Biochemistry (Moscow)

, Volume 81, Issue 11, pp 1309–1325 | Cite as

Tumor necrosis factor and lymphotoxin in regulation of intestinal inflammation

  • E. O. Gubernatorova
  • A. V. TumanovEmail author


Ulcerative colitis and Crohn’s disease are the major forms of inflammatory bowel disease. Cytokines of the tumor necrosis factor (TNF) family play an important role in the regulation of intestinal inflammation. In this review, we discuss the function of key cytokines of this family–TNF and lymphotoxin (LT)–in mucosal healing, IgA production, and in control of innate lymphoid cells (ILCs), novel regulators of mucosal homeostasis in the gut. TNF plays a central role in the pathogenesis of inflammatory bowel diseases (IBD). LT regulates group 3 of ILCs and IL-22 production and protects the epithelium against damage by chemicals and mucosal bacterial pathogens. In addition, we discuss major mouse models employed to study the mechanism of intestinal inflammation, their advantages and limitations, as well as application of TNF blockers in the therapy for IBD.


tumor necrosis factor lymphotoxin intestinal inflammation inflammatory bowel disease mouse models 



Crohn’s disease


dendritic cells


dextran sulfate sodium


Food and Drug Administration of USA


follicular dendritic cells


gut-associated lymphoid tissue


inflammatory bowel disease






innate lymphoid cells


homologous to lymphotoxin, exhibits inducible expression and competes with HSV glycoprotein D for binding to herpesvirus entry mediator, a receptor expressed on T-lymphocytes (another name: tumor necrosis factor superfamily member 14, TNFSF14)




membrane lymphotoxin receptor


major histocompatibility complex


mononuclear phagocytes


TNF-alpha converting enzyme


2,4,6-trinitrobenzenesulfonic acid


tumor necrosis factor


tumor necrosis factor receptor


ulcerative colitis


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Locksley, R. M., Killeen, N., and Lenardo, M. J. (2001) The TNF and TNF receptor superfamilies: integrating mammalian biology, Cell, 104, 487–501.PubMedCrossRefGoogle Scholar
  2. 2.
    Ward-Kavanagh, L. K., Lin, W. W., Sedy, J. R., and Ware, C. F. (2016) The TNF receptor superfamily in co-stimulating and co-inhibitory responses, Immunity, 44, 10051019.CrossRefGoogle Scholar
  3. 3.
    Ware, C. F. (2005) Network communications: lymphotoxins, LIGHT, and TNF, Annu. Rev. Immunol., 23, 787–819.PubMedCrossRefGoogle Scholar
  4. 4.
    Croft, M., Benedict, C. A., and Ware, C. F. (2013) Clinical targeting of the TNF and TNFR superfamilies, Nat. Rev. Drug Discov., 12, 147–168.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Browning, J. L., and French, L. E. (2002) Visualization of lymphotoxin-beta and lymphotoxin-beta receptor expression in mouse embryos, J. Immunol., 168, 5079–5087.PubMedCrossRefGoogle Scholar
  6. 6.
    Fu, Y. X., and Chaplin, D. D. (1999) Development and maturation of secondary lymphoid tissues, Annu. Rev. Immunol., 17, 399–433.PubMedCrossRefGoogle Scholar
  7. 7.
    Sudhamsu, J., Yin, J., Chiang, E. Y., Starovasnik, M. A., Grogan, J. L., and Hymowitz, S. G. (2013) Dimerization of LTbetaR by LTalpha1beta2 is necessary and sufficient for signal transduction, Proc. Natl. Acad. Sci. USA, 110, 1989619901.CrossRefGoogle Scholar
  8. 8.
    Faustman, D., and Davis, M. (2010) TNF receptor 2 pathway: drug target for autoimmune diseases, Nat. Rev. Drug Discov., 9, 482–493.PubMedCrossRefGoogle Scholar
  9. 9.
    Steinberg, M. W., Cheung, T. C., and Ware, C. F. (2011) The signaling networks of the herpesvirus entry mediator (TNFRSF14) in immune regulation, Immunol. Rev., 244, 169–187.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Randall, T. D., Carragher, D. M., and Rangel-Moreno, J. (2008) Development of secondary lymphoid organs, Annu. Rev. Immunol., 26, 627–650.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    McCarthy, D. D., Summers-Deluca, L., Vu, F., Chiu, S., Gao, Y., and Gommerman, J. L. (2006) The lymphotoxin pathway: beyond lymph node development, Immunol. Res., 35, 41–54.PubMedCrossRefGoogle Scholar
  12. 12.
    Lo, J. C., Wang, Y., Tumanov, A. V., Bamji, M., Yao, Z., Reardon, C. A., Getz, G. S., and Fu, Y. X. (2007) Lymphotoxin beta receptor-dependent control of lipid homeostasis, Science, 316, 285–288.PubMedCrossRefGoogle Scholar
  13. 13.
    Tumanov, A. V., Christiansen, P. A., and Fu, Y.-X. (2007) The role of lymphotoxin receptor signaling in diseases, Curr. Mol. Med., 7, 567–578.PubMedCrossRefGoogle Scholar
  14. 14.
    Haybaeck, J., Zeller, N., Wolf, M. J., Weber, A., Wagner, U., Kurrer, M. O., Bremer, J., Iezzi, G., Graf, R., Clavien, P. A., Thimme, R., Blum, H., Nedospasov, S. A., Zatloukal, K., Ramzan, M., Ciesek, S., Pietschmann, T., Marche, P. N., Karin, M., Kopf, M., Browning, J. L., Aguzzi, A., and Heikenwalder, M. (2009) A lymphotoxindriven pathway to hepatocellular carcinoma, Cancer Cell, 16, 295–308.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Upadhyay, V., and Fu, Y. X. (2013) Lymphotoxin signalling in immune homeostasis and the control of microorganisms, Nat. Rev. Immunol., 13, 270–279.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Kruglov, A. A., Grivennikov, S. I., Kuprash, D. V., Winsauer, C., Prepens, S., Seleznik, G. M., Eberl, G., Littman, D. R., Heikenwalder, M., Tumanov, A. V., and Nedospasov, S. A. (2013) Nonredundant function of soluble LTalpha3 produced by innate lymphoid cells in intestinal homeostasis, Science, 342, 1243–1246.PubMedCrossRefGoogle Scholar
  17. 17.
    Macho-Fernandez, E., Koroleva, E. P., Spencer, C. M., Tighe, M., Torrado, E., Cooper, A. M., Fu, Y. X., and Tumanov, A. V. (2015) Lymphotoxin beta receptor signaling limits mucosal damage through driving IL-23 production by epithelial cells, Mucosal Immunol., 8, 403–413.PubMedCrossRefGoogle Scholar
  18. 18.
    Tumanov, A. V., Grivennikov, S. I., Kruglov, A. A., Shebzukhov, Y. V., Koroleva, E. P., Piao, Y., Cui, C. Y., Kuprash, D. V., and Nedospasov, S. A. (2010) Cellular source and molecular form of TNF specify its distinct functions in organization of secondary lymphoid organs, Blood, 116, 3456–3464.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Nielsen, O. H., and Ainsworth, M. A. (2013) Tumor necrosis factor inhibitors for inflammatory bowel disease, New Engl. J. Med., 369, 754–762.PubMedCrossRefGoogle Scholar
  20. 20.
    Winsauer, C., Kruglov, A. A., Chashchina, A. A., Drutskaya, M. S., and Nedospasov, S. A. (2014) Cellular sources of pathogenic and protective TNF and experimental strategies based on utilization of TNF humanized mice, Cytokine Growth Factor Rev., 25, 115–123.PubMedCrossRefGoogle Scholar
  21. 21.
    Dothel, G., Vasina, V., Barbara, G., and De Ponti, F. (2013) Animal models of chemically induced intestinal inflammation: predictivity and ethical issues, Pharmacol. Ther., 139, 71–86.PubMedCrossRefGoogle Scholar
  22. 22.
    DeVoss, J., and Diehl, L. (2014) Murine models of inflammatory bowel disease (IBD): challenges of modeling human disease, Toxicol. Pathol., 42, 99–110.PubMedCrossRefGoogle Scholar
  23. 23.
    Jiminez, J. A., Uwiera, T. C., Douglas Inglis, G., and Uwiera, R. R. (2015) Animal models to study acute and chronic intestinal inflammation in mammals, Gut Pathog., 7, 29.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Mizoguchi, A., Takeuchi, T., Himuro, H., Okada, T., and Mizoguchi, E. (2016) Genetically engineered mouse models for studying inflammatory bowel disease, J. Pathol., 238, 205–219.PubMedCrossRefGoogle Scholar
  25. 25.
    Danese, S., Fiocchi, C., and Panes, J. (2016) Drug development in IBD: from novel target identification to early clinical trials, Gut, 65, 1233–1239.PubMedCrossRefGoogle Scholar
  26. 26.
    Jurjus, A. R., Khoury, N. N., and Reimund, J.-M. (2004) Animal models of inflammatory bowel disease, J. Pharmacol. Toxicol. Methods, 50, 81–92.PubMedCrossRefGoogle Scholar
  27. 27.
    Vorobyov, G. I., and Khalif, I. L. (eds.) (2008) Nonspecific Inflammatory Bowel Disease [in Russian], Miklosh, Moscow.Google Scholar
  28. 28.
    Baumgart, D. C., and Sandborn, W. J. (2012) Crohn’s disease, Lancet, 380, 1590–1605.PubMedCrossRefGoogle Scholar
  29. 29.
    Danese, S., and Fiocchi, C. (2011) Ulcerative colitis, New Engl. J. Med., 365, 1713–1725.PubMedCrossRefGoogle Scholar
  30. 30.
    Zimmerman, Ya. S., Zimmerman, I. Ya., and Tretyakova, Yu. I. (2013) Ulcerative colitis and Crohn’s disease: modern concept. Part 1. Definition, terminology, occurrence, etiology and pathogensis, diagnostics, complications, classification, Klin. Med., 11, 27–33.Google Scholar
  31. 31.
    Zimmerman, Ya. S., Zimmerman, I. Ya., and Tretyakova, Yu. I. (2013) Ulcerative colitis and Crohn’s disease: modern concept. Part 2. Diagnostics and differentiation therapy, Klin. Med., 12, 9–16.Google Scholar
  32. 32.
    Kaser, A., Zeissig, S., and Blumberg, R. S. (2010) Inflammatory bowel disease, Annu. Rev. Immunol., 28, 573–621.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Kaplan, G. G. (2015) The global burden of IBD: from 2015 to 2025, Nat. Rev. Gastroenterol. Hepatol., 12, 720–727.PubMedCrossRefGoogle Scholar
  34. 34.
    Wallace, K. L., Zheng, L. B., Kanazawa, Y., and Shih, D. Q. (2014) Immunopathology of inflammatory bowel disease, World J. Gastroenterol., 20, 6–21.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Neurath, M. F. (2014) Cytokines in inflammatory bowel disease, Nat. Rev. Immunol., 14, 329–342.PubMedCrossRefGoogle Scholar
  36. 36.
    Dalal, S. R., and Chang, E. B. (2014) The microbial basis of inflammatory bowel diseases, The J. Clin. Invest., 124, 4190–4196.PubMedCrossRefGoogle Scholar
  37. 37.
    Khor, B., Gardet, A., and Xavier, R. J. (2011) Genetics and pathogenesis of inflammatory bowel disease, Nature, 474, 307–317.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Sheehan, D., Moran, C., and Shanahan, F. (2015) The microbiota in inflammatory bowel disease, J. Gastroenterol., 50, 495–507.PubMedCrossRefGoogle Scholar
  39. 39.
    Wirtz, S., Neufert, C., Weigmann, B., and Neurath, M. F. (2007) Chemically induced mouse models of intestinal inflammation, Nat. Protoc., 2, 541–546.PubMedCrossRefGoogle Scholar
  40. 40.
    Low, D., Nguyen, D. D., and Mizoguchi, E. (2013) Animal models of ulcerative colitis and their application in drug research, Drug Des. Devel. Ther., 7, 1341–1357.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Okayasu, I., Hatakeyama, S., Yamada, M., Ohkusa, T., Inagaki, Y., and Nakaya, R. (1990) A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice, Gastroenterology, 98, 694–702.PubMedCrossRefGoogle Scholar
  42. 42.
    Pers, M., and Cerar, A. (2012) Dextran sodium sulphate colitis mouse model: traps and tricks, J. Biomed. Biotechnol., 2012, 718617.Google Scholar
  43. 43.
    Chassaing, B., Aitken, J. D., Malleshappa, M., and VijayKumar, M. (2014) Dextran sulfate sodium (DSS)-induced colitis in mice, Curr. Protoc. Immunol., 104, Unit 15.25.Google Scholar
  44. 44.
    Te Velde, A. A., Verstege, M. I., and Hommes, D. W. (2006) Critical appraisal of the current practice in murine TNBSinduced colitis, Inflamm. Bowel Dis., 12, 995–999.PubMedCrossRefGoogle Scholar
  45. 45.
    Motavallian-Naeini, A., Andalib, S., Rabbani, M., Mahzouni, P., Afsharipour, M., and Minaiyan, M. (2012) Validation and optimization of experimental colitis induction in rats using 2,4,6-trinitrobenzene sulfonic acid, Res. Pharm. Sci., 7, 159–169.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Ko, J.-K.-S., Lam, F.-Y.-L., and Cheung, A.-P.-L. (2005) Amelioration of experimental colitis by Astragalus membranaceus through anti-oxidation and inhibition of adhesion molecule synthesis, World J. Gastroenterol., 11, 5787–5794.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Heller, F., Fuss, I. J., Nieuwenhuis, E. E., Blumberg, R. S., and Strober, W. (2002) Oxazolone colitis, a Th2 colitis model resembling ulcerative colitis, is mediated by IL-13producing NK-T cells, Immunity, 17, 629–638.PubMedGoogle Scholar
  48. 48.
    Collins, J. W., Keeney, K. M., Crepin, V. F., Rathinam, V. A., Fitzgerald, K. A., Finlay, B. B., and Frankel, G. (2014) Citrobacter rodentium: infection, inflammation and the microbiota, Nat. Rev. Microbiol., 12, 612–623.CrossRefGoogle Scholar
  49. 49.
    Koroleva, E. P., Halperin, S., Gubernatorova, E. O., Macho-Fernandez, E., Spencer, C. M., and Tumanov, A. V. (2015) Citrobacter rodentium-induced colitis: a robust model to study mucosal immune responses in the gut, J. Immunol. Methods, 421, 61–72.PubMedCrossRefGoogle Scholar
  50. 50.
    Rivera-Nieves, J., Bamias, G., Vidrich, A., Marini, M., Pizarro, T. T., McDuffie, M. J., Moskaluk, C. A., Cohn, S. M., and Cominelli, F. (2003) Emergence of perianal fistulizing disease in the SAMP1/YitFc mouse, a spontaneous model of chronic ileitis, Gastroenterology, 124, 972–982.PubMedGoogle Scholar
  51. 51.
    Matsumoto, S., Okabe, Y., Setoyama, H., Takayama, K., Ohtsuka, J., Funahashi, H., Imaoka, A., Okada, Y., and Umesaki, Y. (1998) Inflammatory bowel disease-like enteritis and caecitis in a senescence accelerated mouse P1/Yit strain, Gut, 43, 71–78.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Pizarro, T. T., Arseneau, K. O., Bamias, G., and Cominelli, F. (2003) Mouse models for the study of Crohn’s disease, Trends Mol. Med., 9, 218–222.PubMedCrossRefGoogle Scholar
  53. 53.
    Kuhn, R., Lohler, J., Rennick, D., Rajewsky, K., and Muller, W. (1993) Interleukin-10-deficient mice develop chronic enterocolitis, Cell, 75, 263–274.PubMedCrossRefGoogle Scholar
  54. 54.
    Keubler, L. M., Buettner, M., Hager, C., and Bleich, A. (2015) A multihit model: colitis lessons from the interleukin-10-deficient mouse, Inflamm. Bowel Dis., 21, 19671975.CrossRefGoogle Scholar
  55. 55.
    Kontoyiannis, D., Boulougouris, G., Manoloukos, M., Armaka, M., Apostolaki, M., Pizarro, T., Kotlyarov, A., Forster, I., Flavell, R., Gaestel, M., Tsichlis, P., Cominelli, F., and Kollias, G. (2002) Genetic dissection of the cellular pathways and signaling mechanisms in modeled tumor necrosis factor-induced Crohn’s-like inflammatory bowel disease, J. Exp. Med., 196, 1563–1574.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Leach, M. W., Bean, A. G., Mauze, S., Coffman, R. L., and Powrie, F. (1996) Inflammatory bowel disease in C.B17 scid mice reconstituted with the CD45RBhigh subset of CD4+ T-cells, Am. J. Pathol., 148, 1503–1515.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Ostanin, D. V., Bao, J., Koboziev, I., Gray, L., RobinsonJackson, S. A., Kosloski-Davidson, M., Price, V. H., and Grisham, M. B. (2009) T-cell transfer model of chronic colitis: concepts, considerations, and tricks of the trade, Am. J. Physiol. Gastrointest. Liver Physiol., 296, G135-146.Google Scholar
  58. 58.
    Sadlack, B., Merz, H., Schorle, H., Schimpl, A., Feller, A. C., and Horak, I. (1993) Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene, Cell, 75, 253–261.PubMedCrossRefGoogle Scholar
  59. 59.
    Baumgart, D. C., Olivier, W. A., Reya, T., Peritt, D., Rombeau, J. L., and Carding, S. R. (1998) Mechanisms of intestinal epithelial cell injury and colitis in interleukin 2 (IL2)-deficient mice, Cell Immunol., 187, 52–66.PubMedCrossRefGoogle Scholar
  60. 60.
    Lee, E. G., Boone, D. L., Chai, S., Libby, S. L., Chien, M., Lodolce, J. P., and Ma, A. (2000) Failure to regulate TNFinduced NF-kappaB and cell death responses in A20-deficient mice, Science, 289, 2350–2354.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Hammer, G. E., Turer, E. E., Taylor, K. E., Fang, C. J., Advincula, R., Oshima, S., Barrera, J., Huang, E. J., Hou, B., Malynn, B. A., Reizis, B., DeFranco, A., Criswell, L. A., Nakamura, M. C., and Ma, A. (2011) Expression of A20 by dendritic cells preserves immune homeostasis and prevents colitis and spondyloarthritis, Nat. Immunol., 12, 1184–1193.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Mombaerts, P., Mizoguchi, E., Grusby, M. J., Glimcher, L. H., Bhan, A. K., and Tonegawa, S. (1993) Spontaneous development of inflammatory bowel disease in T-cell receptor mutant mice, Cell, 75, 274–282.PubMedCrossRefGoogle Scholar
  63. 63.
    Nagatani, K., Wang, S., Llado, V., Lau, C. W., Li, Z., Mizoguchi, A., Nagler, C. R., Shibata, Y., Reinecker, H.C., Mora, J. R., and Mizoguchi, E. (2012) Chitin microparticles for the control of intestinal inflammation, Inflamm. Bowel Dis., 18, 1698–1710.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Nenci, A., Becker, C., Wullaert, A., Gareus, R., Van Loo, G., Danese, S., Huth, M., Nikolaev, A., Neufert, C., Madison, B., Gumucio, D., Neurath, M. F., and Pasparakis, M. (2007) Epithelial NEMO links innate immunity to chronic intestinal inflammation, Nature, 446, 557–561.PubMedCrossRefGoogle Scholar
  65. 65.
    Watanabe, M., Ueno, Y., Yajima, T., Okamoto, S., Hayashi, T., Yamazaki, M., Iwao, Y., Ishii, H., Habu, S., Uehira, M., Nishimoto, H., Ishikawa, H., Hata, J., and Hibi, T. (1998) Interleukin 7 transgenic mice develop chronic colitis with decreased interleukin 7 protein accumulation in the colonic mucosa, J. Exp. Med., 187, 389402.CrossRefGoogle Scholar
  66. 66.
    Rath, H. C., Wilson, K. H., and Sartor, R. B. (1999) Differential induction of colitis and gastritis in HLA-B27 transgenic rats selectively colonized with Bacteroides vulgatus or Escherichia coli, Infect. Immun., 67, 2969–2974.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Rath, H. C. (2002) Role of commensal bacteria in chronic experimental colitis: lessons from the HLA-B27 transgenic rat, Pathobiology, 70, 131–138.PubMedCrossRefGoogle Scholar
  68. 68.
    Peloquin, J. M., and Nguyen, D. D. (2013) The microbiota and inflammatory bowel disease: insights from animal models, Anaerobe, 24, 102–106.PubMedCrossRefGoogle Scholar
  69. 69.
    Gkouskou, K. K., Deligianni, C., Tsatsanis, C., and Eliopoulos, A. G. (2014) The gut microbiota in mouse models of inflammatory bowel disease, Front. Cell. Infect. Microbiol., 4, 28.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Eri, R., McGuckin, M. A., and Wadley, R. (2012) T cell transfer model of colitis: a great tool to assess the contribution of T cells in chronic intestinal inflammation, Methods Mol. Biol., 844, 261–275.PubMedCrossRefGoogle Scholar
  71. 71.
    Shouval, D. S., Ouahed, J., Biswas, A., Goettel, J. A., Horwitz, B. H., Klein, C., Muise, A. M., and Snapper, S. B. (2014) Interleukin 10 receptor signaling: master regulator of intestinal mucosal homeostasis in mice and humans, Adv. Immunol., 122, 177–210.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Koboziev, I., Jones-Hall, Y., Valentine, J. F., Webb, C. R., Furr, K. L., and Grisham, M. B. (2015) Use of humanized mice to study the pathogenesis of autoimmune and inflammatory diseases, Inflamm. Bowel Dis., 21, 1652–1673.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Sonnenberg, G. F., and Artis, D. (2015) Innate lymphoid cells in the initiation, regulation and resolution of inflammation, Nat. Med., 21, 698–708.Google Scholar
  74. 74.
    Eberl, G., Colonna, M., Di Santo, J. P., and McKenzie, A. N. (2015) Innate lymphoid cells: a new paradigm in immunology, Science, 348, aaa6566.Google Scholar
  75. 75.
    Spits, H., and Cupedo, T. (2012) Innate lymphoid cells: emerging insights in development, lineage relationships, and function, Annu. Rev. Immunol., 30, 647–675.CrossRefGoogle Scholar
  76. 76.
    Diefenbach, A., Colonna, M., and Koyasu, S. (2014) Development, differentiation, and diversity of innate lymphoid cells, Immunity, 41, 354–365.PubMedGoogle Scholar
  77. 77.
    Vivier, E., Van De Pavert, S. A., Cooper, M. D., and Belz, G. T. (2016) The evolution of innate lymphoid cells, Nat. Immunol., 17, 790–794.PubMedCrossRefGoogle Scholar
  78. 78.
    Spits, H., Artis, D., Colonna, M., Diefenbach, A., Di Santo, J. P., Eberl, G., Koyasu, S., Locksley, R. M., McKenzie, A. N., Mebius, R. E., Powrie, F., and Vivier, E. (2013) Innate lymphoid cells–a proposal for uniform nomenclature, Nat. Rev. Immunol., 13, 145–149.PubMedCrossRefGoogle Scholar
  79. 79.
    McKenzie, A. N., Spits, H., and Eberl, G. (2014) Innate lymphoid cells in inflammation and immunity, Immunity, 41, 366–374.PubMedCrossRefGoogle Scholar
  80. 80.
    Klose, C. S., and Artis, D. (2016) Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis, Nat. Immunol., 17, 765–774.PubMedGoogle Scholar
  81. 81.
    Wang, Y., Koroleva, E. P., Kruglov, A. A., Kuprash, D. V., Nedospasov, S. A., Fu, Y. X., and Tumanov, A. V. (2010) Lymphotoxin beta receptor signaling in intestinal epithelial cells orchestrates innate immune responses against mucosal bacterial infection, Immunity, 32, 403–413.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Sawa, S., Lochner, M., Satoh-Takayama, N., Dulauroy, S., Berard, M., Kleinschek, M., Cua, D., Di Santo, J. P., and Eberl, G. (2011) RORgammat(+) innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota, Nat. Immunol., 12, 320–326.PubMedCrossRefGoogle Scholar
  83. 83.
    Eberl, G. (2012) Development and evolution of RORgammat+ cells in a microbe’s world, Immunol. Rev., 245, 177–188.PubMedCrossRefGoogle Scholar
  84. 84.
    Sonnenberg, G. F., Monticelli, L. A., Alenghat, T., Fung, T. C., Hutnick, N. A., Kunisawa, J., Shibata, N., Grunberg, S., Sinha, R., Zahm, A. M., Tardif, M. R., Sathaliyawala, T., Kubota, M., Farber, D. L., Collman, R. G., Shaked, A., Fouser, L. A., Weiner, D. B., Tessier, P. A., Friedman, J. R., Kiyono, H., Bushman, F. D., Chang, K. M., and Artis, D. (2012) Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria, Science, 336, 1321–1325.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Hepworth, M. R., Fung, T. C., Masur, S. H., Kelsen, J. R., McConnell, F. M., Dubrot, J., Withers, D. R., Hugues, S., Farrar, M. A., Reith, W., Eberl, G., Baldassano, R. N., Laufer, T. M., Elson, C. O., and Sonnenberg, G. F. (2015) Immune tolerance. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4(+) T-cells, Science, 348, 1031–1035.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Goc, J., Hepworth, M. R., and Sonnenberg, G. F. (2016) Group 3 innate lymphoid cells: regulating host-commensal bacteria interactions in inflammation and cancer, Int. Immunol., 28, 43–52.PubMedGoogle Scholar
  87. 87.
    Cording, S., Medvedovic, J., Aychek, T., and Eberl, G. (2016) Innate lymphoid cells in defense, immunopathology and immunotherapy, Nat. Immunol., 17, 755–757.PubMedGoogle Scholar
  88. 88.
    Zheng, Y., Valdez, P. A., Danilenko, D. M., Hu, Y., Sa, S. M., Gong, Q., Abbas, A. R., Modrusan, Z., Ghilardi, N., De Sauvage, F. J., and Ouyang, W. (2008) Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens, Nat. Med., 14, 282–289.PubMedCrossRefGoogle Scholar
  89. 89.
    Hernandez, P. P., Mahlakoiv, T., Yang, I., Schwierzeck, V., Nguyen, N., Guendel, F., Gronke, K., Ryffel, B., Holscher, C., Dumoutier, L., Renauld, J. C., Suerbaum, S., Staeheli, P., and Diefenbach, A. (2015) Interferonlambda and interleukin 22 act synergistically for the induction of interferon-stimulated genes and control of rotavirus infection, Nat. Immunol., 16, 698–707.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Vonarbourg, C., Mortha, A., Bui, V. L., Hernandez, P. P., Kiss, E. A., Hoyler, T., Flach, M., Bengsch, B., Thimme, R., Holscher, C., Honig, M., Pannicke, U., Schwarz, K., Ware, C. F., Finke, D., and Diefenbach, A. (2010) Regulated expression of nuclear receptor RORt confers distinct functional fates to NK cell receptorexpressing RORt(+) innate lymphocytes, Immunity, 33, 736–751.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Fuchs, A., Vermi, W., Lee, J. S., Lonardi, S., Gilfillan, S., Newberry, R. D., Cella, M., and Colonna, M. (2013) Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12and IL-15-responsive IFN-gamma-producing cells, Immunity, 38, 769–781.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Bernink, J. H., Peters, C. P., Munneke, M., Te Velde, A. A., Meijer, S. L., Weijer, K., Hreggvidsdottir, H. S., Heinsbroek, S. E., Legrand, N., Buskens, C. J., Bemelman, W. A., Mjosberg, J. M., and Spits, H. (2013) Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues, Nat. Immunol., 14, 221229.CrossRefGoogle Scholar
  93. 93.
    Bernink, J. H., Krabbendam, L., Germar, K., De Jong, E., Gronke, K., Kofoed-Nielsen, M., Munneke, J. M., Hazenberg, M. D., Villaudy, J., Buskens, C. J., Bemelman, W. A., Diefenbach, A., Blom, B., and Spits, H. (2015) Interleukin-12 and -23 control plasticity of CD127(+) group 1 and group 3 innate lymphoid cells in the intestinal lamina propria, Immunity, 43, 146–160.PubMedCrossRefGoogle Scholar
  94. 94.
    Spencer, S. P., Wilhelm, C., Yang, Q., Hall, J. A., Bouladoux, N., Boyd, A., Nutman, T. B., Urban, J. F., Wang, J., Ramalingam, T. R., Bhandoola, A., Wynn, T. A., and Belkaid, Y. (2014) Adaptation of innate lymphoid cells to a micronutrient deficiency promotes type 2 barrier immunity, Science, 343, 432–437.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Zook, E. C., and Kee, B. L. (2016) Development of innate lymphoid cells, Nat. Immunol., 17, 775–782.PubMedCrossRefGoogle Scholar
  96. 96.
    Koues, O. I., Collins, P. L., Cella, M., Robinette, M. L., Porter, S. I., Pyfrom, S. C., Payton, J. E., Colonna, M., and Oltz, E. M. (2016) Distinct gene regulatory pathways for human innate versus adaptive lymphoid cells, Cell, 165, 1134–1146.PubMedCrossRefGoogle Scholar
  97. 97.
    Sonnenberg, G. F. (2016) Transcriptionally defining ILC heterogeneity in humans, Nat. Immunol., 17, 351–352.PubMedCrossRefGoogle Scholar
  98. 98.
    Magri, G., Miyajima, M., Bascones, S., Mortha, A., Puga, I., Cassis, L., Barra, C. M., Comerma, L., Chudnovskiy, A., Gentile, M., Llige, D., Cols, M., Serrano, S., Arostegui, J. I., Juan, M., Yague, J., Merad, M., Fagarasan, S., and Cerutti, A. (2014) Innate lymphoid cells integrate stromal and immunological signals to enhance antibody production by splenic marginal zone B cells, Nat. Immunol., 15, 354–364.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Magri, G., and Cerutti, A. (2015) Role of group 3 innate lymphoid cells in antibody production, Curr. Opin. Immunol., 33, 36–42.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Hanash, A. M., Dudakov, J. A., Hua, G., O’Connor, M. H., Young, L. F., Singer, N. V., West, M. L., Jenq, R. R., Holland, A. M., Kappel, L. W., Ghosh, A., Tsai, J. J., Rao, U. K., Yim, N. L., Smith, O. M., Velardi, E., Hawryluk, E. B., Murphy, G. F., Liu, C., Fouser, L. A., Kolesnick, R., Blazar, B. R., and Van den Brink, M. R. (2012) Interleukin-22 protects intestinal stem cells from immunemediated tissue damage and regulates sensitivity to graft versus host disease, Immunity, 37, 339–350.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Dudakov, J. A., Hanash, A. M., and Van den Brink, M. R. (2015) Interleukin-22: immunobiology and pathology, Annu. Rev. Immunol., 33, 747–785.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Buonocore, S., Ahern, P. P., Uhlig, H. H., Ivanov, I. I., Littman, D. R., Maloy, K. J., and Powrie, F. (2010) Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology, Nature, 464, 1371–1375.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Geremia, A., Arancibia-Carcamo, C. V., Fleming, M. P., Rust, N., Singh, B., Mortensen, N. J., Travis, S. P., and Powrie, F. (2011) IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease, J. Exp. Med., 208, 1127–1133.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Geremia, A., Biancheri, P., Allan, P., Corazza, G. R., and Di Sabatino, A. (2014) Innate and adaptive immunity in inflammatory bowel disease, Autoimmun. Rev., 13, 3–10.PubMedCrossRefGoogle Scholar
  105. 105.
    Withers, D. R., Hepworth, M. R., Wang, X., Mackley, E. C., Halford, E. E., Dutton, E. E., Marriott, C. L., Brucklacher-Waldert, V., Veldhoen, M., Kelsen, J., Baldassano, R. N., and Sonnenberg, G. F. (2016) Transient inhibition of ROR-gammat therapeutically limits intestinal inflammation by reducing TH17 cells and preserving group 3 innate lymphoid cells, Nat. Med., 22, 319–323.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Goldberg, R., Prescott, N., Lord, G. M., MacDonald, T. T., and Powell, N. (2015) The unusual suspects–innate lymphoid cells as novel therapeutic targets in IBD, Nat. Rev. Gastroenterol. Hepatol., 12, 271–283.PubMedCrossRefGoogle Scholar
  107. 107.
    Tumanov, A. V., Koroleva, E. P., Guo, X., Wang, Y., Kruglov, A., Nedospasov, S., and Fu, Y. X. (2011) Lymphotoxin controls the IL-22 protection pathway in gut innate lymphoid cells during mucosal pathogen challenge, Cell Host Microbe, 10, 44–53.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Spahn, T. W., Maaser, C., Eckmann, L., Heidemann, J., Lugering, A., Newberry, R., Domschke, W., Herbst, H., and Kucharzik, T. (2004) The lymphotoxin-beta receptor is critical for control of murine Citrobacter rodentiuminduced colitis, Gastroenterology, 127, 1463.PubMedCrossRefGoogle Scholar
  109. 109.
    Cerovic, V., Bain, C. C., Mowat, A. M., and Milling, S. W. (2014) Intestinal macrophages and dendritic cells: what’s the difference? Trends Immunol., 35, 270–277.Google Scholar
  110. 110.
    Guilliams, M., Ginhoux, F., Jakubzick, C., Naik, S. H., Onai, N., Schraml, B. U., Segura, E., Tussiwand, R., and Yona, S. (2014) Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny, Nat. Rev. Immunol., 14, 571–578.PubMedGoogle Scholar
  111. 111.
    Backhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A., and Gordon, J. I. (2005) Host-bacterial mutualism in the human intestine, Science, 307, 1915–1920.PubMedCrossRefGoogle Scholar
  112. 112.
    Gensollen, T., Iyer, S. S., Kasper, D. L., and Blumberg, R. S. (2016) How colonization by microbiota in early life shapes the immune system, Science, 352, 539–544.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Caballero, S., and Pamer, E. G. (2015) Microbiota-mediated inflammation and antimicrobial defense in the intestine, Annu. Rev. Immunol., 33, 227–256.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Hamada, H., Hiroi, T., Nishiyama, Y., Takahashi, H., Masunaga, Y., Hachimura, S., Kaminogawa, S., Takahashi-Iwanaga, H., Iwanaga, T., Kiyono, H., Yamamoto, H., and Ishikawa, H. (2002) Identification of multiple isolated lymphoid follicles on the antimesenteric wall of the mouse small intestine, J. Immunol., 168, 57–64.PubMedCrossRefGoogle Scholar
  115. 115.
    Mantis, N. J., McGuinness, C. R., Sonuyi, O., Edwards, G., and Farrant, S. A. (2006) Immunoglobulin A antibodies against ricin A and B subunits protect epithelial cells from ricin intoxication, Infect. Immun., 74, 3455–3462.Google Scholar
  116. 116.
    Pabst, O. (2012) New concepts in the generation and functions of IgA, Nat. Rev. Immunol., 12, 821–832.PubMedCrossRefGoogle Scholar
  117. 117.
    Bemark, M., Boysen, P., and Lycke, N. Y. (2012) through T cell-dependent and T-cell-independent pathways, Ann. N. Y. Acad. Sci., 1247, 97–116.Google Scholar
  118. 118.
    Cerutti, A. (2008) The regulation of IgA class switching, Nat. Rev. Immunol., 8, 421–434.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Gutzeit, C., Magri, G., and Cerutti, A. (2014) Intestinal IgA production and its role in host-microbe interaction, Immunol. Rev., 260, 76–85.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Fagarasan, S., Kawamoto, S., Kanagawa, O., and Suzuki, K. (2010) Adaptive immune regulation in the gut: T-celldependent and T-cell-independent IgA synthesis, Annu. Rev. Immunol., 28, 243–273.PubMedCrossRefGoogle Scholar
  121. 121.
    Masahata, K., Umemoto, E., Kayama, H., Kotani, M., Nakamura, S., Kurakawa, T., Kikuta, J., Gotoh, K., Motooka, D., Sato, S., Higuchi, T., Baba, Y., Kurosaki, T., Kinoshita, M., Shimada, Y., Kimura, T., Okumura, R., Takeda, A., Tajima, M., Yoshie, O., Fukuzawa, M., Kiyono, H., Fagarasan, S., Iida, T., Ishii, M., and Takeda, K. (2014) Generation of colonic IgA-secreting cells in the caecal patch, Nat. Commun., 5, 3704.PubMedCrossRefGoogle Scholar
  122. 122.
    Macpherson, A. J., Gatto, D., Sainsbury, E., Harriman, G. R., Hengartner, H., and Zinkernagel, R. M. (2000) A primitive T-cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria, Science, 288, 2222–2226.PubMedCrossRefGoogle Scholar
  123. 123.
    Mora, J. R., Iwata, M., Eksteen, B., Song, S. Y., Junt, T., Senman, B., Otipoby, K. L., Yokota, A., Takeuchi, H., Ricciardi-Castagnoli, P., Rajewsky, K., Adams, D. H., and Von Andrian, U. H. (2006) Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells, Science, 314, 1157–1160.PubMedCrossRefGoogle Scholar
  124. 124.
    Lorenz, R. G., Chaplin, D. D., McDonald, K. G., McDonough, J. S., and Newberry, R. D. (2003) Isolated lymphoid follicle formation is inducible and dependent upon lymphotoxin-sufficient B lymphocytes, lymphotoxin beta receptor, and TNF receptor I function, J. Immunol., 170, 5475–5482.Google Scholar
  125. 125.
    Van De Pavert, S. A., and Mebius, R. E. (2010) New insights into the development of lymphoid tissues, Nat. Rev. Immunol., 10, 664–674.PubMedCrossRefGoogle Scholar
  126. 126.
    Bar-Ephraim, Y. E., and Mebius, R. E. (2016) Innate lymphoid cells in secondary lymphoid organs, Immunol. Rev., 271, 185–199.PubMedCrossRefGoogle Scholar
  127. 127.
    Kuprash, D. V., Tumanov, A. V., Liepinsh, D. J., Koroleva, E. P., Drutskaya, M. S., Kruglov, A. A., Shakhov, A. N., Southon, E., Murphy, W. J., Tessarollo, L., Grivennikov, S. I., and Nedospasov, S. A. (2005) Novel tumor necrosis factor-knockout mice that lack Peyer’s patches, Eur. J. Immunol., 35, 1592–1600.PubMedCrossRefGoogle Scholar
  128. 128.
    Kang, H. S., Chin, R. K., Wang, Y., Yu, P., Wang, J., Newell, K. A., and Fu, Y. X. (2002) Signaling via LTbetaR on the lamina propria stromal cells of the gut is required for IgA production, Nat. Immunol., 3, 576–582.PubMedCrossRefGoogle Scholar
  129. 129.
    Danese, S., and Peyrin-Biroulet, L. (2014) IBD in 2013: enriching the therapeutic armamentarium for IBD, Nat. Rev. Gastroenterol. Hepatol., 11, 84–86.PubMedCrossRefGoogle Scholar
  130. 130.
    Rogler, G. (2015) Where are we heading to in pharmacological IBD therapy? Pharmacol. Res., 100, 220–227.Google Scholar
  131. 131.
    Scharl, M., and Rogler, G. (2012) Inflammatory bowel disease pathogenesis: what is new? Curr. Opin. Gastroenterol., 28, 301–309.Google Scholar
  132. 132.
    Bosani, M., Ardizzone, S., and Porro, G. B. (2009) Biologic targeting in the treatment of inflammatory bowel diseases, Biologics, 3, 77–97.PubMedPubMedCentralGoogle Scholar
  133. 133.
    Olesen, C. M., Coskun, M., Peyrin-Biroulet, L., and Nielsen, O. H. (2016) Mechanisms behind efficacy of tumor necrosis factor inhibitors in inflammatory bowel diseases, Pharmacol. Ther., 159, 110–119.PubMedCrossRefGoogle Scholar
  134. 134.
    Murch, S. H., Lamkin, V. A., Savage, M. O., WalkerSmith, J. A., and MacDonald, T. T. (1991) Serum concentrations of tumour necrosis factor alpha in childhood chronic inflammatory bowel disease, Gut, 32, 913–917.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Breese, E. J., Michie, C. A., Nicholls, S. W., Murch, S. H., Williams, C. B., Domizio, P., Walker-Smith, J. A., and MacDonald, T. T. (1994) Tumor necrosis factor alpha-producing cells in the intestinal mucosa of children with inflammatory bowel disease, Gastroenterology, 106, 1455–1466.PubMedCrossRefGoogle Scholar
  136. 136.
    Nilsen, E. M., Johansen, F. E., Kvale, D., Krajci, P., and Brandtzaeg, P. (1999) Different regulatory pathways employed in cytokine-enhanced expression of secretory component and epithelial HLA class I genes, Eur. J. Immunol., 29, 168–179.PubMedCrossRefGoogle Scholar
  137. 137.
    D’Haens, G. (2010) Anti-TNF treatment in Crohn’s disease: toward tailored therapy? Am. J. Gastroenterol., 105, 1140–1141.Google Scholar
  138. 138.
    Tracey, D., Klareskog, L., Sasso, E. H., Salfeld, J. G., and Tak, P. P. (2008) Tumor necrosis factor antagonist mechanisms of action: a comprehensive review, Pharmacol. Ther., 117, 244–279.PubMedCrossRefGoogle Scholar
  139. 139.
    Ueda, N., Tsukamoto, H., Mitoma, H., Ayano, M., Tanaka, A., Ohta, S., Inoue, Y., Arinobu, Y., Niiro, H., Akashi, K., and Horiuchi, T. (2013) The cytotoxic effects of certolizumab pegol and golimumab mediated by transmembrane tumor necrosis factor alpha, Inflamm. Bowel Dis., 19, 1224–1231.PubMedCrossRefGoogle Scholar
  140. 140.
    Slevin, S. M., and Egan, L. J. (2015) New insights into the mechanisms of action of anti-tumor necrosis factor-alpha monoclonal antibodies in inflammatory bowel disease, Inflamm. Bowel Dis., 21, 2909–2920.PubMedCrossRefGoogle Scholar
  141. 141.
    Shchigoleva, N. E., Matina, I. A., Ponomariova, A. P., Karpina, L. M., and Bologov, A. A. (2010) Use of infliximab in children with inflammatory bowel diseases, Pediatr. Pharmacol., 7, 55–61.Google Scholar
  142. 142.
    Benucci, M., Saviola, G., Manfredi, M., Sarzi-Puttini, P., and Atzeni, F. (2012) Tumor necrosis factors blocking agents: analogies and differences, Acta Biomed., 83, 72–80.PubMedGoogle Scholar
  143. 143.
    Thorlund, K., Druyts, E., Toor, K., and Mills, E. J. (2015) Comparative efficacy of golimumab, infliximab, and adalimumab for moderately to severely active ulcerative colitis: a network meta-analysis accounting for differences in trial designs, Expert. Rev. Gastroenterol. Hepatol., 9, 693–700.PubMedGoogle Scholar
  144. 144.
    Peake, S. T., Bernardo, D., Mann, E. R., Al-Hassi, H. O., Knight, S. C., and Hart, A. L. (2013) Mechanisms of action of anti-tumor necrosis factor alpha agents in Crohn’s disease, Inflamm. Bowel Dis., 19, 1546–1555.PubMedCrossRefGoogle Scholar
  145. 145.
    Steenholdt, C., Brynskov, J., Thomsen, O. O., Munck, L. K., Fallingborg, J., Christensen, L. A., Pedersen, G., Kjeldsen, J., Jacobsen, B. A., Oxholm, A. S., Kjellberg, J., Bendtzen, K., and Ainsworth, M. A. (2014) Individualised therapy is more cost-effective than dose intensification in patients with Crohn’s disease who lose response to anti-TNF treatment: a randomised, controlled trial, Gut, 63, 919–927.PubMedGoogle Scholar
  146. 146.
    Kaymakcalan, Z., Sakorafas, P., Bose, S., Scesney, S., Xiong, L., Hanzatian, D. K., Salfeld, J., and Sasso, E. H. (2009) Comparisons of affinities, avidities, and complement activation of adalimumab, infliximab, and etanercept in binding to soluble and membrane tumor necrosis factor, Clin. Immunol., 131, 308–316.PubMedGoogle Scholar
  147. 147.
    Shealy, D. J., Cai, A., Staquet, K., Baker, A., Lacy, E. R., Johns, L., Vafa, O., Gunn, G., 3rd, Tam, S., Sague, S., Wang, D., Brigham-Burke, M., Dalmonte, P., Emmell, E., Pikounis, B., Bugelski, P. J., Zhou, H., Scallon, B. J., and Giles-Komar, J. (2010) Characterization of golimumab, a human monoclonal antibody specific for human tumor necrosis factor alpha, MAbs, 2, 428–439.PubMedGoogle Scholar
  148. 148.
    Scallon, B., Cai, A., Solowski, N., Rosenberg, A., Song, X. Y., Shealy, D., and Wagner, C. (2002) Binding and functional comparisons of two types of tumor necrosis factor antagonists, J. Pharmacol. Exp. Ther., 301, 418–426.PubMedCrossRefGoogle Scholar
  149. 149.
    Nesbitt, A., Fossati, G., Bergin, M., Stephens, P., Stephens, S., Foulkes, R., Brown, D., Robinson, M., and Bourne, T. (2007) Mechanism of action of certolizumab pegol (CDP870): in vitro comparison with other antitumor necrosis factor alpha agents, Inflamm. Bowel Dis., 13, 1323–1332.PubMedCrossRefGoogle Scholar
  150. 150.
    Vos, A. C., Wildenberg, M. E., Arijs, I., Duijvestein, M., Verhaar, A. P., De Hertogh, G., Vermeire, S., Rutgeerts, P., Van den Brink, G. R., and Hommes, D. W. (2012) Regulatory macrophages induced by infliximab are involved in healing in vivo and in vitro, Inflamm. Bowel Dis., 18, 401–408.PubMedCrossRefGoogle Scholar
  151. 151.
    Perrier, C., De Hertogh, G., Cremer, J., Vermeire, S., Rutgeerts, P., Van Assche, G., Szymkowski, D. E., and Ceuppens, J. L. (2013) Neutralization of membrane TNF, but not soluble TNF, is crucial for the treatment of experimental colitis, Inflamm. Bowel Dis., 19, 246–253.PubMedGoogle Scholar
  152. 152.
    Oikonomopoulos, A., Van Deen, W. K., and Hommes, D. W. (2013) Anti-TNF antibodies in inflammatory bowel disease: do we finally know how it works? Curr. Drug Targets, 14, 1421–1432.PubMedCrossRefGoogle Scholar
  153. 153.
    Sandborn, W. J., Hanauer, S. B., Katz, S., Safdi, M., Wolf, D. G., Baerg, R. D., Tremaine, W. J., Johnson, T., Diehl, N. N., and Zinsmeister, A. R. (2001) Etanercept for active Crohn’s disease: a randomized, double-blind, placebocontrolled trial, Gastroenterology, 121, 1088–1094.Google Scholar
  154. 154.
    Van den Brande, J. M., Braat, H., Van den Brink, G. R., Versteeg, H. H., Bauer, C. A., Hoedemaeker, I., Van Montfrans, C., Hommes, D. W., Peppelenbosch, M. P., and Van Deventer, S. J. (2003) Infliximab but not etanercept induces apoptosis in lamina propria T-lymphocytes from patients with Crohn’s disease, Gastroenterology, 124, 1774–1785.PubMedCrossRefGoogle Scholar
  155. 155.
    Mocci, G., Marzo, M., Papa, A., Armuzzi, A., and Guidi, L. (2013) Dermatological adverse reactions during antiTNF treatments: focus on inflammatory bowel disease, J. Crohn’s Colitis, 7, 769–779.CrossRefGoogle Scholar
  156. 156.
    Targownik, L. E., and Bernstein, C. N. (2013) Infectious and malignant complications of TNF inhibitor therapy in IBD, Am. J. Gastroenterol., 108, 1835–1842, quiz 1843.PubMedCrossRefGoogle Scholar
  157. 157.
    Cleynen, I., and Vermeire, S. (2012) Paradoxical inflammation induced by anti-TNF agents in patients with IBD, Nat. Rev. Gastroenterol. Hepatol., 9, 496–503.PubMedCrossRefGoogle Scholar
  158. 158.
    Wiens, A., Venson, R., Correr, C. J., Otuki, M. F., and Pontarolo, R. (2010) Meta-analysis of the efficacy and safety of adalimumab, etanercept, and infliximab for the treatment of rheumatoid arthritis, Pharmacotherapy, 30, 339–353.PubMedGoogle Scholar
  159. 159.
    Heldmann, F., Brandt, J., Van der Horst-Bruinsma, I. E., Landewe, R., Sieper, J., Burmester, G. R., Van den Bosch, F., De Vlam, K., Geusens, P., Gaston, H., Schewe, S., Appelboom, T., Emery, P., Dougados, M., Leirisalo-Repo, M., Breban, M., Listing, J., and Braun, J. (2011) The European ankylosing spondylitis infliximab cohort (EASIC): a European multicentre study of long term outcomes in patients with ankylosing spondylitis treated with infliximab, Clin. Exp. Rheumatol., 29, 672–680.PubMedGoogle Scholar
  160. 160.
    Tzu, J., and Kerdel, F. (2008) From conventional to cutting edge: the new era of biologics in treatment of psoriasis, Dermatol. Ther., 21, 131–141.PubMedCrossRefGoogle Scholar
  161. 161.
    Angelucci, E., Cocco, A., Viscido, A., Vernia, P., and Caprilli, R. (2007) Another paradox in Crohn’s disease: new onset of psoriasis in a patient receiving tumor necrosis factor-alpha antagonist, Inflamm. Bowel Dis., 13, 10591061.CrossRefGoogle Scholar
  162. 162.
    Cullen, G., Kroshinsky, D., Cheifetz, A. S., and Korzenik, J. R. (2011) Psoriasis associated with anti-tumour necrosis factor therapy in inflammatory bowel disease: a new series and a review of 120 cases from the literature, Aliment. Pharmacol. Ther., 34, 1318–1327.PubMedCrossRefGoogle Scholar
  163. 163.
    Palucka, A. K., Blanck, J. P., Bennett, L., Pascual, V., and Banchereau, J. (2005) Cross-regulation of TNF and IFNalpha in autoimmune diseases, Proc. Natl. Acad. Sci. USA, 102, 3372–3377.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Williams, V. L., and Cohen, P. R. (2011) TNF alpha antagonist-induced lupus-like syndrome: report and review of the literature with implications for treatment with alternative TNF alpha antagonists, Int. J. Dermatol., 50, 619–625.PubMedCrossRefGoogle Scholar
  165. 165.
    Bout-Tabaku, S., Rivas-Chacon, R., and Restrepo, R. (2007) Systemic lupus erythematosus in a patient treated with etanercept for polyarticular juvenile rheumatoid arthritis, J. Rheumatol., 34, 2503–2504.PubMedGoogle Scholar
  166. 166.
    Ferraccioli, G., Mecchia, F., Di Poi, E., and Fabris, M. (2002) Anticardiolipin antibodies in rheumatoid patients treated with etanercept or conventional combination therapy: direct and indirect evidence for a possible association with infections, Ann. Rheum. Dis., 61, 358–361.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Via, C. S., Shustov, A., Rus, V., Lang, T., Nguyen, P., and Finkelman, F. D. (2001) In vivo neutralization of TNFalpha promotes humoral autoimmunity by preventing the induction of CTL, J. Immunol., 167, 6821–6826.PubMedCrossRefGoogle Scholar
  168. 168.
    Fidder, H., Schnitzler, F., Ferrante, M., Noman, M., Katsanos, K., Segaert, S., Henckaerts, L., Van Assche, G., Vermeire, S., and Rutgeerts, P. (2009) Long-term safety of infliximab for the treatment of inflammatory bowel disease: a single-centre cohort study, Gut, 58, 501–508.PubMedCrossRefGoogle Scholar
  169. 169.
    Hochman, D., and Wolff, B. (2006) Risk of serious infections and malignancies with anti-TNF antibody therapy in rheumatoid arthritis, JAMA, 296, 2203; author reply 2203-2204.PubMedCrossRefGoogle Scholar
  170. 170.
    Stern, R. S., Liebman, E. J., and Vakeva, L. (1998) Oral psoralen and ultraviolet-A light (PUVA) treatment of psoriasis and persistent risk of nonmelanoma skin cancer. PUVA Follow-up Study, J. Natl. Cancer Inst., 90, 1278–1284.PubMedCrossRefGoogle Scholar
  171. 171.
    Peyrin-Biroulet, L., Khosrotehrani, K., Carrat, F., Bouvier, A. M., Chevaux, J. B., Simon, T., Carbonnel, F., Colombel, J. F., Dupas, J. L., Godeberge, P., Hugot, J. P., Lemann, M., Nahon, S., Sabate, J. M., Tucat, G., and Beaugerie, L. (2011) Increased risk for nonmelanoma skin cancers in patients who receive thiopurines for inflammatory bowel disease, Gastroenterology, 141, 1621–1628.PubMedCrossRefGoogle Scholar
  172. 172.
    Steenholdt, C., Svenson, M., Bendtzen, K., Thomsen, O. O., Brynskov, J., and Ainsworth, M. A. (2011) Severe infusion reactions to infliximab: aetiology, immunogenicity and risk factors in patients with inflammatory bowel disease, Aliment. Pharmacol. Ther., 34, 51–58.PubMedGoogle Scholar
  173. 173.
    Slifman, N. R., Gershon, S. K., Lee, J. H., Edwards, E. T., and Braun, M. M. (2003) Listeria monocytogenes infection as a complication of treatment with tumor necrosis factor alpha-neutralizing agents, Arthritis. Rheum., 48, 319–324.PubMedCrossRefGoogle Scholar
  174. 174.
    Peyrin-Biroulet, L., Deltenre, P., De Suray, N., Branche, J., Sandborn, W. J., and Colombel, J. F. (2008) Efficacy and safety of tumor necrosis factor antagonists in Crohn’s disease: meta-analysis of placebo-controlled trials, Clin. Gastroenterol. Hepatol., 6, 644–653.PubMedCrossRefGoogle Scholar
  175. 175.
    Shebzukhov, Y. V., Kuchmiy, A. A., Kruglov, A. A., Zipp, F., Siffrin, V., and Nedospasov, S. A. (2014) Experimental applications of TNF-reporter mice with far-red fluorescent label, Methods Mol. Biol., 1155, 151–162.PubMedCrossRefGoogle Scholar
  176. 176.
    Lowenberg, M., and D’Haens, G. (2015) Next-generation therapeutics for IBD, Curr. Gastroenterol. Rep., 17, 21.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Gomez-Gomez, G. J., Masedo, A., Yela, C., MartinezMontiel Mdel, P., and Casis, B. (2015) Current stage in inflammatory bowel disease: what is next? World J. Gastroenterol., 21, 11282–11303.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  2. 2.Department of Microbiology, Immunology, and Molecular GeneticsUniversity of Texas Health Science CenterSan AntonioUSA

Personalised recommendations