Advertisement

Biochemistry (Moscow)

, Volume 81, Issue 11, pp 1274–1283 | Cite as

Myeloid-derived suppressor cells and proinflammatory cytokines as targets for cancer therapy

  • K.-S. N. Atretkhany
  • M. S. DrutskayaEmail author
Review

Abstract

Myeloid-derived suppressor cells represent a heterogeneous population of immature myeloid cells. Under normal conditions, these cells differentiate into macrophages, dendritic cells, and granulocytes. However, in pathological states such as inflammation, infection, or tumor growth, there is an arrest of their differentiation that results in the accumulation of immature myeloid cells in the organism. In addition, these cells acquire a suppressor phenotype, expressing anti-inflammatory cytokines and reactive oxygen and nitrogen species, and suppress T-cell immune response. Myeloid-derived suppressor cells (MDSC) contribute to cancerogenesis by forming a favorable microenvironment for tumor growth. Proinflammatory cytokines, secreted by tumor cells and the tumor microenvironment, induce angiogenesis and metastasis and promote tumor growth. They also provide signals necessary for survival, accumulation, and function of MDSC. Understanding the mechanisms of myeloid suppressor cell development and the use of proinflammatory cytokine inhibitors may prove beneficial for tumor therapy.

Keywords

MDSC TNF IL-6 IL-1 tumor microenvironment tumor-associated inflammation 

Abbreviations

Arg1

arginase 1

G-CSF

granulocyte colonystimulating factor

GM-CSF

granulocyte-macrophage colony-stimulating factor

IDO

indolamine-2,3-dioxygenase

IL

interleukin

iNOS

inducible NO-synthase

M-CSF

monocyte-macrophage colony-stimulating factor

MDSC

myeloid-derived suppressor cells

ROS

reactive oxygen species

sTNF

soluble form of TNF

TCR

T-cell receptor

TGF-ß

transforming growth factor beta

tmTNF

transmembrane TNF

TNF

tumor necrosis factor

TNFR

tumor necrosis factor receptor

Treg

regulatory T cells

VEGF

vascular endothelial growth factor

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Grivennikov, S. I., Greten, F. R., and Karin, M. (2010) Immunity, inflammation, and cancer, Cell, 140, 883–899.Google Scholar
  2. 2.
    Colotta, F., Allavena, P., Sica, A., Garlanda, C., and Mantovani, A. (2009) Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability, Carcinogenesis, 30, 1073–1081.PubMedGoogle Scholar
  3. 3.
    Gabrilovich, D. I., Ostrand-Rosenberg, S., and Bronte, V. (2012) Coordinated regulation of myeloid cells by tumours, Nat. Rev. Immunol., 12, 253–268.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ostrand-Rosenberg, S., and Sinha, P. (2009) Myeloidderived suppressor cells: linking inflammation and cancer, J. Immunol., 182, 4499–4506.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ponomarev, A. V. (2016) Myeloid supressor cells: general properties, Immunologiya, 37, 47–50.Google Scholar
  6. 6.
    Trikha, P., and Carson, W. E., (2014) Signaling pathways involved in MDSC regulation, Biochim. Biophys. Acta, 1846, 55–65.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Centuori, S. M., Trad, M., LaCaßse, C. J., Alizadeh, D., Larmonier, C. B., Hanke, N. T., Kartchner, J., Janikashvili, N., Bonnotte, B., Larmonier, N., and Katsanis, E. (2012) Myeloid-derived suppressor cells from tumor-bearing mice impair TGF-ß-induced differentiation of CD4+CD25+FoxP3+ Tregs from CD4+CD25–FoxP3–Tcells, J. Leukoc. Biol., 92, 987–997.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Younos, I. H., Dafferner, A. J., Gulen, D., Britton, H. C., and Talmadge, J. E. (2012) Tumor regulation of myeloidderived suppressor cell proliferation and trafficking, Int. Immunopharmacol., 13, 245–256.CrossRefPubMedGoogle Scholar
  9. 9.
    Wang, L., Chang, E. W., Wong, S. C., Ong, S. M., Chong, D. Q., and Ling, K. L. (2013) Increased myeloid-derived suppressor cells in gastric cancer correlate with cancer stage and plasma S100A8/A9 proinflammatory proteins, J. Immunol., 190, 794–804.CrossRefPubMedGoogle Scholar
  10. 10.
    Gabrilovich, D. I., and Nagaraj, S. (2009) Myeloidderived-suppressor cells as regulators of the immune system, Nat. Rev. Immunol., 9, 162–174.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Qian, B. Z., Li, J., Zhang, H., Kitamura, T., Zhang, J., Campion, L. R., Kaiser, E. A., Snyder, L. A., and Pollard, J. W. (2011) CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis, Nature, 475, 222–225.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Allavena, P., Sica, A., Solinas, G., Porta, C., and Mantovani, A. (2008) The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages, Crit. Rev. Oncol. Hematol., 66, 1–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Draghiciu, O., Lubbers, J., Nijman, H. W., and Daemen, T. (2015) Myeloid derived suppressor cells–an overview of combat strategies to increase immunotherapy efficacy, Oncoimmunology, 4, e954829.CrossRefGoogle Scholar
  14. 14.
    Kumar, V., Patel, S., Tcyganov, E., and Gabrilovich, D. I. (2016) The nature of myeloid-derived suppressor cells in the tumor microenvironment, Trends Immunol., 37, 208–220.CrossRefPubMedGoogle Scholar
  15. 15.
    Martino, A., Badell, E., Abadie, V., Balloy, V., Chignard, M., Mistou, M.-Y., Combadiere, B., Combadiere, C., and Winter, N. (2010) Mycobacterium bovis bacillus Calmette–Guerin vaccination mobilizes innate myeloidderived suppressor cells restraining in vivo T-cell priming via IL-1R-dependent nitric oxiDe production, J. Immunol., 184, 2038–2047.CrossRefPubMedGoogle Scholar
  16. 16.
    Rodriguez, P. C., Quiceno, D. G., and Ochoa, A. C. (2007) L-arginine availability regulates T-lymphocyte cell-cycle progression, Blood, 109, 1568–1573.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Medzhitov, R., Shevach, E. M., Trinchieri, G., Mellor, A. L., Munn, D. H., Gordon, S., Libby, P., Hansson, G. K., Shortman, K., Dong, C., Gabrilovich, D., Gabrysova, L., Howes, A., and O’Garra, A. (2011) Highlights of 10 years of immunology in Nature Reviews Immunology, Nat. Rev. Immunol., 11, 693–702.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Yu, J., Wang, Y., Yan, F., Zhang, P., Li, H., Zhao, H., Yan, C., Yan, F., and Ren, X. (2014) Noncanonical NF-kB activation mediates STAT3-stimulated IDO upregulation in myeloid-derived suppressor cells in breast cancer, J. Immunol., 193, 2574–2586.Google Scholar
  19. 19.
    Holmgaard, R. B., Zamarin, D., Li, Y., Gasmi, B., Munn, D. H., Allison, J. P., Merghoub, T., and Wolchok, J. D. (2015) Tumor-expressed IDO recruits and activates MDSCs in a Treg-dependent manner, Cell Rep., 13, 412424.CrossRefGoogle Scholar
  20. 20.
    Pacher, P., Beckman, J. S., and Liaudet, L. (2007) Nitric oxide and peroxynitrite in health and disease, Physiol. Rev., 87, 315–424.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Nagaraj, S., Gupta, K., Pisarev, V., Kinarsky, L., Sherman, S., Kang, L., Herber, D. L., Schneck, J., and Gabrilovich, D. I. (2007) Altered recognition of antigen is a mechanism of CD8+ T-cell tolerance in cancer, Nat. Med., 13, 828–835.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Schmielau, J., and Finn, O. J. (2001) Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of T-cell function in advanced cancer patients, Cancer Res., 61, 4756–4760.PubMedGoogle Scholar
  23. 23.
    Mazzoni, A., Bronte, V., Visintin, A., Spitzer, J. H., Apolloni, E., Serafini, P., Zanovello, P., and Segal, D. M. (2002) Myeloid suppressor lines inhibit T-cell responses by an no-dependent mechanism, J. Immunol., 168, 689695.CrossRefGoogle Scholar
  24. 24.
    Khan, A. I., Landis, R. C., and Malhotra, R. (2003) LSelectin ligands in lymphoid tissues and models of inflammation, Inflammation, 27, 265–280.CrossRefPubMedGoogle Scholar
  25. 25.
    Hanson, E. M., Clements, V. K., Sinha, P., Ilkovitch, D., and Ostrand-Rosenberg, S. (2009) Myeloid-derived suppressor cells down-regulate L-selectin expression on CD4+ and CD8+ T-cells, J. Immunol., 183, 937–944.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Molon, B., Ugel, S., Del Pozzo, F., Soldani, C., Zilio, S., Avella, D., De Palma, A., Mauri, P., Monegal, A., Rescigno, M., Savino, B., Colombo, P., Jonjic, N., Pecanic, S., Lazzarato, L., Fruttero, R., Gasco, A., Bronte, V., and Viola, A. (2011) Chemokine nitration prevents intratumoral infiltration of antigen-specific T-cells, J. Exp. Med., 208, 1949–1962.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Sakuishi, K., Jayaraman, P., Behar, S. M., Anderson, A. C., and Kuchroo, V. K. (2011) Emerging Tim-3 functions in antimicrobial and tumor immunity, Trends Immunol., 32, 345–349.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Li, H., Han, Y., Guo, Q., Zhang, M., and Cao, X. (2009) Cancer-expanded myeloid-derived suppreßsor cells induce anergy of NK-cells through membrane-bound TGF-ß1, J. Immunol., 182, 240–249.CrossRefPubMedGoogle Scholar
  29. 29.
    Pan, P. Y., Ma, G., Weber, K. J., Ozao-Choy, J., Wang, G., Yin, B., Divino, C. M., and Chen, S. H. (2010) Immune stimulatory receptor CD40 is required for T-cell suppression and T-regulatory cell activation mediated by myeloidderived suppressor cells in cancer, Cancer Res., 70, 99–108.CrossRefPubMedGoogle Scholar
  30. 30.
    Cheng, P., Corzo, C. A., Luetteke, N., Yu, B., Nagaraj, S., Bui, M. M., Ortiz, M., Nacken, W., Sorg, C., Vogl, T., Roth, J., and Gabrilovich, D. I. (2008) Inhibition of dendritic cell differentiation and accumulation of myeloidderived suppressor cells in cancer is regulated by S100A9 protein, J. Exp. Med., 205, 2235–2249.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Botta, C., Gulla, A., Correale, P., Tagliaferri, P., and Tassone, P. (2014) Myeloid-derived suppressor cells in multiple myeloma: pre-clinical research and translational opportunities, Front. Oncol., 4, 348.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Hix, L. M., Karavitis, J., Khan, M. W., Shi, Y. H., Khazaie, K., and Zhang, M. (2013) Tumor STAT1 transcription factor activity enhances breast tumor growth and immune suppression mediated by myeloid-derived suppressor cells, J. Biol. Chem., 288, 11676–11688.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Bronte, V., Serafini, P., De Santo, C., Marigo, I., Tosello, V., Mazzoni, A., Segal, D. M., Staib, C., Lowel, M., Sutter, G., Colombo, M. P., and Zanovello, P. (2003) IL-4induced arginase 1 suppresses alloreactive T-cells in tumorbearing mice, J. Immunol., 170, 270–278.CrossRefPubMedGoogle Scholar
  34. 34.
    Kieslinger, M., Woldman, I., Moriggl, R., Hofmann, J., Marine, J. C., Ihle, J. N., Beug, H., and Decker, T. (2000) Antiapoptotic activity of Stat5 required during terminal stages of myeloid differentiation, Genes Dev., 14, 232–244.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Hanahan, D., and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation, Cell, 144, 646–674.CrossRefPubMedGoogle Scholar
  36. 36.
    Drutskaya, M. S., Efimov, G. A., Kruglov, A. A., Kuprash, D. V., and Nedospasov, S. A. (2010) Tumor necrosis factor, lymphotoxin and cancer, IUBMB Life, 62, 283–289.CrossRefGoogle Scholar
  37. 37.
    Coley, W. B. (1894) Treatment of inoperable malignant tumors with the toxines of erysipelas and the Bacillus prodigiosus, Am. J. Med. Sci., 108, 50–66.CrossRefGoogle Scholar
  38. 38.
    Kulbe, H., Thompson, R., Wilson, J. L., Robinson, S., Hagemann, T., Fatah, R., Gould, D., Ayhan, A., and Balkwill, F. (2007) The inflammatory cytokine tumor necrosis factor-a generates an autocrine tumor-promoting network in epithelial ovarian cancer cells, Cancer Res., 67, 585–592.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Moore, R. J., Owens, D. M., Stamp, G., Arnott, C., Burke, F., East, N., Holdsworth, H., Turner, L., Rollins, B., Pasparakis, M., Kollias, G., and Balkwill, F. (1999) Mice deficient in tumor necrosis factor-a are resistant to skin carcinogenesis, Nat. Med., 5, 828–831.CrossRefPubMedGoogle Scholar
  40. 40.
    Popivanova, B. K., Kitamura, K., Wu, Y., Kondo, T., Kagaya, T., Kaneko, S., Oshima, M., Fujii, C., and Mukaida, N. (2008) Blocking TNF-a in mice reduces colorectal carcinogenesis associated with chronic colitis, J. Clin. Invest., 118, 560–570.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Pikarsky, E., Porat, R. M., Stein, I., Abramovitch, R., Amit, S., Kasem, S., Gutkovich-Pyest, E., Urieli-Shoval, S., Galun, E., and Ben-Neriah, Y. (2004) NF-kB functions as a tumour promoter in inflammation-associated cancer, Nature, 431, 461–466.CrossRefPubMedGoogle Scholar
  42. 42.
    Mohan, M. J., Seaton, T., Mitchell, J., Howe, A., Blackburn, K., Burkhart, W., Moyer, M., Patel, I., Waitt, G. M., Becherer, J. D., Moss, M. L., and Milla, M. E. (2002) The tumor necrosis factor-alpha converting enzyme (TACE): a unique metalloproteinase with highly defined substrate selectivity, Biochemistry, 41, 9462–9469.CrossRefPubMedGoogle Scholar
  43. 43.
    Bauer, J., Namineni, S., Reisinger, F., Zoller, J., Yuan, D., and Heikenwalder, M. (2012) Lymphotoxin, NF-kB, and cancer: the dark side of cytokines, Dig. Dis., 30, 453–468.Google Scholar
  44. 44.
    Zhang, H., Yan, D., Shi, X., Liang, H., Pang, Y., Qin, N., Chen, H., Wang, J., Yin, B., Jiang, X., Feng, W., Zhang, W., Zhou, M., and Li, Z. (2008) Transmembrane TNF-a mediates “forward” and “reverse” signaling, inducing cell death or survival via the NF-?B pathway in Raji Burkitt lymphoma cells, J. Leukoc. Biol., 84, 789–797.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Aggarwal, B. B., Gupta, S. C., and Kim, J. H. (2012) Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey, Blood, 119, 651–665.PubMedGoogle Scholar
  46. 46.
    Havell, E. A., Fiers, W., and North, R. J. (1988) The antitumor function of tumor necrosis factor (TNF). I. Therapeutic action of TNF against an established murine sarcoma is indirect, immunologically dependent, and limited by severe toxicity, J. Exp. Med., 167, 1067–1085.Google Scholar
  47. 47.
    Puthier, D., Derenne, S., Barille, S., Moreau, P., Harousseau, J. L., Bataille, R., and Amiot, M. (1999) Mcl1 and Bcl-xL are co-regulated by IL-6 in human myeloma cells, Br. J. Haematol., 107, 392–395.CrossRefPubMedGoogle Scholar
  48. 48.
    Spets, H., Stromberg, T., Georgii-Hemming, P., Siljason, J., Nilsson, K., and Jernberg-Wiklund, H. (2002) Expression of the bcl-2 family of proand anti-apoptotic genes in multiple myeloma and normal plasma cells: regulation during interleukin-6(IL-6)-induced growth and survival, Eur. J. Haematol., 69, 76–89.CrossRefPubMedGoogle Scholar
  49. 49.
    Neurath, M. F., and Finotto, S. (2011) IL-6 signaling in autoimmunity, chronic inflammation and inflammationassociated cancer, Cytokine Growth Factor Rev., 22, 83–89.CrossRefGoogle Scholar
  50. 50.
    Suematsu, S., Matsusaka, T., Matsuda, T., Ohno, S., Miyazaki, J., Yamamura, K., Hirano, T., and Kishimoto, T. (1992) Generation of plasmacytomas with the chromosomal translocation t(12;15) in interleukin 6 transgenic mice, Proc. Natl. Acad. Sci. USA, 89, 232–235.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Grivennikov, S. I., and Karin, M. (2011) Inflammatory cytokines in cancer: tumour necrosis factor and interleukin 6 take the stage, Ann. Rheum. Dis., 70 (Suppl. 1), i104–108.CrossRefPubMedGoogle Scholar
  52. 52.
    Huang, S. P., Wu, M. S., Shun, C. T., Wang, H. P., Lin, M. T., Kuo, M. L., and Lin, J. T. (2004) Interleukin-6 increases vascular endothelial growth factor and angiogenesis in gastric carcinoma, J. Biomed. Sci., 11, 517–527.CrossRefPubMedGoogle Scholar
  53. 53.
    Tu, S., Bhagat, G., Cui, G., Takaishi, S., Kurt-Jones, E. A., Rickman, B., Betz, K. S., Penz-Oesterreicher, M., Bjorkdahl, O., Fox, J. G., and Wang, T. C. (2008) Overexpreßsion of interleukin-1ß induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice, Cancer Cell, 14, 408–419.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Apte, R. N., and Voronov, E. (2008) Is interleukin-1 a good or bad “guy” in tumor immunobiology and immunotherapy? Immunol. Rev., 222, 222–241.CrossRefPubMedGoogle Scholar
  55. 55.
    Lewis, A. M., Varghese, S., Xu, H., and Alexander, H. R. (2006) Interleukin-1 and cancer progression: the emerging role of interleukin-1 receptor antagonist as a novel therapeutic agent in cancer treatment, J. Transl. Med., 4, 48.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Apte, R. N., Dotan, S., Elkabets, M., White, M. R., Reich, E., Carmi, Y., Song, X., Dvozkin, T., Krelin, Y., and Voronov, E. (2006) The involvement of IL-1 in tumorigenesis, tumor invasiveness, metastasis and tumor-host interactions, Cancer Metastasis Rev., 25, 387–408.PubMedGoogle Scholar
  57. 57.
    Dinarello, C. A. (1996) Biologic basis for interleukin-1 in disease, Blood, 87, 2095–2147.PubMedGoogle Scholar
  58. 58.
    Voronov, E., Shouval, D. S., Krelin, Y., Cagnano, E., Benharroch, D., Iwakura, Y., Dinarello, C. A., and Apte, R. N. (2003) IL-1 is required for tumor invasiveness and angiogenesis, Proc. Natl. Acad. Sci. USA, 100, 2645–2650.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Konishi, N., Miki, C., Yoshida, T., Tanaka, K., Toiyama, Y., and Kusunoki, M. (2005) Interleukin-1 receptor antagonist inhibits the expression of vascular endothelial growth factor in colorectal carcinoma, Oncology, 68, 138–145.CrossRefPubMedGoogle Scholar
  60. 60.
    Shchors, K., Shchors, E., Rostker, F., Lawlor, E. R., Brown-Swigart, L., and Evan, G. I. (2006) The Mycdependent angiogenic switch in tumors is mediated by interleukin 1ß, Genes Dev., 20, 2527–2538.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Sawai, H., Funahashi, H., Yamamoto, M., Okada, Y., Hayakawa, T., Tanaka, M., Takeyama, H., and Manabe, T. (2003) Interleukin-1a enhances integrin a6ß1 expression and metastatic capability of human pancreatic cancer, Oncology, 65, 167–173.CrossRefPubMedGoogle Scholar
  62. 62.
    Zhao, X., Rong, L., Zhao, X., Li, X., Liu, X., Deng, J., Wu, H., Xu, X., Erben, U., Wu, P., Syrbe, U., Sieper, J., and Qin, Z. (2012) TNF signaling drives myeloid-derived suppressor cell accumulation, J. Clin. Invest., 122, 4094–4104.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Sander, L. E., Sackett, S. D., Dierssen, U., Beraza, N., Linke, R. P., Muller, M., Blander, J. M., Tacke, F., and Trautwein, C. (2010) Hepatic acute-phase proteins control innate immune responses during infection by promoting myeloid-derived suppressor cell function, J. Exp. Med., 207, 1453–1464.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Sade-Feldman, M., Kanterman, J., Ish-Shalom, E., Elnekave, M., Horwitz, E., and Baniyash, M. (2013) Tumor necrosis factor-a blocks differentiation and enhances suppressive activity of immature myeloid cells during chronic inflammation, Immunity, 38, 541–554.CrossRefPubMedGoogle Scholar
  65. 65.
    Elkabets, M., Ribeiro, V. S., Dinarello, C. A., OstrandRosenberg, S., Di Santo, J. P., Apte, R. N., and Voßshenrich, C. A. (2010) IL-1ß regulates a novel myeloidderived suppressor cell subset that impairs NK cell development and function, Eur. J. Immunol., 40, 3347–3357.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Chen, M. F., Kuan, F. C., Yen, T. C., Lu, M. S., Lin, P. Y., Chung, Y. H., Chen, W. C., and Lee, K. D. (2014) IL-6stimulated CD11b+CD14+HLA-DR–myeloid-derived suppressor cells, are associated with progression and poor prognosis in squamous cell carcinoma of the esophagus, Oncotarget, 5, 8716–8728.Google Scholar
  67. 67.
    Oh, K., Lee, O. Y., Shon, S. Y., Nam, O., Ryu, P. M., Seo, M. W., and Lee, D. S. (2013) A mutual activation loop between breast cancer cells and myeloid-derived suppressor cells facilitates spontaneous metastasis through IL-6 transsignaling in a murine model, Breast Cancer Res., 15, R79.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Pereira, R., Lago, P., Faria, R., and Torres, T. (2015) Safety of anti-TNF therapies in immune-mediated inflammatory diseases: focus on infections and malignancy, Drug Dev. Res., 76, 419–427.CrossRefPubMedGoogle Scholar
  69. 69.
    Van Hauwermeiren, F., Vandenbroucke, R. E., and Libert, C. (2011) Treatment of TNF mediated diseases by selective inhibition of soluble TNF or TNFR1, Cytokine Growth Factor Rev., 22, 311–319.CrossRefPubMedGoogle Scholar
  70. 70.
    Kaymakcalan, Z., Sakorafas, P., Bose, S., Scesney, S., Xiong, L., Hanzatian, D. K., Salfeld, J., and Sasso, E. H. (2009) Comparisons of affinities, avidities, and complement activation of adalimumab, infliximab, and etanercept in binding to soluble and membrane tumor necrosis factor, Clin. Immunol., 131, 308–316.PubMedGoogle Scholar
  71. 71.
    Furst, D. E., Wallis, R., Broder, M., and Beenhouwer, D. O. (2006) Tumor necrosis factor antagonists: different kinetics and/or mechanisms of action may explain differences in the risk for developing granulomatous infection, Semin. Arthritis Rheum., 36, 159–167.CrossRefPubMedGoogle Scholar
  72. 72.
    Efimov, G. A., Kruglov, A. A., Khlopchatnikova, Z. V., Rozov, F. N., Mokhonov, V. V., Rose-John, S., Scheller, J., Gordon, S., Stacey, M., Drutskaya, M. S., Tillib, S. V., and Nedospasov, S. A. (2016) Cell-type-restricted anticytokine therapy: TNF inhibition from one pathogenic source, Proc. Natl. Acad. Sci. USA, 113, 3006–3011.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Atretkhany, K. S., Nosenko, M. A., Gogoleva, V. S., Zvartsev, R. V., Qin, Z., Nedospasov, S. A., and Drutskaya, M. S. (2016) TNF neutralization results in the delay of transplantable tumor growth and reduced MDSC accumulation, Front. Immunol., 7, 147.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Egberts, J. H., Cloosters, V., Noack, A., Schniewind, B., Thon, L., Klose, S., Kettler, B., von Forstner, C., Kneitz, C., Tepel, J., Adam, D., Wajant, H., Kalthoff, H., and Trauzold, A. (2008) Anti-tumor necrosis factor therapy inhibits pancreatic tumor growth and metastasis, Cancer Res., 68, 1443–1450.CrossRefPubMedGoogle Scholar
  75. 75.
    Harrison, M. L., Obermueller, E., Maisey, N. R., Hoare, S., Edmonds, K., Li, N. F., Chao, D., Hall, K., Lee, C., Timotheadou, E., Charles, K., Ahern, R., King, D. M., Eisen, T., Corringham, R., DeWitte, M., Balkwill, F., and Gore, M. (2007) Tumor necrosis factor a as a new target for renal cell carcinoma: two sequential phase II trials of infliximab at standard and high dose, J. Clin. Oncol., 25, 4542–4549.CrossRefPubMedGoogle Scholar
  76. 76.
    Larkin, J. M., Ferguson, T. R., Pickering, L. M., Edmonds, K., James, M. G., Thomas, K., Banerji, U., Berns, B., De Boer, C., and Gore, M. E. (2010) A phase I/II trial of sorafenib and infliximab in advanced renal cell carcinoma, Br. J. Cancer, 103, 1149–1153.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Sumida, K., Wakita, D., Narita, Y., Masuko, K., Terada, S., Watanabe, K., Satoh, T., Kitamura, H., and Nishimura, T. (2012) Anti-IL-6 receptor mAb eliminates myeloidderived suppressor cells and inhibits tumor growth by enhancing T-cell responses, Eur. J. Immunol., 42, 20602072.CrossRefGoogle Scholar
  78. 78.
    Kurzrock, R., Voorhees, P. M., Casper, C., Furman, R. R., Fayad, L., Lonial, S., Borghaei, H., Jagannath, S., Sokol, L., Usmani, S. Z., Van De Velde, H., Qin, X., Puchalski, T. A., Hall, B., Reddy, M., Qi, M., and Van Rhee, F. (2013) A phase I, open-label study of siltuximab, an anti-IL-6 monoclonal antibody, in patients with B-cell non-Hodgkin lymphoma, multiple myeloma, or Castleman disease, Clin. Cancer Res., 19, 3659–3670.Google Scholar
  79. 79.
    Hong, D. S., Hui, D., Bruera, E., Janku, F., Naing, A., Falchook, G. S., Piha-Paul, S., Wheler, J. J., Fu, S., Tsimberidou, A. M., Stecher, M., Mohanty, P., Simard, J., and Kurzrock, R. (2014) MABp1, a first-in-class true human antibody targeting interleukin-1a in refractory cancers: an open-label, phase 1 dose-escalation and expansion study, Lancet Oncol., 15, 656–666.Google Scholar
  80. 80.
    Lust, J. A., Lacy, M. Q., Zeldenrust, S. R., Dispenzieri, A., Gertz, M. A., Witzig, T. E., Kumar, S., Hayman, S. R., Rußsell, S. J., Buadi, F. K., Geyer, S. M., Campbell, M. E., Kyle, R. A., Rajkumar, S. V., Greipp, P. R., Kline, M. P., Xiong, Y., Moon-Tasson, L. L., and Donovan, K. A. (2009) Induction of a chronic disease state in patients with smoldering or indolent multiple myeloma by targeting interleukin 1ß-induced interleukin 6 production and the myeloma proliferative component, Mayo Clin. Proc., 84, 114–122.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Stuelten, C. H., DaCosta Byfield, S., Arany, P. R., Karpova, T. S., Stetler-Stevenson, W. G., and Roberts, A. B. (2005) Breast cancer cells induce stromal fibroblasts to expreßs MMP-9 via secretion of TNF-a and TGF-ß, J. Cell Sci., 118, 2143–2153.CrossRefPubMedGoogle Scholar
  82. 82.
    Szlosarek, P., Charles, K. A., and Balkwill, F. R. (2006) Tumour necrosis factor-a as a tumour promoter, Eur. J. Cancer, 42, 745–750.CrossRefPubMedGoogle Scholar
  83. 83.
    Carswell, E. A., Old, L. J., Kassel, R. L., Green, S., Fiore, N., and Williamson, B. (1975) An endotoxin-induced serum factor that causes necrosis of tumors, Proc. Natl. Acad. Sci. USA, 72, 3666–3670.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Stoelcker, B., Ruhland, B., Hehlgans, T., Bluethmann, H., Luther, T., and Mannel, D. N. (2000) Tumor necrosis factor induces tumor necrosis via tumor necrosis factor receptor type 1-expressing endothelial cells of the tumor vasculature, Am. J. Pathol., 156, 1171–1176.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Grunhagen, D. J., De Wilt, J. H., Graveland, W. J., Verhoef, C., Van Geel, A. N., and Eggermont, A. M. (2006) Outcome and prognostic factor analysis of 217 consecutive isolated limb perfusions with tumor necrosis factor-a and melphalan for limb-threatening soft tissue sarcoma, Cancer, 106, 1776–1784.CrossRefPubMedGoogle Scholar
  86. 86.
    Hu, X., Li, B., Li, X., Zhao, X., Wan, L., Lin, G., Yu, M., Wang, J., Jiang, X., Feng, W., Qin, Z., Yin, B., and Li, Z. (2014) Transmembrane TNF-a promotes suppressive activities of myeloid-derived suppressor cells via TNFR2, J. Immunol., 192, 1320–1331.CrossRefPubMedGoogle Scholar
  87. 87.
    Polz, J., Remke, A., Weber, S., Schmidt, D., WeberSteffens, D., Pietryga-Krieger, A., Muller, N., Ritter, U., Mostbock, S., and Mannel, D. N. (2014) Myeloid suppressor cells require membrane TNFR2 expression for suppressive activity, Immun. Inflamm. Dis., 2, 121–130.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Engelhardt Institute of Molecular BiologyMoscowRussia
  2. 2.Biological FacultyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations