Biochemistry (Moscow)

, Volume 81, Issue 11, pp 1293–1302 | Cite as

Mediators and biomarkers of inflammation in meningitis: Cytokine and peptidome profiling of cerebrospinal fluid

  • A. A. BelogurovJr.Email author
  • O. M. Ivanova
  • Y. A. Lomakin
  • R. H. Ziganshin
  • M. I. Vaskina
  • V. D. Knorre
  • E. A. Klimova
  • A. G. Gabibov
  • V. T. Ivanov
  • V. M. Govorun
Molecular and Cellular Mechanisms of Inflammation (Special Issue) Guest Editors S. A. Nedospasov and D. V. Kuprash


Differential diagnosis of bacterial and viral meningitis is an urgent problem of the modern clinical medicine. Early and accurate detection of meningitis etiology largely determines the strategy of its treatment and significantly increases the likelihood of a favorable outcome for the patient. In the present work, we analyzed the peptidome and cytokine profiles of cerebrospinal fluid (CSF) of 17 patients with meningitis of bacterial and viral etiology and of 20 neurologically healthy controls. In addition to the identified peptides (potential biomarkers), we found significant differences in the cytokine status of the CSF of the patients. We found that cut-off of 100 pg/ml of IL-1β, TNF, and GM-CSF levels discriminates bacterial and viral meningitis with 100% specificity and selectivity. We demonstrated for the first time the reduction in the level of two cytokines, IL-13 and GM-CSF, in the CSF of patients with viral meningitis in comparison with the controls. The decrease in GM-CSF level in the CSF of patients with viral meningitis can be explained by a disproportionate increase in the levels of cytokines IL-10, IFN-γ, and IL-4, which inhibit the GM-CSF expression, whereas IL-1, IL-6, and TNF activate it. These observations suggest an additional approach for differential diagnosis of bacterial and viral meningitis based on the normalized ratio IL-10/IL-1β and IL-10/TNF > 1, as well as on the ratio IFN-γ/IL-1β and IFN-γ/ TNF < 0.1. Our findings extend the panel of promising clinical and diagnostic biomarkers of viral and bacterial meningitis and reveal opposite changes in the cytokine expression in meningitis due to compensatory action of proand antiinflammatory factors.


inflammation meningitis cytokines biomarkers peptidome cerebrospinal fluid 



bacterial meningitis


cerebrospinal fluid


granulocyte-macrophage colony-stimulating factor






tumor necrosis factor


viral meningitis


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10541_2016_338_MOESM1_ESM.pdf (384 kb)
Mediators and Biomarkers of Inflammation in Meningitis: Cytokine and Peptidome Profiling of Cerebrospinal Fluid


  1. 1.
    Reimann, H. A. (1935) Micrococcus tetragenus infection: I. Review of the literature, report of a non-fatal case with septicemia, meningitis and arthritis, and bacteriologic studies, J. Clin. Invest., 14, 311–319.PubMedGoogle Scholar
  2. 2.
    Lepow, M. L., Coyne, N., Thompson, L. B., Carver, D. H., and Robbins, F. C. (1962) A clinical, epidemiologic and laboratory investigation of aseptic meningitis during the four-year period, 1955-1958. II. The clinical disease and its sequelae, N. Engl. J. Med., 266, 1188–1193.PubMedGoogle Scholar
  3. 3.
    Logan, S. A., and MacMahon, E. (2008) Viral meningitis, BMJ, 336, 36–40.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Mace, S. E. (2008) Acute bacterial meningitis, Emerg. Med. Clin. North Am., 26, 281–317.CrossRefPubMedGoogle Scholar
  5. 5.
    Finsterer, J., and Auer, H. (2013) Parasitoses of the human central nervous system, J. Helminthol., 87, 257–270.CrossRefPubMedGoogle Scholar
  6. 6.
    Bahr, N. C., and Boulware, D. R. (2014) Methods of rapid diagnosis for the etiology of meningitis in adults, Biomark. Med., 8, 1085–1103.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Cunha, B. A. (2013) The clinical and laboratory diagnosis of acute meningitis and acute encephalitis, Expert. Opin. Med. Diagn., 7, 343–364.CrossRefPubMedGoogle Scholar
  8. 8.
    Knight, J. A., Dudek, S. M., and Haymond, R. E. (1981) Early (chemical) diagnosis of bacterial meningitis–cerebrospinal fluid glucose, lactate, and lactate dehydrogenase compared, Clin. Chem., 27, 1431–1434.PubMedGoogle Scholar
  9. 9.
    Zwijnenburg, P. J., Van der Poll, T., Florquin, S., Roord, J. J., and Van Furth, A. M. (2003) IL-1 receptor type 1 genedeficient mice demonstrate an impaired host defense against pneumococcal meningitis, J. Immunol., 170, 4724–4730.CrossRefPubMedGoogle Scholar
  10. 10.
    Barichello, T., Dos Santos, I., Savi, G. D., Florentino, A. F., Silvestre, C., Comim, C. M., Feier, G., Sachs, D., Teixeira, M. M., Teixeira, A. L., and Quevedo, J. (2009) Tumor necrosis factor alpha (TNF-alpha) levels in the brain and cerebrospinal fluid after meningitis induced by Streptococcus pneumoniae, Neurosci. Lett., 467, 217–219.CrossRefPubMedGoogle Scholar
  11. 11.
    Izadpanah, K., Freyer, D., Weber, J. R., and Braun, J. S. (2014) Brain parenchymal TNF-alpha and IL-1-beta induction in experimental pneumococcal meningitis, J. Neuroimmunol., 276, 104–111.CrossRefPubMedGoogle Scholar
  12. 12.
    Takahashi, W., Nakada, T. A., Abe, R., Tanaka, K., Matsumura, Y., and Oda, S. (2014) Usefulness of interleukin-6 levels in the cerebrospinal fluid for the diagnosis of bacterial meningitis, J. Crit. Care, 29, 693 e691-696.CrossRefPubMedGoogle Scholar
  13. 13.
    Prasad, R., Kapoor, R., Srivastava, R., Mishra, O. P., and Singh, T. B. (2014) Cerebrospinal fluid TNF-alpha, IL-6, and IL-8 in children with bacterial meningitis, Pediatr. Neurol., 50, 60–65.PubMedGoogle Scholar
  14. 14.
    Siddiqui, A. A., Brouwer, A. E., Wuthiekanun, V., Jaffar, S., Shattock, R., Irving, D., Sheldon, J., Chierakul, W., Peacock, S., Day, N., White, N. J., and Harrison, T. S. (2005) IFN-gamma at the site of infection determines rate of clearance of infection in cryptococcal meningitis, J. Immunol., 174, 1746–1750.CrossRefPubMedGoogle Scholar
  15. 15.
    Koopmans, M. M., Brouwer, M. C., Geldhoff, M., Seron, M. V., Houben, J., Van der Ende, A., and Van De Beek, D. (2014) Cerebrospinal fluid inflammatory markers in patients with meningitis, BBA Clin., 1, 44–51.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Pinto Junior, V. L., Rebelo, M. C., Gomes, R. N., Assis, E. F., Castro- Faria-Neto, H. C., and Boia, M. N. (2011) IL-6 and IL-8 in cerebrospinal fluid from patients with aseptic meningitis and bacterial meningitis: their potential role as a marker for differential diagnosis, Braz. J. Infect. Dis., 15, 156–158.CrossRefPubMedGoogle Scholar
  17. 17.
    Ou, Q., Liu, X., and Cheng, X. (2013) An iTRAQ approach to quantitative proteome analysis of cerebrospinal fluid from patients with tuberculous meningitis, Biosci. Trends, 7, 186–192.PubMedGoogle Scholar
  18. 18.
    Cordeiro, A. P., Silva Pereira, R. A., Chapeaurouge, A., Coimbra, C. S., Perales, J., Oliveira, G., Sanchez Candiani, T. M., and Coimbra, R. S. (2015) Comparative proteomics of cerebrospinal fluid reveals a predictive model for differential diagnosis of pneumococcal, meningococcal, and enteroviral meningitis, and novel putative therapeutic targets, BMC Genomics, 16 (Suppl. 5), S11.PubMedGoogle Scholar
  19. 19.
    Goonetilleke, U. R., Scarborough, M., Ward, S. A., and Gordon, S. B. (2010) Proteomic analysis of cerebrospinal fluid in pneumococcal meningitis reveals potential biomarkers associated with survival, J. Infect. Dis., 202, 542–550.Google Scholar
  20. 20.
    Jesse, S., Steinacker, P., Lehnert, S., Sdzuj, M., Cepek, L., Tumani, H., Jahn, O., Schmidt, H., and Otto, M. (2010) A proteomic approach for the diagnosis of bacterial meningitis, PLoS One, 5, e10079.CrossRefGoogle Scholar
  21. 21.
    Kataria, J., Rukmangadachar, L. A., Hariprasad, G., Jithesh, O., Tripathi, M., and Srinivasan, A. (2011) Twodimensional difference gel electrophoresis analysis of cerebrospinal fluid in tuberculous meningitis patients, J. Proteom., 74, 2194–2203.Google Scholar
  22. 22.
    Segawa, S., Sawai, S., Murata, S., Nishimura, M., Beppu, M., Sogawa, K., Watanabe, M., Satoh, M., Matsutani, T., Kobayashi, M., Iwadate, Y., Kuwabara, S., Saeki, N., and Nomura, F. (2014) Direct application of MALDI-TOF mass spectrometry to cerebrospinal fluid for rapid pathogen identification in a patient with bacterial meningitis, Clin. Chim. Acta, 435, 59–61.CrossRefPubMedGoogle Scholar
  23. 23.
    Kovalchuk, S. I., Anikanov, N. A., Ivanova, O. M., Ziganshin, R. H., and Govorun, V. M. (2015) Bovine serum albumin as a universal suppressor of non-specific peptide binding in vials prior to nano-chromatography coupled mass-spectrometry analysis, Anal. Chim. Acta, 893, 57–64.CrossRefPubMedGoogle Scholar
  24. 24.
    Konstantinidis, T., Cassimos, D., Gioka, T., Tsigalou, C., Parasidis, T., Alexandropoulou, I., Nikolaidis, C., Kampouromiti, G., Constantinidis, T., Chatzimichael, A., and Panopoulou, M. (2015) Can procalcitonin in cerebrospinal fluid be a diagnostic tool for meningitis? J. Clin. Lab. Anal., 29, 169–174.CrossRefPubMedGoogle Scholar
  25. 25.
    Li, Y., Zhang, G., Ma, R., Du, Y., Zhang, L., Li, F., Fang, F., Lv, H., Wang, Q., Zhang, Y., and Kang, X. (2015) The diagnostic value of cerebrospinal fluids procalcitonin and lactate for the differential diagnosis of post-neurosurgical bacterial meningitis and aseptic meningitis, Clin. Biochem., 48, 50–54.CrossRefPubMedGoogle Scholar
  26. 26.
    Nedospasov, S. A., Hirt, B., Shakhov, A. N., Dobrynin, V. N., Kawashima, E., Accolla, R. S., and Jongeneel, C. V. (1986) The genes for tumor necrosis factor (TNF-alpha) and lymphotoxin (TNF-beta) are tandemly arranged on chromosome 17 of the mouse, Nucleic Acids Res., 14, 7713–7725.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    March, C. J., Mosley, B., Larsen, A., Cerretti, D. P., Braedt, G., Price, V., Gillis, S., Henney, C. S., Kronheim, S. R., Grabstein, K., Conlon, P. J., Hopp, T. P., and Cosman, D. (1985) Cloning, sequence and expression of two distinct human interleukin-1 complementary DNAs, Nature, 315, 641–647.PubMedGoogle Scholar
  28. 28.
    Tang, R. B., Lee, B. H., Chung, R. L., Chen, S. J., and Wong, T. T. (2001) Interleukin-1-beta and tumor necrosis factor-alpha in cerebrospinal fluid of children with bacterial meningitis, Childs Nerv. Syst., 17, 453–456.CrossRefPubMedGoogle Scholar
  29. 29.
    Bociaga-Jasik, M., Garlicki, A., Ciesla, A., KalinowskaNowak, A., Sobczyk-Krupiarz, I., and Mach, T. (2012) The diagnostic value of cytokine and nitric oxide concentrations in cerebrospinal fluid for the differential diagnosis of meningitis, Adv. Med. Sci., 57, 142–147.CrossRefPubMedGoogle Scholar
  30. 30.
    Krebs, V. L., Okay, T. S., Okay, Y., and Vaz, F. A. (2005) Tumor necrosis factor-alpha, interleukin-1-beta and interleukin-6 in the cerebrospinal fluid of newborn with meningitis, Arq. Neuropsiquiatr., 63, 7–13.Google Scholar
  31. 31.
    Hsieh, C. C., Lu, J. H., Chen, S. J., Lan, C. C., Chow, W. C., and Tang, R. B. (2009) Cerebrospinal fluid levels of interleukin-6 and interleukin-12 in children with meningitis, Childs Nerv. Syst., 25, 461–465.CrossRefPubMedGoogle Scholar
  32. 32.
    Ikeda, N., Suganuma, H., Ohkawa, N., Nagata, S., Shoji, H., and Shimizu, T. (2014) Measurement of cytokine levels in cerebrospinal fluid over time in neonatal Enterococcal meningitis, Pediatr. Int., 56, e45-47.CrossRefGoogle Scholar
  33. 33.
    Mukai, A. O., Krebs, V. L., Bertoli, C. J., and Okay, T. S. (2006) TNF-alpha and IL-6 in the diagnosis of bacterial and aseptic meningitis in children, Pediatr. Neurol., 34, 25–29.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. A. BelogurovJr.
    • 1
    • 2
    Email author
  • O. M. Ivanova
    • 1
  • Y. A. Lomakin
    • 1
    • 2
  • R. H. Ziganshin
    • 1
    • 3
  • M. I. Vaskina
    • 1
  • V. D. Knorre
    • 1
  • E. A. Klimova
    • 4
  • A. G. Gabibov
    • 1
    • 2
    • 5
  • V. T. Ivanov
    • 1
  • V. M. Govorun
    • 1
    • 3
  1. 1.Shemyakin–Ovchinnikov Institute of Bioorganic ChemistryMoscowRussia
  2. 2.Institute of Fundamental Medicine and BiologyKazan Federal UniversityKazanRussia
  3. 3.Research Institute of Physical-Chemical MedicineFederal Medical and Biological AgencyMoscowRussia
  4. 4.Evdokimov Moscow State University of Medicine and DentistryMoscowRussia
  5. 5.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations