (2010) Allo-HLA reactivity of virusspecific memory T-cells is common, Blood, 115, 3146–3157.

  36. 36.

    Nguyen, T. H., Rowntree, L. C., Pellicci, D. G., Bird, N. L., Handel, A., Kjer-Nielsen, L., Kedzierska, K., Kotsimbos, T. C., and Mifsud, N. A. (2014) Recognition of distinct cross-reactive virus-specific CD8+ T-cells reveals a unique TCR signature in a clinical setting, J. Immunol., 192, 5039–5049.

Download references

Author information

Correspondence to G. A. Efimov.

Additional information

Original Russian Text © A. S. Vdovin, S. Y. Filkin, P. R. Yefimova, S. A. Sheetikov, N. M. Kapranov, Y. O. Davydova, E. S. Egorov, E. G. Khamaganova, M. Y. Drokov, L. A. Kuzmina, E. N. Parovichnikova, G. A. Efimov, V. G. Savchenko, 2016, published in Biokhimiya, 2016, Vol. 81, No. 11, pp. 1628–1642.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vdovin, A.S., Filkin, S.Y., Yefimova, P.R. et al. Recombinant MHC tetramers for isolation of virus-specific CD8+ cells from healthy donors: Potential approach for cell therapy of posttransplant cytomegalovirus infection. Biochemistry Moscow 81, 1371–1383 (2016).

Download citation


  • cytomegalovirus
  • cell therapy
  • adoptive transfer
  • allogeneic hematopoietic stem cell transplantation
  • MHC multimers