Advertisement

Biochemistry (Moscow)

, Volume 81, Issue 11, pp 1340–1349 | Cite as

Mechanisms of changes in immune response during bacterial coinfections of the respiratory tract

  • E. N. Sviriaeva
  • K. V. Korneev
  • M. S. Drutskaya
  • D. V. KuprashEmail author
Review
  • 61 Downloads

Abstract

Acute diseases of the respiratory tract are often caused by viral pathogens and accompanying secondary bacterial infections. It is known that the development of such bacterial complications is caused mainly by a decreased infiltration with immune system cells and by suppressed inflammation in the lungs. There are significant advances in understanding the mechanisms of secondary infections, although many details remain unclear. This review summarizes current knowledge of the molecular and cellular changes in the host organism that can influence the course of bacterial coinfections in the respiratory tract.

Keywords

secondary bacterial coinfection influenza bacteria pneumonia macrophages Toll-like receptor 

Abbreviations

CXCL

chemokines, (C-X-C motif) ligand

ICAM-1

intercellular adhesion molecule 1

IDO

indoleamine 2,3-dioxygenase

IFN

interferon

IL

interleukin

NA

neuraminidase

NF-κB

transcription factor κB

PPARγ

peroxisome proliferator-activated receptor gamma

RSV

respiratory syncytial virus

TGF-β

transforming growth factor beta

TLRs

Toll-like receptors

TNF

tumor necrosis factor

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nellore, A., and Fishman, J. A. (2016) The microbiome, systemic immune function, and allotransplantation, Clin. Microbiol. Rev., 29, 191–199.PubMedGoogle Scholar
  2. 2.
    Beck, J. M., Young, V. B., and Huffnagle, G. B. (2012) The microbiome of the lung, Transl. Res., 160, 258–266.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Murphy, T. F., and Parameswaran, G. I. (2009) Moraxella catarrhalis, a human respiratory tract pathogen, Clin. Infect. Dis., 49, 124–131.PubMedGoogle Scholar
  4. 4.
    Morens, D. M., Taubenberger, J. K., and Fauci, A. S. (2008) Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: implications for pandemic influenza preparedness, J. Infect. Dis., 198, 962–970.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Wang, X. Y., Kilgore, P. E., Lim, K. A., Wang, S. M., Lee, J., Deng, W., Mo, M. Q., Nyambat, B., Ma, J. C., Favorov, M. O., and Clemens, J. D. (2011) Influenza and bacterial pathogen coinfections in the 20th century, Interdiscip. Perspect. Infect. Dis., 2011, 146376.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Thorburn, K., Harigopal, S., Reddy, V., Taylor, N., and Van Saene, H. K. (2006) High incidence of pulmonary bacterial coinfection in children with severe respiratory syncytial virus (RSV) bronchiolitis, Thorax, 61, 611–615.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Centers for Disease Control and Prevention (2009) Bacterial coinfections in lung tissue specimens from fatal cases of 2009 pandemic influenza A (H1N1) United States, May-August 2009, MMWR Morb. Mortal. Wkly Rep., 58, 1071–1074.Google Scholar
  8. 8.
    Ruohola, A., Meurman, O., Nikkari, S., Skottman, T., Salmi, A., Waris, M., Osterback, R., Eerola, E., Allander, T., Niesters, H., Heikkinen, T., and Ruuskanen, O. (2006) Microbiology of acute otitis media in children with tympanostomy tubes: prevalences of bacteria and viruses, Clin. Infect. Dis., 43, 1417–1422.CrossRefPubMedGoogle Scholar
  9. 9.
    Lehtinen, P., Jartti, T., Virkki, R., Vuorinen, T., Leinonen, M., Peltola, V., Ruohola, A., and Ruuskanen, O. (2006) Bacterial coinfections in children with viral wheezing, Eur. J. Clin. Microbiol. Infect. Dis., 25, 463–469.CrossRefPubMedGoogle Scholar
  10. 10.
    Pettigrew, M. M., Gent, J. F., Pyles, R. B., Miller, A. L., Nokso-Koivisto, J., and Chonmaitree, T. (2011) Viral-bacterial interactions and risk of acute otitis media complicating upper respiratory tract infection, J. Clin. Microbiol., 49, 3750–3755.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Nguyen, D. T., Louwen, R., Elberse, K., Van Amerongen, G., Yuksel, S., Luijendijk, A., Osterhaus, A. D., Duprex, W. P., and De Swart, R. L. (2015) Streptococcus pneumoniae enhances human respiratory syncytial virus infection in vitro and in vivo, PLoS One, 10, e0127098.Google Scholar
  12. 12.
    Pavia, A. T. (2013) What is the role of respiratory viruses in community-acquired pneumonia? What is the best therapy for influenza and other viral causes of community-acquired pneumonia? Infect. Dis. Clin. North Am., 27, 157–175.Google Scholar
  13. 13.
    Dawood, F. S., Fiore, A., Kamimoto, L., Nowell, M., Reingold, A., Gershman, K., Meek, J., Hadler, J., Arnold, K. E., Ryan, P., Lynfield, R., Morin, C., Baumbach, J., Zansky, S., Bennett, N. M., Thomas, A., Schaffner, W., Kirschke, D., Finelli, L., and Emerging Infections Program Network (2010) Influenza-associated pneumonia in children hospitalized with laboratory-confirmed influenza, 2003-2008, Pediatr. Infect. Dis. J., 29, 585–590.PubMedGoogle Scholar
  14. 14.
    Finelli, L., Fiore, A., Dhara, R., Brammer, L., Shay, D. K., Kamimoto, L., Fry, A., Hageman, J., Gorwitz, R., Bresee, J., and Uyeki, T. (2008) Influenza-associated pediatric mortality in the United States: increase of Staphylococcus aureus coinfection, Pediatrics, 122, 805–811.CrossRefPubMedGoogle Scholar
  15. 15.
    Khaitov, R. M., and Ataullakhanov, R. I. (2012) Immunotherapy: A Guidebook [in Russian], GEOTARMedia, Moscow.Google Scholar
  16. 16.
    Taubenberger, J. K., and Morens, D. M. (2006) 1918 influenza: the mother of all pandemics, Emerg. Infect. Dis., 12, 15–22.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Louria, D. B., Blumenfeld, H. L., Ellis, J. T., Kilbourne, E. D., and Rogers, D. E. (1959) Studies on influenza in the pandemic of 1957-1958. II. Pulmonary complications of influenza, J. Clin. Invest., 38, 213–265.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lofgren, E., Fefferman, N. H., Naumov, Y. N., Gorski, J., and Naumova, E. N. (2007) Influenza seasonality: underlying causes and modeling theories, J. Virol., 81, 5429–5436.CrossRefPubMedGoogle Scholar
  19. 19.
    Louie, L. G., Hartogensis, W. E., Jackman, R. P., Schultz, K. A., Zijenah, L. S., Yiu, C. H., Nguyen, V. D., Sohsman, M. Y., Katzenstein, D. K., and Mason, P. R. (2004) Mycobacterium tuberculosis/HIV-1 coinfection and disease: role of human leukocyte antigen variation, J. Infect. Dis., 189, 1084–1090.CrossRefPubMedGoogle Scholar
  20. 20.
    Hament, J. M., Kimpen, J. L., Fleer, A., and Wolfs, T. F. (1999) Respiratory viral infection predisposing for bacterial disease: a concise review, FEMS Immunol. Med. Microbiol., 26, 189–195.CrossRefPubMedGoogle Scholar
  21. 21.
    MacCallum, W. G. (1921) Pathological anatomy of pneumonia associated with influenza, Johns Hopkins Hosp. Rep., 20, 149–249.Google Scholar
  22. 22.
    McCullers, J. A., and Rehg, J. E. (2002) Lethal synergism between influenza virus and Streptococcus pneumoniae: characterization of a mouse model and the role of plateletactivating factor receptor, J. Infect. Dis., 186, 341–350.CrossRefPubMedGoogle Scholar
  23. 23.
    Air, G. M., and Laver, W. G. (1989) The neuraminidase of influenza virus, Proteins, 6, 341–356.CrossRefPubMedGoogle Scholar
  24. 24.
    McCullers, J. A., and Bartmess, K. C. (2003) Role of neuraminidase in lethal synergism between influenza virus and Streptococcus pneumoniae, J. Infect. Dis., 187, 1000–1009.CrossRefPubMedGoogle Scholar
  25. 25.
    Siegel, S. J., Roche, A. M., and Weiser, J. N. (2014) Influenza promotes pneumococcal growth during coinfection by providing host sialylated substrates as a nutrient source, Cell Host Microbe, 16, 55–67.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Carlson, C. M., Turpin, E. A., Moser, L. A., O’Brien, K. B., Cline, T. D., Jones, J. C., Tumpey, T. M., Katz, J. M., Kelley, L. A., Gauldie, J., and Schultz-Cherry, S. (2010) Transforming growth factor-ß: activation by neuraminidase and role in highly pathogenic H5N1 influenza pathogenesis, PLoS Pathog., 6, e1001136.CrossRefGoogle Scholar
  27. 27.
    Ishizuka, S., Yamaya, M., Suzuki, T., Takahashi, H., Ida, S., Sasaki, T., Inoue, D., Sekizawa, K., Nishimura, H., and Sasaki, H. (2003) Effects of rhinovirus infection on the adherence of Streptococcus pneumoniae to cultured human airway epithelial cells, J. Infect. Dis., 188, 1928–1939.CrossRefPubMedGoogle Scholar
  28. 28.
    Van der Sluijs, K. F., Nijhuis, M., Levels, J. H., Florquin, S., Mellor, A. L., Jansen, H. M., Van der Poll, T., and Lutter, R. (2006) Influenza-induced expression of indoleamine 2,3-dioxygenase enhances interleukin-10 production and bacterial outgrowth during secondary pneumococcal pneumonia, J. Infect. Dis., 193, 214–222.CrossRefPubMedGoogle Scholar
  29. 29.
    Jamieson, A. M., Pasman, L., Yu, S., Gamradt, P., Homer, R. J., Decker, T., and Medzhitov, R. (2013) Role of tissue protection in lethal respiratory viral-bacterial coinfection, Science, 340, 1230–1234.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Jamieson, A. M., Yu, S., Annicelli, C. H., and Medzhitov, R. (2010) Influenza virus-induced glucocorticoids compromise innate host defense against a secondary bacterial infection, Cell Host Microbe, 7, 103–114.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Bethin, K. E., Vogt, S. K., and Muglia, L. J. (2000) Interleukin-6 is an essential, corticotropin-releasing hormone-independent stimulator of the adrenal axis during immune system activation, Proc. Natl. Acad. Sci. USA, 97, 9317–9322.PubMedGoogle Scholar
  32. 32.
    Dunn, A. J., and Vickers, S. L. (1994) Neurochemical and neuroendocrine responses to Newcastle disease virus administration in mice, Brain Res., 645, 103–112.CrossRefPubMedGoogle Scholar
  33. 33.
    Green, G. M., and Kass, E. H. (1964) The role of the alveolar macrophage in the clearance of bacteria from the lung, J. Exp. Med., 119, 167–176.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Nickerson, C. L., and Jakab, G. J. (1990) Pulmonary antibacterial defenses during mild and severe influenza virus infection, Infect. Immun., 58, 2809–2814.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Sun, K., Ye, J., Perez, D. R., and Metzger, D. W. (2011) Seasonal FluMist vaccination induces cross-reactive T-cell immunity against H1N1 (2009) influenza and secondary bacterial infections, J. Immunol., 186, 987–993.CrossRefPubMedGoogle Scholar
  36. 36.
    Sun, K., and Metzger, D. W. (2008) Inhibition of pulmonary antibacterial defense by interferon during recovery from influenza infection, Nat. Med., 14, 558–564.CrossRefPubMedGoogle Scholar
  37. 37.
    Mosser, D. M. (2003) The many faces of macrophage activation, J. Leukoc. Biol., 73, 209–212.CrossRefPubMedGoogle Scholar
  38. 38.
    Shirey, K. A., Pletneva, L. M., Puche, A. C., Keegan, A. D., Prince, G. A., Blanco, J. C., and Vogel, S. N. (2010) Control of RSV-induced lung injury by alternatively activated macrophages is IL-4Ra-, TLR4-, and IFN-ßdependent, Mucosal Immunol., 3, 291–300.CrossRefPubMedGoogle Scholar
  39. 39.
    Schwartz, Y. Sh., and Svistelnik, A. V. (2012) Functional phenotypes of macrophages and the M1-M2 polarization concept. Part I. Proinflammatory phenotype, Biochemistry (Moscow), 77, 246–260.CrossRefGoogle Scholar
  40. 40.
    Subramaniam, R., Barnes, P. F., Fletcher, K., Boggaram, V., Hillberry, Z., Neuenschwander, P., and Shams, H. (2014) Protecting against post-influenza bacterial pneumonia by increasing phagocyte recruitment and ROS production, J. Infect. Dis., 209, 1827–1836.CrossRefPubMedGoogle Scholar
  41. 41.
    Abdul-Careem, M. F., Mian, M. F., Yue, G., Gillgrass, A., Chenoweth, M. J., Barra, N. G., Chew, M. V., Chan, T., Al-Garawi, A. A., Jordana, M., and Ashkar, A. A. (2012) Critical role of natural killer cells in lung immunopathology during influenza infection in mice, J. Infect. Dis., 206, 167–177.CrossRefPubMedGoogle Scholar
  42. 42.
    Small, C. L., Shaler, C. R., McCormick, S., Jeyanathan, M., Damjanovic, D., Brown, E. G., Arck, P., Jordana, M., Kaushic, C., Ashkar, A. A., and Xing, Z. (2010) Influenza infection leads to increased susceptibility to subsequent bacterial superinfection by impairing NK cell responses in the lung, J. Immunol., 184, 2048–2056.CrossRefPubMedGoogle Scholar
  43. 43.
    Akira, S., Uematsu, S., and Takeuchi, O. (2006) Pathogen recognition and innate immunity, Cell, 124, 783–801.CrossRefPubMedGoogle Scholar
  44. 44.
    Akira, S. (2006) TLR signaling, Curr. Top. Microbiol. Immunol., 311, 1–16.PubMedGoogle Scholar
  45. 45.
    Didierlaurent, A., Goulding, J., Patel, S., Snelgrove, R., Low, L., Bebien, M., Lawrence, T., Van Rijt, L. S., Lambrecht, B. N., Sirard, J. C., and Hussell, T. (2008) Sustained desensitization to bacterial Toll-like receptor ligands after resolution of respiratory influenza infection, J. Exp. Med., 205, 323–329.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Sviriaeva, E. N.., Korneev, K. V., Drutskaya, M. S., Nedospasov, S. A., and Kuprash, D. V. (2016) Modelling of bacterial, viral co-infection at the molecular level using receptor agonists innate immunity, Dokl. Akad. Nauk, 471, in press.Google Scholar
  47. 47.
    Dessing, M. C., Van der Sluijs, K. F., Florquin, S., Akira, S., and Van der Poll, T. (2007) Toll-like receptor 2 does not contribute to host response during postinfluenza pneumococcal pneumonia, Am. J. Respir. Cell. Mol. Biol., 36, 609–614.CrossRefPubMedGoogle Scholar
  48. 48.
    Malley, R., Henneke, P., Morse, S. C., Cieslewicz, M. J., Lipsitch, M., Thompson, C. M., Kurt-Jones, E., Paton, J. C., Wessels, M. R., and Golenbock, D. T. (2003) Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection, Proc. Natl. Acad. Sci. USA, 100, 1966–1971.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Dessing, M. C., Florquin, S., Paton, J. C., and Van der Poll, T. (2008) Toll-like receptor 2 contributes to antibacterial defence against pneumolysin-deficient pneumococci, Cell Microbiol., 10, 237–246.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Tanaka, A., Nakamura, S., Seki, M., Fukudome, K., Iwanaga, N., Imamura, Y., Miyazaki, T., Izumikawa, K., Kakeya, H., Yanagihara, K., and Kohno, S. (2013) Tolllike receptor 4 agonistic antibody promotes innate immunity against severe pneumonia induced by coinfection with influenza virus and Streptococcus pneumoniae, Clin. Vaccine Immunol., 20, 977–985.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Wahli, W., and Michalik, L. (2012) PPARs at the crossroads of lipid signaling and inflammation, Trends Endocrinol. Metab., 23, 351–363.CrossRefPubMedGoogle Scholar
  52. 52.
    Nakamura, S., Davis, K. M., and Weiser, J. N. (2011) Synergistic stimulation of type I interferons during influenza virus coinfection promotes Streptococcus pneumoniae colonization in mice, J. Clin. Invest., 121, 3657–3665.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Spelmink, L., Sender, V., Hentrich, K., Kuri, T., Plant, L., and Henriques-Normark, B. (2016) Toll-Like receptor 3/TRIF-dependent IL-12p70 secretion mediated by Streptococcus pneumoniae RNA and its priming by influenza A virus coinfection in human dendritic cells, MBio, 7, e00168-16.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Kuri, T., Sorensen, A. S., Thomas, S., Karlsson Hedestam, G. B., Normark, S., Henriques-Normark, B., McInerney, G. M., and Plant, L. (2013) Influenza A virus-mediated priming enhances cytokine secretion by human dendritic cells infected with Streptococcus pneumoniae, Cell Microbiol., 15, 1385–1400.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Sajjan, U. S., Jia, Y., Newcomb, D. C., Bentley, J. K., Lukacs, N. W., LiPuma, J. J., and Hershenson, M. B. (2006) H. influenzae potentiates airway epithelial cell responses to rhinovirus by increasing ICAM-1 and TLR3 expression, FASEB J., 20, 2121–2123.CrossRefPubMedGoogle Scholar
  56. 56.
    Williams, A. E., Humphreys, I. R., Cornere, M., Edwards, L., Rae, A., and Hußsell, T. (2005) TGF-ß prevents eosinophilic lung disease but impairs pathogen clearance, Microbes Infect., 7, 365–374.CrossRefPubMedGoogle Scholar
  57. 57.
    Dutta, A., Huang, C. T., Chen, T. C., Lin, C. Y., Chiu, C. H., Lin, Y. C., Chang, C. S., and He, Y. C. (2015) IL-10 inhibits neuraminidase-activated TGF-ß and facilitates Th1 phenotype during early phase of infection, Nat. Commun., 6, 6374.CrossRefPubMedGoogle Scholar
  58. 58.
    Gorczynski, R. M. (2005) CD200 and its receptors as targets for immunoregulation, Curr. Opin. Investig. Drugs, 6, 483–488.PubMedGoogle Scholar
  59. 59.
    Yoshida, R., Imanishi, J., Oku, T., Kishida, T., and Hayaishi, O. (1981) Induction of pulmonary indoleamine 2,3-dioxygenase by interferon, Proc. Natl. Acad. Sci. USA, 78, 129–132.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Hussell, T., and Cavanagh, M. M. (2009) The innate immune rheostat: influence on lung inflammatory disease and secondary bacterial pneumonia, Biochem. Soc. Trans., 37, 811–813.CrossRefPubMedGoogle Scholar
  61. 61.
    De Vries, J. E. (1995) Immunosuppressive and anti-inflammatory properties of interleukin 10, Ann. Med., 27, 537541.CrossRefGoogle Scholar
  62. 62.
    Ponomarev, A. B. (2016) Myeloid suppressory cells: general characteristics, Immunologiya, 37, 47–50.Google Scholar
  63. 63.
    Diebold, S. S., Montoya, M., Unger, H., Alexopoulou, L., Roy, P., Haswell, L. E., Al-Shamkhani, A., Flavell, R., Borrow, P., and Reise Sousa, C. (2003) Viral infection switches non-plasmacytoid dendritic cells into high interferon producers, Nature, 424, 324–328.CrossRefPubMedGoogle Scholar
  64. 64.
    Gonzalez-Navajas, J. M., Lee, J., David, M., and Raz, E. (2012) Immunomodulatory functions of Type I interferons, Nat. Rev. Immunol., 12, 125–135.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Schneider, W. M., Chevillotte, M. D., and Rice, C. M. (2014) Interferon-stimulated genes: a complex web of host defenses, Annu. Rev. Immunol., 32, 513–545.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Floyd-Smith, G., Slattery, E., and Lengyel, P. (1981) Interferon action: RNA cleavage pattern of a (2’5’)oligoadenylate-dependent endonuclease, Science, 212, 1030–1032.CrossRefPubMedGoogle Scholar
  67. 67.
    Shahangian, A., Chow, E. K., Tian, X., Kang, J. R., Ghaffari, A., Liu, S. Y., Belperio, J. A., Cheng, G., and Deng, J. C. (2009) Type I IFNs mediate development of postinfluenza bacterial pneumonia in mice, J. Clin. Invest., 119, 1910–1920.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Kudva, A., Scheller, E. V., Robinson, K. M., Crowe, C. R., Choi, S. M., Slight, S. R., Khader, S. A., Dubin, P. J., Enelow, R. I., Kolls, J. K., and Alcorn, J. F. (2011) Influenza A inhibits Th17-mediated host defense against bacterial pneumonia in mice, J. Immunol., 186, 16661674.CrossRefGoogle Scholar
  69. 69.
    Henry, T., Kirimanjeswara, G. S., Ruby, T., Jones, J. W., Peng, K., Perret, M., Ho, L., Sauer, J. D., Iwakura, Y., Metzger, D. W., and Monack, D. M. (2010) Type I IFN signaling constrains IL-17A/F secretion by d T-cells during bacterial infections, J. Immunol., 184, 3755–3767.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Li, W., Moltedo, B., and Moran, T. M. (2012) Type I interferon induction during influenza virus infection increases susceptibility to secondary Streptococcus pneumoniae infection by negative regulation of d T cells, J. Virol., 86, 12304–12312.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Wolf, A. I., Strauman, M. C., Mozdzanowska, K., Whittle, J. R., Williams, K. L., Sharpe, A. H., Weiser, J. N., Caton, A. J., Hensley, S. E., and Erikson, J. (2014) Coinfection with Streptococcus pneumoniae modulates the B cell response to influenza virus, J. Virol., 88, 11995–12005.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Wu, Y., Tu, W., Lam, K. T., Chow, K. H., Ho, P. L., Guan, Y., Peiris, J. S., and Lau, Y. L. (2015) Lethal coinfection of influenza virus and Streptococcus pneumoniae lowers antibody response to influenza virus in lung and reduces numbers of germinal center B cells, T follicular helper cells, and plasma cells in mediastinal lymph node, J. Virol., 89, 20132023.Google Scholar
  73. 73.
    Verkaik, N. J., Nguyen, D. T., De Vogel, C. P., Moll, H. A., Verbrugh, H. A., Jaddoe, V. W., Hofman, A., Van Wamel, W. J., Van den Hoogen, B. G., Buijs-Offerman, R. M., Ludlow, M., De Witte, L., Osterhaus, A. D., Van Belkum, A., and De Swart, R. L. (2011) Streptococcus pneumoniae exposure is associated with human metapneumovirus seroconversion and increased susceptibility to in vitro HMPV infection, Clin. Microbiol. Infect., 17, 1840–1844.CrossRefPubMedGoogle Scholar
  74. 74.
    Ouyang, K., Woodiga, S. A., Dwivedi, V., Buckwalter, C. M., Singh, A. K., Binjawadagi, B., Hiremath, J., Manickam, C., Schleappi, R., Khatri, M., Wu, J., King, S. J., and Renukaradhya, G. J. (2014) Pretreatment of epithelial cells with live Streptococcus pneumoniae has no detectable effect on influenza A virus replication in vitro, PLoS One, 9, e90066.CrossRefGoogle Scholar
  75. 75.
    Paparella, M. M., Morizono, T., Le, C. T., Mancini, F., Sipila, P., Choo, Y. B., Liden, G., and Kim, C. S. (1984) Sensorineural hearing loss in otitis media, Ann. Otol. Rhinol. Laryngol., 93, 623–629.CrossRefPubMedGoogle Scholar
  76. 76.
    Nazarov, V. I., Pogorelyy, M. V., Komech, E. A., Zvyagin, I. V., Bolotin, D. A., Shugay, M., Chudakov, D. M., Lebedev, Y. B., and Mamedov, I. Z. (2015) tcR: an R package for Tcell receptor repertoire advanced data analysis, BMC Bioinformatics, 16, 175.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Sweeney, T. E., Wong, H. R., and Khatri, P. (2016) Robust classification of bacterial and viral infections via integrated host gene expression diagnostics, Sci. Transl. Med., 8, 346ra391.CrossRefGoogle Scholar
  78. 78.
    Andres-Terre, M., McGuire, H. M., Pouliot, Y., Bongen, E., Sweeney, T. E., Tato, C. M., and Khatri, P. (2015) Integrated, multi-cohort analysis identifies conserved transcriptional signatures across multiple respiratory viruses, Immunity, 43, 1199–1211.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • E. N. Sviriaeva
    • 1
    • 2
  • K. V. Korneev
    • 1
    • 2
  • M. S. Drutskaya
    • 1
    • 2
  • D. V. Kuprash
    • 1
    • 2
    Email author
  1. 1.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  2. 2.Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations