Biochemistry (Moscow)

, Volume 81, Issue 11, pp 1358–1370 | Cite as

The role of cytokines in the development of atherosclerosis

  • A. R. Fatkhullina
  • I. O. Peshkova
  • E. K. KoltsovaEmail author


Atherosclerosis contributes to the development of many cardiovascular diseases, which remain the leading cause of death in developed countries. Atherosclerosis is a chronic inflammatory disease of large and medium-sized arteries. It is caused by dyslipidemia and mediated by both innate and adaptive immune responses. Inflammation is a key factor at all stages of atherosclerosis progression. Cells involved in pathogenesis of atherosclerosis were shown to be activated by soluble factors, cytokines, that strongly influence the disease development. Pro-inflammatory cytokines accelerate atherosclerosis progression, while anti-inflammatory cytokines ameliorate the disease. In this review, we discuss the latest findings on the role of cytokines in the development and progression of atherosclerosis.


cardiovascular diseases atherosclerosis inflammation immune cells adhesion molecules cytokines 



apolipoprotein E


cardiovascular diseases


granulocyte colony-stimulating factor


intercellular adhesion molecule 1






innate lymphoid cells


lowdensity lipoproteins

MCP-1 (CCL2)

monocyte chemoattractant protein-1

NK cells

natural killer cells


oxidized low-density lipoproteins


smooth muscle cells


suppressor of cytokine signaling


transforming growth factor beta

Th cells

T helper cells


toll-like receptor


tumor necrosis factor-alpha

Treg cells

regulatory T cells


vascular adhesion molecule 1


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pagidipati, N. J., and Gaziano, T. A. (2013) Estimating deaths from cardiovascular disease: a review of global methodologies of mortality measurement, Circulation, 127, 749–756.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Dahlof, B. (2010) Cardiovascular disease risk factors: epidemiology and risk assessment, Am. J. Cardiol., 105, 3A9A.CrossRefGoogle Scholar
  3. 3.
    Nagornev, V. A., and Ketlinsky, S. A. (2009) Humoral and cell immunity against atherosclerosis: the possibility of vaccine development, Med. Akad. Zh., 9, 2–15.Google Scholar
  4. 4.
    Galkina, E., Kadl, A., Sanders, J., Varughese, D., Sarembock, I. J., and Ley, K. (2006) Lymphocyte recruitment into the aortic wall before and during development of atherosclerosis is partially L-selectin dependent, J. Exp. Med., 203, 1273–1282.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Galkina, E., and Ley, K. (2009) Immune and inflammatory mechanisms of atherosclerosis, Annu. Rev. Immunol., 27, 165–197.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Perdiguero, G. E., Klapproth, K., Schulz, C., Busch, K., Azzoni, E. L., Crozet, L., Garner, H., Trouillet, C., De Bruijn, M. F., Geissmann, F., and Rodewald, H. R. (2015) Tissue-resident macrophages originate from yolk-sacderived erythro-myeloid progenitors, Nature, 518, 547–551.CrossRefGoogle Scholar
  7. 7.
    Swirski, F. K. (2014) Monocyte recruitment and macrophage proliferation in atherosclerosis, Kardiol. Pol., 72, 311–314.PubMedCrossRefGoogle Scholar
  8. 8.
    Ensan, S., Li, A., Besla, R., Degousee, N. J., Cosme, J., Roufaiel, M., Shikatani, E. A., El-Maklizi, M., Williams, J. W., Robins, L., Li, C., Lewis, B., Yun, T. J., Lee, J. S., Wieghofer, P., Khattar, R., Farrokhi, K., Byrne, J., Ouzounian, M., Zavitz, C. C., Levy, G. A., Bauer, C. M., Libby, P., Husain, M., Swirski, F. K., Cheong, C., Prinz, M., Hilgendorf, I., Randolph, G. J., Epelman, S., Gramolini, A. O., Cybulsky, M. I., Rubin, B. B., and Robbins, C. S. (2016) Self-renewing resident arterial macrophages arise from embryonic CX3CR1(+) precursors and circulating monocytes immediately after birth, Nat. Immunol., 17, 159–168.PubMedCrossRefGoogle Scholar
  9. 9.
    Ye, Y. X., Calcagno, C., Binderup, T., Courties, G., Keliher, E. J., Wojtkiewicz, G. R., Iwamoto, Y., Tang, J., PerezMedina, C., Mani, V., Ishino, S., Johnbeck, C. B., Knigge, U., Fayad, Z. A., Libby, P., Weissleder, R., Tawakol, A., Dubey, S., Belanger, A. P., Di Carli, M. F., Swirski, F. K., Kjaer, A., Mulder, W. J., and Nahrendorf, M. (2015) Imaging macrophage and hematopoietic progenitor proliferation in atherosclerosis, Circ. Res., 117, 835–845.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Warnatsch, A., Ioannou, M., Wang, Q., and Papayannopoulos, V. (2015) Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis, Science, 349, 316–320.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Koltsova, E. K., Hedrick, C. C., and Ley, K. (2013) Myeloid cells in atherosclerosis: a delicate balance of antiinflammatory and proinflammatory mechanisms, Curr. Opin. Lipidol., 24, 371–380.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Doring, Y., Drechsler, M., Soehnlein, O., and Weber, C. (2015) Neutrophils in atherosclerosis: from mice to man, Arterioscler. Thromb. Vasc. Biol., 35, 288–295.PubMedCrossRefGoogle Scholar
  13. 13.
    Binder, C. J., Shaw, P. X., Chang, M. K., Boullier, A., Hartvigsen, K., Horkko, S., Miller, Y. I., Woelkers, D. A., Corr, M., and Witztum, J. L. (2005) The role of natural antibodies in atherogenesis, J. Lipid Res., 46, 1353–1363.PubMedCrossRefGoogle Scholar
  14. 14.
    Tabas, I., Garcia-Cardena, G., and Owens, G. K. (2015) Recent insights into the cellular biology of atherosclerosis, J. Cell Biol., 209, 13–22.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Hansson, G. K., Libby, P., and Tabas, I. (2015) Inflammation and plaque vulnerability, J. Intern. Med., 278, 483–493.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Ait-Oufella, H., Taleb, S., Mallat, Z., and Tedgui, A. (2011) Recent advances on the role of cytokines in atherosclerosis, Arterioscler. Thromb. Vasc. Biol., 31, 969–979.PubMedCrossRefGoogle Scholar
  17. 17.
    Szmitko, P. E., Wang, C. H., Weisel, R. D., De Almeida, J. R., Anderson, T. J., and Verma, S. (2003) New markers of inflammation and endothelial cell activation: Part I, Circulation, 108, 1917–1923.PubMedCrossRefGoogle Scholar
  18. 18.
    Mallat, Z., Taleb, S., Ait-Oufella, H., and Tedgui, A. (2009) The role of adaptive T cell immunity in atherosclerosis, J. Lipid Res., 50, 364–369.CrossRefGoogle Scholar
  19. 19.
    Taleb, S., Tedgui, A., and Mallat, Z. (2015) IL-17 and Th17 cells in atherosclerosis: subtle and contextual roles, Arterioscler. Thromb. Vasc. Biol., 35, 258–264.PubMedCrossRefGoogle Scholar
  20. 20.
    Ranjbaran, H., Sokol, S. I., Gallo, A., Eid, R. E., Iakimov, A. O., D’Alessio, A., Kapoor, J. R., Akhtar, S., Howes, C. J., Aslan, M., Pfau, S., Pober, J. S., and Tellides, G. (2007) An inflammatory pathway of IFN-gamma production in coronary atherosclerosis, J. Immunol., 178, 592–604.PubMedCrossRefGoogle Scholar
  21. 21.
    Young, J. L., Libby, P., and Schonbeck, U. (2002) Cytokines in the pathogenesis of atherosclerosis, Thromb. Haemost., 88, 554–567.PubMedGoogle Scholar
  22. 22.
    Koltsova, E. K., Garcia, Z., Chodaczek, G., Landau, M., McArdle, S., Scott, S. R., von Vietinghoff, S., Galkina, E., Miller, Y. I., Acton, S. T., and Ley, K. (2012) Dynamic T cell-APC interactions sustain chronic inflammation in atherosclerosis, J. Clin. Invest., 122, 3114–3126.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Whitman, S. C., Ravisankar, P., and Daugherty, A. (2002) IFN-gamma deficiency exerts gender-specific effects on atherogenesis in apolipoprotein E–/–mice, J. Interferon Cytokine Res., 22, 661–670.PubMedCrossRefGoogle Scholar
  24. 24.
    Harvey, E. J., and Ramji, D. P. (2005) Interferon-gamma and atherosclerosis: proor anti-atherogenic, Cardiovasc. Res., 67, 11–20.PubMedCrossRefGoogle Scholar
  25. 25.
    Wuttge, D. M., Zhou, X., Sheikine, Y., Wagsater, D., Stemme, V., Hedin, U., Stemme, S., Hansson, G. K., and Sirsjo, A. (2004) CXCL16/SR-PSOX is an interferongamma-regulated chemokine and scavenger receptor expressed in atherosclerotic lesions, Arterioscler. Thromb. Vasc. Biol., 24, 750–755.PubMedCrossRefGoogle Scholar
  26. 26.
    Gupta, S., Pablo, A. M., Jiang, X., Wang, N., Tall, A. R., and Schindler, C. (1997) IFN-gamma potentiates atherosclerosis in ApoE knock-out mice, J. Clin. Invest., 99, 2752–2761.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Whitman, S. C., Ravisankar, P., Elam, H., and Daugherty, A. (2000) Exogenous interferon-gamma enhances atherosclerosis in apolipoprotein E–/–mice, Am. J. Pathol., 157, 1819–1824.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Koga, M., Kai, H., Yasukawa, Yamamoto, T., Kawai, Y., Kato, S., Kusaba, K., Kai, M., Egashira, K., Kataoka, Y., and Imaizumi, T. (2007) Inhibition of progression and stabilization of plaques by postnatal interferon-gamma function blocking in ApoE-knockout mice, Circ. Res., 101, 348356.CrossRefGoogle Scholar
  29. 29.
    Kalliolias, G. D., and Ivashkiv, L. B. (2016) TNF biology, pathogenic mechanisms and emerging therapeutic strategies, Nat. Rev. Rheumatol., 12, 49–62.PubMedCrossRefGoogle Scholar
  30. 30.
    Canault, M., Peiretti, F., Poggi, M., Mueller, C., Kopp, F., Bonardo, B., Bastelica, D., Nicolay, A., Alessi, M. C., and Nalbone, G. (2008) Progression of atherosclerosis in ApoE-deficient mice that express distinct molecular forms of TNF-alpha, J. Pathol., 214, 574–583.PubMedCrossRefGoogle Scholar
  31. 31.
    Ohta, H., Wada, H., Niwa, T., Kirii, H., Iwamoto, N., Fujii, H., Saito, K., Sekikawa, K., and Seishima, M. (2005) Disruption of tumor necrosis factor-alpha gene diminishes the development of atherosclerosis in ApoE-deficient mice, Atherosclerosis, 180, 11–17.PubMedCrossRefGoogle Scholar
  32. 32.
    Jacobsson, L. T., Turesson, C., Gulfe, A., Kapetanovic, M. C., Petersson, I. F., Saxne, T., and Geborek, P. (2005) Treatment with tumor necrosis factor blockers is associated with a lower incidence of first cardiovascular events in patients with rheumatoid arthritis, J. Rheumatol., 32, 12131218.Google Scholar
  33. 33.
    Huber, S. A., Sakkinen, P., David, C., Newell, M. K., and Tracy, R. P. (2001) T helper-cell phenotype regulates atherosclerosis in mice under conditions of mild hypercholesterolemia, Circulation, 103, 2610–2616.PubMedCrossRefGoogle Scholar
  34. 34.
    King, V. L., Cassis, L. A., and Daugherty, A. (2007) Interleukin-4 does not influence development of hypercholesterolemia or angiotensin II-induced atherosclerotic lesions in mice, Am. J. Pathol., 171, 2040–2047.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Thornhill, M. H., Kyan-Aung, U., and Haskard, D. O. (1990) IL-4 increases human endothelial cell adhesiveness for T-cells but not for neutrophils, J. Immunol., 144, 30603065.Google Scholar
  36. 36.
    Lee, Y. W., Kuhn, H., Hennig, B., and Toborek, M. (2000) IL-4 induces apoptosis of endothelial cells through the caspase-3-dependent pathway, FEBS Lett., 485, 122–126.PubMedCrossRefGoogle Scholar
  37. 37.
    Binder, C. J., Hartvigsen, K., Chang, M. K., Miller, M., Broide, D., Palinski, W., Curtiss, M., Corr, L. K., and Witztum, J. L. (2004) IL-5 links adaptive and natural immunity specific for epitopes of oxidized LDL and protects from atherosclerosis, J. Clin. Invest., 114, 427437.CrossRefGoogle Scholar
  38. 38.
    Cardilo-Reis, L., Gruber, S., Schreier, S. M., Drechsler, M., Papac-Milicevic, N., Weber, C., Wagner, O., Stangl, H., Soehnlein, O., and Binder, C. J. (2012) Interleukin-13 protects from atherosclerosis and modulates plaque composition by skewing the macrophage phenotype, EMBO Mol. Med., 4, 1072–1086.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Chomarat, P., and Banchereau, J. (1998) Interleukin-4 and interleukin-13: their similarities and discrepancies, Int. Rev. Immunol., 17, 1–52.PubMedCrossRefGoogle Scholar
  40. 40.
    Kuperman, D. A., and Schleimer, R. P. (2008) Interleukin4, interleukin-13, signal transducer and activator of transcription factor 6, and allergic asthma, Curr. Mol. Med., 8, 384–392.Google Scholar
  41. 41.
    Tedgui, A., and Mallat, Z. (2006) Cytokines in atherosclerosis: pathogenic and regulatory pathways, Physiol. Rev., 86, 515–581.PubMedCrossRefGoogle Scholar
  42. 42.
    Fichtner-Feigl, S., Strober, W., Kawakami, K., Puri, R. K., and Kitani, A. (2006) IL-13 signaling through the IL13alpha2 receptor is involved in induction of TGF-beta1 production and fibrosis, Nat. Med., 12, 99–106.PubMedCrossRefGoogle Scholar
  43. 43.
    Korn, T., Bettelli, E., Oukka, M., and Kuchroo, V. K. (2009) IL-17 and Th17 Cells, Annu. Rev. Immunol., 27, 485–517.PubMedCrossRefGoogle Scholar
  44. 44.
    Ivanov, I. I., McKenzie, B. S., Zhou, L., Tadokoro, C. E., Lepelley, A., Lafaille, J. J., Cua, D. J., and Littman, D. R. (2006) The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells, Cell, 126, 1121–1133.PubMedCrossRefGoogle Scholar
  45. 45.
    Patel, D. D., and Kuchroo, V. K. (2015) Th17 cell pathway in human immunity: lessons from genetics and therapeutic interventions, Immunity, 43, 1040–1051.PubMedCrossRefGoogle Scholar
  46. 46.
    Taleb, S., Tedgui, A., and Mallat, Z. (2010) Interleukin-17: friend or foe in atherosclerosis, Curr. Opin. Lipidol., 21, 404–408.PubMedCrossRefGoogle Scholar
  47. 47.
    Xie, J. J., Wang, J., Tang, T. T., Chen, J., Gao, X. L., Yuan, J., Zhou, Z. H., Liao, M. Y., Yao, R., Yu, X., Wang, D., Cheng, Y., Liao, Y. H., and Cheng, X. (2010) The Th17/Treg functional imbalance during atherogenesis in ApoE–/–mice, Cytokine, 49, 185–193.PubMedCrossRefGoogle Scholar
  48. 48.
    Ma, T., Gao, Q., Zhu, F., Guo, C., Wang, Q., Gao, F., and Zhang, L. (2013) Th17 cells and IL-17 are involved in the disruption of vulnerable plaques triggered by short-term combination stimulation in apolipoprotein E-knockout mice, Cell. Mol. Immunol., 10, 338–348.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Madhur, M. S., Funt, S. A., Li, L., Vinh, A., Chen, W., Lob, H. E., Iwakura, Y., Blinder, Y., Rahman, A., Quyyumi, A. A., and Harrison, D. G. (2011) Role of interleukin 17 in inflammation, atherosclerosis, and vascular function in apolipoprotein E-deficient mice, Arterioscler. Thromb. Vasc. Biol., 31, 1565–1572.PubMedCrossRefGoogle Scholar
  50. 50.
    Danzaki, K., Matsui, Y., Ikesue, M., Ohta, D., Ito, K., Kanayama, M., Kurotaki, D., Morimoto, J., Iwakura, Y., Yagita, H., Tsutsui, H., and Uede, T. (2012) Interleukin17A deficiency accelerates unstable atherosclerotic plaque formation in apolipoprotein E-deficient mice, Arterioscler. Thromb. Vasc. Biol., 32, 273–280.PubMedCrossRefGoogle Scholar
  51. 51.
    Taleb, S., Romain, M., Ramkhelawon, B., Uyttenhove, C., Pasterkamp, G., Herbin, O., Esposito, B., Perez, N., Yasukawa, H., Van Snick, J., Yoshimura, A., Tedgui, A., and Mallat, Z. (2009) Loss of SOCS3 expression in T cells reveals a regulatory role for interleukin-17 in atherosclerosis, J. Exp. Med., 206, 2067–2077.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Butcher, M. J., Gjurich, B. N., Phillips, T., and Galkina, E. V. (2012) The IL-17A/IL-17RA axis plays a proatherogenic role via the regulation of aortic myeloid cell recruitment, Circ. Res., 110, 675–687.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Smith, E., Prasad, K. M., Butcher, M., Dobrian, A., Kolls, J. K., Ley, K., and Galkina, E. (2010) Blockade of interleukin-17A results in reduced atherosclerosis in apolipoprotein E-deficient mice, Circulation, 121, 17461755.Google Scholar
  54. 54.
    Erbel, C., Chen, L., Bea, F., Wangler, S., Celik, S., Lasitschka, F., Wang, Y., Bockler, D., Katus, H. A., and Dengler, T. J. (2009) Inhibition of IL-17A attenuates atherosclerotic lesion development in apoE-deficient mice, J. Immunol., 183, 8167–8175.PubMedCrossRefGoogle Scholar
  55. 55.
    Gao, Q., Jiang, Y., Ma, T., Zhu, F., Gao, F., Zhang, P., Guo, C., Wang, Q., Wang, X., Ma, C., Zhang, Y., Chen, W., and Zhang, L. (2010) A critical function of Th17 proinflammatory cells in the development of atherosclerotic plaque in mice, J. Immunol., 185, 5820–5827.PubMedCrossRefGoogle Scholar
  56. 56.
    Wang, X., Ota, N., Manzanillo, P., Kates, L., ZavalaSolorio, J., Eidenschenk, C., Zhang, J., Lesch, J., Lee, W. P., Ross, J., Diehl, L., Van Bruggen, N., Kolumam, G., and Ouyang, W. (2014) Interleukin-22 alleviates metabolic disorders and restores mucosal immunity in diabetes, Nature, 514, 237–341.PubMedGoogle Scholar
  57. 57.
    Rattik, S., Hultman, K., Rauch, U., Soderberg, I., Sundius, L., Ljungcrantz, I., Hultgardh-Nilsson, A., Wigren, M., Bjorkbacka, H., Fredrikson, G. N., and Nilsson, J. (2015) IL-22 affects smooth muscle cell phenotype and plaque formation in apolipoprotein E knockout mice, Atherosclerosis, 242, 506–514.PubMedCrossRefGoogle Scholar
  58. 58.
    Jones, L. L., and Vignali, D. A. (2011) Molecular interactions within the IL-6/IL-12 cytokine/receptor superfamily, Immunol. Res., 51, 5–14.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Garbers, C., Hermanns, H. M., Schaper, F., MullerNewen, G., Grotzinger, J., Rose-John, S., and Scheller, J. (2012) Plasticity and cross-talk of interleukin 6-type cytokines, Cytokine Growth Factor Rev., 23, 85–97.PubMedCrossRefGoogle Scholar
  60. 60.
    Xing, Z., Gauldie, J., Cox, G., Baumann, H., Jordana, M., Lei, X. F., and Achong, M. K. (1998) IL-6 is an antiinflammatory cytokine required for controlling local or systemic acute inflammatory responses, J. Clin. Invest., 101, 311–320.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Fontes, J. A., Rose, N. R., and Cihakova, D. (2015) The varying faces of IL-6: from cardiac protection to cardiac failure, Cytokine, 74, 62–68.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Huber, S. A., Sakkinen, P., Conze, D., Hardin, N., and Tracy, R. (1999) Interleukin-6 exacerbates early atherosclerosis in mice, Arterioscler. Thromb. Vasc. Biol., 19, 23642367.CrossRefGoogle Scholar
  63. 63.
    Schieffer, B., Selle, T., Hilfiker, A., Hilfiker-Kleiner, D., Grote, K., Tietge, U. J., Trautwein, C., Luchtefeld, M., Schmittkamp, C., Heeneman, S., Daemen, M. J., and Drexler, H. (2004) Impact of interleukin-6 on plaque development and morphology in experimental atherosclerosis, Circulation, 110, 3493–3500.PubMedCrossRefGoogle Scholar
  64. 64.
    Elhage, R., Clamens, S., Besnard, S., Mallat, Z., Tedgui, A., Arnal, J., Maret, A., and Bayard, F. (2001) Involvement of interleukin-6 in atherosclerosis but not in the prevention of fatty streak formation by 17beta-estradiol in apolipoprotein E-deficient mice, Atherosclerosis, 156, 315320.CrossRefGoogle Scholar
  65. 65.
    Rose-John, S. (2012) IL-6 trans-signaling via the soluble IL-6 receptor: importance for the pro-inflammatory activities of IL-6, Int. J. Biol. Sci., 8, 1237–1247.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Schuett, H., Oestreich, R., Waetzig, G. H., Annema, W., Luchtefeld, M., Hillmer, A., Bavendiek, U., von Felden, J., Divchev, D., Kempf, T., Wollert, K. C., Seegert, D., RoseJohn, S., Tietge, U. J., Schieffer, B., and Grote, K. (2012) Transsignaling of interleukin-6 crucially contributes to atherosclerosis in mice, Arterioscler. Thromb. Vasc. Biol., 32, 281–290.PubMedCrossRefGoogle Scholar
  67. 67.
    Teng, M. W., Bowman, E. P., McElwee, J. J., Smyth, M. J., Casanova, J. L., Cooper, A. M., and Cua, D. J. (2015) IL12 and IL-23 cytokines: from discovery to targeted therapies for immune-mediated inflammatory diseases, Nat. Med., 21, 719–729.PubMedCrossRefGoogle Scholar
  68. 68.
    Diefenbach, A., Colonna, M., and Koyasu, S. (2014) Development, differentiation, and diversity of innate lymphoid cells, Immunity, 41, 354–365.PubMedGoogle Scholar
  69. 69.
    Abbas, A., Gregersen, I., Holm, S., Daissormont, I., Bjerkeli, V., Krohg-Sorensen, K., Skagen, K. R., Dahl, T. B., Russell, D., Almas, T., Bundgaard, D., Alteheld, L. H., Rashidi, A., Dahl, C. P., Michelsen, A. E., Biessen, E. A., Aukrust, P., Halvorsen, B., and Skjelland, M. (2015) Interleukin 23 levels are increased in carotid atherosclerosis: possible role for the interleukin 23/interleukin 17 axis, Stroke, 46, 793–799.PubMedCrossRefGoogle Scholar
  70. 70.
    Davenport, P., and Tipping, P. G. (2003) The role of interleukin-4 and interleukin-12 in the progression of atherosclerosis in apolipoprotein E-deficient mice, Am. J. Pathol., 163, 1117–1125.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Lee, T. S., Yen, H. C., Pan, C. C., and Chau, L. Y. (1999) The role of interleukin 12 in the development of atherosclerosis in ApoE-deficient mice, Arterioscler. Thromb. Vasc. Biol., 19, 734–742.PubMedCrossRefGoogle Scholar
  72. 72.
    Yoshida, H., and Hunter, C. A. (2015) The immunobiology of interleukin-27, Annu. Rev. Immunol., 33, 417–443.PubMedCrossRefGoogle Scholar
  73. 73.
    Koltsova, E. K., Kim, G., Lloyd, K. M., Saris, C. J., Von Vietinghoff, S., Kronenberg, M., and Ley, K. (2012) IL-27 receptor limits atherosclerosis in Ldlr–/–mice, Circ. Res., 111, 1274–1285.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Hirase, T., Hara, H., Miyazaki, Y., Ide, N., NishimotoHazuku, A., Fujimoto, H., Saris, C. J., Yoshida, H., and Node, K. (2013) Interleukin 27 inhibits atherosclerosis via immunoregulation of macrophages in mice, Am. J. Physiol. Heart Circ. Physiol., 305, 420–429.CrossRefGoogle Scholar
  75. 75.
    Collison, L. W., Workman, C. J., Kuo, T. T., Boyd, K., Wang, Y., Vignali, K. M., Cross, R., Sehy, D., Blumberg, R. S., and Vignali, D. A. (2007) The inhibitory cytokine IL-35 contributes to regulatory T-cell function, Nature, 450, 566569.CrossRefGoogle Scholar
  76. 76.
    Collison, L. W., Delgoffe, G. M., Guy, C. S., Vignali, K. M., Chaturvedi, V., Fairweather, D., Satoskar, A. R., Garcia, K. C., Hunter, C. A., Drake, C. G., Murray, P. J., and Vignali, D. A. (2012) The composition and signaling of the IL-35 receptor are unconventional, Nat. Immunol., 13, 290–299.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Kempe, S., Heinz, P., Kokai, E., Devergne, O., Marx, N., and Wirth, T. (2009) Epstein–Barr virus-induced gene-3 is expressed in human atheroma plaques, Am. J. Pathol., 175, 440–447.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Sha, X., Meng, S., Li, X., Xi, H., Maddaloni, M., Pascual, D. W., Shan, H., Jiang, X., Wang, H., and Yang, X. F. (2015) Interleukin-35 inhibits endothelial cell activation by suppressing MAPK-AP-1 pathway, J. Biol. Chem., 290, 19307–19318.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Dinarello, C. A. (2009) Immunological and inflammatory functions of the interleukin-1 family, Annu. Rev. Immunol., 27, 519–550.PubMedCrossRefGoogle Scholar
  80. 80.
    Kirii, H., Niwa, T., Yamada, Y., Wada, H., Saito, K., Iwakura, Y., Asano, M., Moriwaki, H., and Seishima, M. (2003) Lack of interleukin-1beta decreases the severity of atherosclerosis in ApoE-deficient mice, Arterioscler. Thromb. Vasc. Biol., 23, 656–660.PubMedCrossRefGoogle Scholar
  81. 81.
    Mills, K. H. (2008) Induction, function and regulation of IL-17-producing T cells, Eur. J. Immunol., 38, 26362649.CrossRefGoogle Scholar
  82. 82.
    Clarke, M. C., Talib, S., Figg, N. L., and Bennett, M. R. (2010) Vascular smooth muscle cell apoptosis induces interleukin-1-directed inflammation: effects of hyperlipidemia-mediated inhibition of phagocytosis, Circ. Res., 106, 363–372.PubMedCrossRefGoogle Scholar
  83. 83.
    Sheedy, F. J., Grebe, A., Rayner, K. J., Kalantari, P., Ramkhelawon, B., Carpenter, S. B., Becker, C. E., Ediriweera, H. N., Mullick, A. E., Golenbock, D. T., Stuart, L. M., Latz, E., Fitzgerald, K. A., and Moore, K. J. (2013) CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation, Nat. Immunol., 14, 812–820.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Freigang, S., Ampenberger, F., Weiss, A., Kanneganti, T. D., Iwakura, Y., Hersberger, M., and Kopf, M. (2013) Fatty acid-induced mitochondrial uncoupling elicits inflammasome-independent IL-1alpha and sterile vascular inflammation in atherosclerosis, Nat. Immunol., 14, 1045–1053.PubMedCrossRefGoogle Scholar
  85. 85.
    Kamari, Y., Shaish, A., Shemesh, S., Vax, E., Grosskopf, I., Dotan, S., White, M., Voronov, E., Dinarello, C. A., Apte, R. N., and Harats, D. (2011) Reduced atherosclerosis and inflammatory cytokines in apolipoprotein-Edeficient mice lacking bone marrow-derived interleukin1alpha, Biochem. Biophys. Res. Commun., 405, 197–203.PubMedCrossRefGoogle Scholar
  86. 86.
    Isoda, K., Sawada, S., Ishigami, N., Matsuki, T., Miyazaki, K., Kusuhara, M., Iwakura, Y., and Ohsuzu, F. (2004) Lack of interleukin-1 receptor antagonist modulates plaque composition in apolipoprotein E-deficient mice, Arterioscler. Thromb. Vasc. Biol., 24, 1068–1073.PubMedCrossRefGoogle Scholar
  87. 87.
    Elhage, R., Maret, A., Pieraggi, M. T., Thiers, J. C., Arnal, J. F., and Bayard, F. (1998) Differential effects of interleukin-1 receptor antagonist and tumor necrosis factor binding protein on fatty-streak formation in apolipoprotein E-deficient mice, Circulation, 97, 242–244.PubMedCrossRefGoogle Scholar
  88. 88.
    Devlin, C. M., Kuriakose, G., Hirsch, E., and Tabas, I. (2002) Genetic alterations of IL-1 receptor antagonist in mice affect plasma cholesterol level and foam cell lesion size, Proc. Natl. Acad. Sci. USA, 99, 6280–6285.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Merhi-Soussi, F., Kwak, B. R., Magne, D., Chadjichristos, C., Berti, M., Pelli, G., James, R. W., Mach, F., and Gabay, C. (2005) Interleukin-1 plays a major role in vascular inflammation and atherosclerosis in male apolipoprotein E-knockout mice, Cardiovasc. Res., 66, 583–593.PubMedCrossRefGoogle Scholar
  90. 90.
    Mallat, Z., Corbaz, A., Scoazec, A., Besnard, S., Leseche, G., Chvatchko, Y., and Tedgui, A. (2001) Expression of interleukin-18 in human atherosclerotic plaques and relation to plaque instability, Circulation, 104, 1598–1603.PubMedCrossRefGoogle Scholar
  91. 91.
    Troseid, M., Seljeflot, I., and Arnesen, H. (2010) The role of interleukin-18 in the metabolic syndrome, Cardiovasc. Diabetol., 9, 11.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Whitman, S. C., Ravisankar, P., and Daugherty, A. (2002) Interleukin-18 enhances atherosclerosis in apolipoprotein E–/–mice through release of interferon-gamma, Circ. Res., 90, e34-38.CrossRefGoogle Scholar
  93. 93.
    Mallat, Z., Corbaz, A., Scoazec, A., Graber, P., Alouani, S., Esposito, B., Humbert, Y., Chvatchko, Y., and Tedgui, A. (2001) Interleukin-18/interleukin-18 binding protein signaling modulates atherosclerotic lesion development and stability, Circ. Res., 89, e41-45.CrossRefGoogle Scholar
  94. 94.
    Tenger, C., Sundborger, A., Jawien, J., and Zhou, X. (2005) IL-18 accelerates atherosclerosis accompanied by elevation of IFN-gamma and CXCL16 expression independently of T-cells, Arterioscler. Thromb. Vasc. Biol., 25, 791–796.PubMedCrossRefGoogle Scholar
  95. 95.
    Schmitz, J., Owyang, A., Oldham, E., Song, Y., Murphy, E., McClanahan, T. K., Zurawski, G., Moshrefi, M., Qin, J., Li, X., Gorman, D. M., Bazan, J. F., and Kastelein, R. A. (2005) IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T-helper type 2-associated cytokines, Immunity, 23, 479490.Google Scholar
  96. 96.
    Miller, A. M., Xu, D., Asquith, D. L., Denby, L., Li, Y., Sattar, N., Baker, A. H., McInnes, I. B., and Liew, F. Y. (2008) IL-33 reduces the development of atherosclerosis, J. Exp. Med., 205, 339–346.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    McLaren, J. E., Michael, D. R., Salter, R. C., Ashlin, T. G., Calder, C. J., Miller, A. M., Liew, F. Y., and Ramji, D. P. (2010) IL-33 reduces macrophage foam cell formation, J. Immunol., 185, 1222–1229.PubMedCrossRefGoogle Scholar
  98. 98.
    Rutz, S., Wang, X., and Ouyang, W. (2014) The IL-20 subfamily of cytokines–from host defence to tissue homeostasis, Nat. Rev. Immunol., 14, 783–795.PubMedCrossRefGoogle Scholar
  99. 99.
    Ouyang, W., Rutz, S., Crellin, N. K., Valdez, P. A., and Hymowitz, S. G. (2011) Regulation and functions of the IL-10 family of cytokines in inflammation and disease, Annu. Rev. Immunol., 29, 71–109.PubMedCrossRefGoogle Scholar
  100. 100.
    Moore, K. W., De Waal Malefyt, R., Coffman, R. L., and O’Garra, A. (2001) Interleukin-10 and the interleukin-10 receptor, Annu. Rev. Immunol., 19, 683–765.PubMedCrossRefGoogle Scholar
  101. 101.
    Mallat, Z., Besnard, S., Duriez, M., Deleuze, V., Emmanuel, F., Bureau, M. F., Soubrier, F., Esposito, B., Duez, H., Fievet, C., Staels, B., Duverger, N., Scherman, D., and Tedgui, A. (1999) Protective role of interleukin-10 in atherosclerosis, Circ. Res., 85, 17–24.CrossRefGoogle Scholar
  102. 102.
    Pinderski Oslund, L. J., Hedrick, C. C., Olvera, T., Hagenbaugh, A., Territo, M., Berliner, J. A., and Fyfe, A. I. (1999) Interleukin-10 blocks atherosclerotic events in vitro and in vivo, Arterioscler. Thromb. Vasc. Biol., 19, 28472853.CrossRefGoogle Scholar
  103. 103.
    Caligiuri, G., Rudling, M., Ollivier, V., Jacob, M. P., Michel, J. B., Hansson, G. K., and Nicoletti, A. (2003) Interleukin-10 deficiency increases atherosclerosis, thrombosis, and low-density lipoproteins in apolipoprotein E knockout mice, Mol. Med., 9, 10–17.PubMedGoogle Scholar
  104. 104.
    Tian, Y., Sommerville, L. J., Cuneo, A., Kelemen, S. E., and Autieri, M. V. (2008) Expression and suppressive effects of interleukin-19 on vascular smooth muscle cell pathophysiology and development of intimal hyperplasia, Am. J. Pathol., 173, 901–909.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Ellison, S., Gabunia, K., Richards, J. M., Kelemen, S. E., England, R. N., Rudic, D., Azuma, Y. T., Munroy, M. A., Eguchi, S., and Autieri, M. V. (2014) IL-19 reduces ligationmediated neointimal hyperplasia by reducing vascular smooth muscle cell activation, Am. J. Pathol., 184, 2134–2143.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Gabunia, K., Jain, S., England, R. N., and Autieri, M. V. (2011) Anti-inflammatory cytokine interleukin-19 inhibits smooth muscle cell migration and activation of cytoskeletal regulators of VSMC motility, Am. J. Physiol. Cell Physiol., 300, C896-906.Google Scholar
  107. 107.
    Chen, W. Y., Cheng, B. C., Jiang, M. J., Hsieh, M. Y., and Chang, M. S. (2006) IL-20 is expressed in atherosclerosis plaques and promotes atherosclerosis in apolipoprotein Edeficient mice, Arterioscler. Thromb. Vasc. Biol., 26, 20902095.Google Scholar
  108. 108.
    Blobe, G. C., Schiemann, W. P., and Lodish, H. F. (2000) Role of transforming growth factor beta in human disease, N. Engl. J. Med., 342, 1350–1358.Google Scholar
  109. 109.
    Pepper, M. S. (1997) Transforming growth factor-beta: vasculogenesis, angiogenesis, and vessel wall integrity, Cytokine Growth Factor Rev., 8, 21–43.PubMedCrossRefGoogle Scholar
  110. 110.
    Lutgens, E., and Daemen, M. J. (2001) Transforming growth factor-beta: a local or systemic mediator of plaque stability, Circ. Res., 89, 853–855.PubMedGoogle Scholar
  111. 111.
    Mallat, Z., Gojova, A., Marchiol-Fournigault, C., Esposito, B., Kamate, C., Merval, R., Fradelizi, D., and Tedgui, A. (2001) Inhibition of transforming growth factor-beta signaling accelerates atherosclerosis and induces an unstable plaque phenotype in mice, Circ. Res., 89, 930934.CrossRefGoogle Scholar
  112. 112.
    Grainger, D. J., Mosedale, D. E., Metcalfe, J. C., and Bottinger, E. P. (2000) Dietary fat and reduced levels of TGFbeta1 act synergistically to promote activation of the vascular endothelium and formation of lipid lesions, J. Cell Sci., 113, 2355–2361.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. R. Fatkhullina
    • 1
  • I. O. Peshkova
    • 1
  • E. K. Koltsova
    • 1
    Email author
  1. 1.Fox Chase Cancer CenterPhiladelphiaUSA

Personalised recommendations