Biochemistry (Moscow)

, Volume 81, Issue 11, pp 1261–1273 | Cite as

Inflammatory immune infiltration in human tumors: Role in pathogenesis and prognostic and diagnostic value

  • A. V. BogolyubovaEmail author
  • P. V. Belousov


The cellular microenvironment directly and indirectly influences tumor development and possesses prognostic and in some cases diagnostic value. Over the years, understanding of structural organization of the immune/inflammatory moiety of neoplasms as well as in-depth phenotypic and transcriptomic profiling of its cellular components together provide more and more insights in both basic and translational medical science. In this review, we will discuss the specific roles of various stromal cells and their impact on neoplastic progression as well as address the use of quantitative and phenotypic analysis of immune/inflammatory infiltrate for diagnostics and predicting the clinical course of human malignancies.


cellular microenvironment of tumors immune infiltration melanoma breast cancer thyroid cancer colorectal cancer 



breast cancer


cytotoxic T lymphocytes






innate lymphoid cells


myeloid-derived suppressor cells


microsatellite instability


natural cytotoxicity receptors


regulatory T cells


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zhang, Q., Liu, L., Gong, C., Shi, H., Zeng, Y., Wang, X., Zhao, Y., and Wei, Y. (2012) Prognostic significance of tumor-associated macrophages in solid tumor: a metaanalysis of the literature, PLoS One, 7, e50946.CrossRefGoogle Scholar
  2. 2.
    Fridman, W. H., Galon, J., Dieu-Nosjean, M.-C., Cremer, I., Fisson, S., Damotte, D., Pages, F., Tartour, E., and Sautes-Fridman, C. (2011) Immune infiltration in human cancer: prognostic significance and disease control, Curr. Top. Microbiol. Immunol., 344, 1–24.PubMedGoogle Scholar
  3. 3.
    Dunn, G. P., Bruce, A. T., Ikeda, H., Old, L. J., and Schreiber, R. D. (2002) Cancer immunoediting: from immunosurveillance to tumor escape, Nat. Immunol., 3, 991–998.PubMedCrossRefGoogle Scholar
  4. 4.
    Dunn, G. P., Old, L. J., and Schreiber, R. D. (2004) The three Es of cancer immunoediting, Annu. Rev. Immunol., 22, 329–360.PubMedCrossRefGoogle Scholar
  5. 5.
    Schreiber, R. D., Old, L. J., and Smyth, M. J. (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion, Science, 331, 1565–1570.PubMedCrossRefGoogle Scholar
  6. 6.
    Schiavoni, G., Gabriele, L., and Mattei, F. (2013) The tumor microenvironment: a pitch for multiple players, Front. Oncol., 3, 90.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Hao, N.-B., Lu, M.-H., Fan, Y.-H., Cao, Y.-L., Zhang, Z.-R., and Yang, S.-M. (2012) Macrophages in tumor microenvironments and the progression of tumors, Clin. Dev. Immunol., 948098.Google Scholar
  8. 8.
    Edin, S., Wikberg, M. L., Dahlin, A. M., Rutegard, J., Oberg, A., Oldenborg, P.-A., and Palmqvist, R. (2012) The distribution of macrophages with a M1 or M2 phenotype in relation to prognosis and the molecular characteristics of colorectal cancer, PLoS One, 7, e47045.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Zhang, M., He, Y., Sun, X., Li, Q., Wang, W., Zhao, A., and Di, W. (2014) A high M1/M2 ratio of tumor-associated macrophages is associated with extended survival in ovarian cancer patients, J. Ovarian Res., 7, 19.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Edin, S., Wikberg, M. L., Oldenborg, P.-A., and Palmqvist, R. (2013) Macrophages: good guys in colorectal cancer, Oncoimmunology, 2, e23038.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Martinez, F. O., Helming, L., and Gordon, S. (2009) Alternative activation of macrophages: an immunologic functional perspective, Annu. Rev. Immunol., 27, 451–483.PubMedCrossRefGoogle Scholar
  12. 12.
    Solinas, G., Germano, G., Mantovani, A., and Allavena, P. (2009) Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation, J. Leukoc. Biol., 86, 1065–1073.PubMedCrossRefGoogle Scholar
  13. 13.
    Daurkin, I., Eruslanov, E., Stoffs, T., Perrin, G. Q., Algood, C., Gilbert, S. M., Rosser, C. J., Su, L.-M., Vieweg, J., and Kusmartsev, S. (2011) Tumor-associated macrophages mediate immunosuppression in the renal cancer microenvironment by activating the 15-lipoxygenase-2 pathway, Cancer Res., 71, 6400–6409.PubMedCrossRefGoogle Scholar
  14. 14.
    Chen, P., Huang, Y., Bong, R., Ding, Y., Song, N., Wang, X., Song, X., and Luo, Y. (2011) Tumor-associated macrophages promote angiogenesis and melanoma growth via adrenomedullin in a paracrine and autocrine manner, Clin. Cancer Res., 17, 7230–7239.PubMedCrossRefGoogle Scholar
  15. 15.
    Liu, J., Zhang, N., Li, Q., Zhang, W., Ke, F., Leng, Q., Wang, H., Chen, J., and Wang, H. (2011) Tumor-associated macrophages recruit CCR6+ regulatory T-cells and promote the development of colorectal cancer via enhancing CCL20 production in mice, PLoS One, 6, e19495.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Zijlmans, H. J., Fleuren, G. J., Baelde, H. J., Eilers, P. H. C., Kenter, G. G., and Gorter, A. (2006) The absence of CCL2 expression in cervical carcinoma is associated with increased survival and loss of heterozygosity at 17q11.2, J. Pathol., 208, 507–517.PubMedCrossRefGoogle Scholar
  17. 17.
    Koelzer, V. H., Canonica, K., Dawson, H., Sokol, L., Karamitopoulou-Diamantis, E., Lugli, A., and Zlobec, I. (2016) Phenotyping of tumor-associated macrophages in colorectal cancer: impact on single cell invasion (tumor budding) and clinicopathological outcome, Oncoimmunology, 5, e1106677.CrossRefGoogle Scholar
  18. 18.
    Gerlini, G., Di Gennaro, P., and Borgognoni, L. (2012) Enhancing anti-melanoma immunity by electrochemotherapy and in vivo dendritic-cell activation, Oncoimmunology, 1, 1655–1657.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Michielsen, A. J., Noonan, S., Martin, P., Tosetto, M., Marry, J., Biniecka, M., Maguire, A. A., Hyland, J. M., Sheahan, K. D., O’Donoghue, D. P., Mulcahy, H. E., Fennelly, D., Ryan, E. J., and O’Sullivan, J. N. (2012) Inhibition of dendritic cell maturation by the tumor microenvironment correlates with the survival of colorectal cancer patients following bevacizumab treatment, Mol. Cancer Ther., 11, 1829–1837.PubMedCrossRefGoogle Scholar
  20. 20.
    Yu, H., Huang, X., Liu, X., Jin, H., Zhang, G., Zhang, Q., and Yu, J. (2013) Regulatory T-cells and plasmacytoid dendritic cells contribute to the immune escape of papillary thyroid cancer coexisting with multinodular non-toxic goiter, Endocrine, 44, 172–181.PubMedCrossRefGoogle Scholar
  21. 21.
    Preynat-Seauve, O., Contassot, E., Schuler, P., French, L. E., and Huard, B. (2007) Melanoma-infiltrating dendritic cells induce protective antitumor responses mediated by T cells, Melanoma Res., 17, 169–176.PubMedCrossRefGoogle Scholar
  22. 22.
    Scouten, W. T., and Francis, G. L. (2014) Thyroid cancer and the immune system: a model for effective immune surveillance, Exp. Rev. Endocrinol. Metab., 1, 353–366.CrossRefGoogle Scholar
  23. 23.
    Perrot, I., Blanchard, D., Freymond, N., Isaac, S., Guibert, B., Pacheco, Y., and Lebecque, S. (2007) Dendritic cells infiltrating human non-small cell lung cancer are blocked at immature stage, J. Immunol., 178, 2763–2769.PubMedCrossRefGoogle Scholar
  24. 24.
    Marvel, D., and Gabrilovich, D. I. (2015) Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected, J. Clin. Invest., 125, 3356–3364.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Eruslanov, E. B., Bhojnagarwala, P. S., Quatromoni, J. G., Stephen, T. L., Ranganathan, A., Deshpande, C., Akimova, T., Vachani, A., Litzky, L., Hancock, W. W., Conejo-Garcia, J. R., Feldman, M., Albelda, S. M., and Singhal, S. (2014) Tumor-associated neutrophils stimulate T-cell responses in early-stage human lung cancer, J. Clin. Invest., 124, 5466–5480.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Solito, S., Marigo, I., Pinton, L., Damuzzo, V., Mandruzzato, S., and Bronte, V. (2014) Myeloid-derived suppressor cell heterogeneity in human cancers, Ann. N. Y. Acad. Sci., 1319, 47–65.PubMedCrossRefGoogle Scholar
  27. 27.
    Senovilla, L., Vacchelli, E., Galon, J., Adjemian, S., Eggermont, A., Fridman, W. H., Sautes-Fridman, C., Ma, Y., Tartour, E., Zitvogel, L., Kroemer, G., and Galluzzi, L. (2012) Trial watch: prognostic and predictive value of the immune infiltrate in cancer, Oncoimmunology, 1, 13231343.CrossRefGoogle Scholar
  28. 28.
    Vesely, M. D., Kershaw, M. H., Schreiber, R. D., and Smyth, M. J. (2011) Natural innate and adaptive immunity to cancer, Annu. Rev. Immunol., 29, 235–271.PubMedCrossRefGoogle Scholar
  29. 29.
    Hamai, A., Benlalam, H., Meslin, F., Hasmim, M., Carre, T., Akalay, I., Janji, B., Berchem, G., Noman, M. Z., and Chouaib, S. (2010) Immune surveillance of human cancer: if the cytotoxic T-lymphocytes play the music, does the tumoral system call the tune? Tissue Antigens, 75, 1–8.PubMedGoogle Scholar
  30. 30.
    Sakuishi, K., Apetoh, L., Sullivan, J. M., Blazar, B. R., Kuchroo, V. K., and Anderson, A. C. (2010) Targeting Tim-3 and PD-1 pathways to reverse T-cell exhaustion and restore anti-tumor immunity, J. Exp. Med., 207, 21872194.CrossRefGoogle Scholar
  31. 31.
    Park, H. J., Kusnadi, A., Lee, E.-J., Kim, W. W., Cho, B. C., Lee, I. J., Seong, J., and Ha, S.-J. (2019) Tumor-infiltrating regulatory T-cells delineated by upregulation of PD-1 and inhibitory receptors, Cell. Immunol., 278, 76–83.CrossRefGoogle Scholar
  32. 32.
    Wang, Y., Ma, Y., Fang, Y., Wu, S., Liu, L., Fu, D., and Shen, X. (2012) Regulatory T-cell: a protection for tumor cells, J. Cell. Mol. Med., 16, 425–436.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Fridman, W. H., Pages, F., Sautes-Fridman, C., and Galon, J. (2012) The immune contexture in human tumors: impact on clinical outcome, Nat. Rev. Cancer, 12, 298–306.PubMedCrossRefGoogle Scholar
  34. 34.
    Badoual, C., Hans, S., Merillon, N., Van Ryswick, C., Ravel, P., Benhamouda, N., Levionnois, E., Nizard, M., Si-Mohamed, A., Besnier, N., Gey, A., Rotem-Yehudar, R., Pere, H., Tran, T., Guerin, C. L., Chauvat, A., Dransart, E., Alanio, C., Albert, S., Barry, B., Sandoval, F., Quintin-Colonna, F., Bruneval, P., Fridman, W. H., Lemoine, F. M., Oudard, S., Johannes, L., Olive, D., Brasnu, D., and Tartour, E. (2013) PD-1-expressing tumor-infiltrating T-cells are a favorable prognostic biomarker in HPV-associated head and neck cancer, Cancer Res., 73, 128–138.PubMedCrossRefGoogle Scholar
  35. 35.
    Badoual, C., Hans, S., Fridman, W. H., Brasnu, D., Erdman, S., and Tartour, E. (2009) Revisiting the prognostic value of regulatory T-cells in patients with cancer, J. Clin. Oncol., 27, e5-6.CrossRefGoogle Scholar
  36. 36.
    Germain, C., Gnjatic, S., and Dieu-Nosjean, M.-C. (2015) Tertiary lymphoid structure-associated B-cells are key players in anti-tumor immunity, Front. Immunol., 6, 67.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    De Visser, K. E., Korets, L. V., and Coussens, L. M. (2005) De novo carcinogenesis promoted by chronic inflammation is B-lymphocyte dependent, Cancer Cell, 7, 411–423.PubMedCrossRefGoogle Scholar
  38. 38.
    DeNardo, D. G., Andreu, P., and Coussens, L. M. (2010) Interactions between lymphocytes and myeloid cells regulate proversus anti-tumor immunity, Cancer Metastasis Rev., 29, 309–316.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Olkhanud, P. B., Damdinsuren, B., Bodogai, M., Gress, R. E., Sen, R., Wejksza, K., Malchinkhuu, E., Wersto, R. P., and Biragyn, A. (2011) Tumor-evoked regulatory B cells promote breast cancer metastasis by converting resting CD4+ T-cells to T-regulatory cells, Cancer Res., 71, 35053515.CrossRefGoogle Scholar
  40. 40.
    Horikawa, M., Minard-Colin, V., Matsushita, T., and Tedder, T. F. (2011) Regulatory B-cell production of IL-10 inhibits lymphoma depletion during CD20 immunotherapy in mice, J. Clin. Invest., 121, 4268–4280.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Cipponi, A., Mercier, M., Seremet, T., Baurain, J.-F., Theate, I., Van den Oord, J., Stas, M., Boon, T., Coulie, P. G., and Van Baren, N. (2012) Neogenesis of lymphoid structures and antibody responses occur in human melanoma metastases, Cancer Res., 72, 3997–4007.PubMedCrossRefGoogle Scholar
  42. 42.
    Coughlin, C. M., Vance, B. A., Grupp, S. A., and Vonderheide, R. H. (2004) RNA-transfected CD40-activated B-cells induce functional T-cell responses against viral and tumor antigen targets: implications for pediatric immunotherapy, Blood, 103, 2046–2054.PubMedCrossRefGoogle Scholar
  43. 43.
    Ronchese, F., and Hausmann, B. (1993) B-lymphocytes in vivo fail to prime naive T-cells but can stimulate antigenexperienced T-lymphocytes, J. Exp. Med., 177, 679–690.PubMedCrossRefGoogle Scholar
  44. 44.
    Shi, J.-Y., Gao, Q., Wang, Z.-C., Zhou, J., Wang, X.-Y., Min, Z.-H., Shi, Y.-H., Shi, G.-M., Ding, Z.-B., Ke, A.W., Dai, Z., Qiu, S. J., Song, K., and Fan, J. (2013) Margin-infiltrating CD20+ B cells display an atypical memory phenotype and correlate with favorable prognosis in hepatocellular carcinoma, Clin. Cancer Res., 19, 59946005.Google Scholar
  45. 45.
    Dieu-Nosjean, M.-C., Antoine, M., Danel, C., Heudes, D., Wislez, M., Poulot, V., Rabbe, N., Laurans, L., Tartour, E., De Chaisemartin, L., Lebecque, S., Fridman, W. H., and Cadranel, J. (2008) Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures, J. Clin. Oncol., 26, 4410–4417.PubMedCrossRefGoogle Scholar
  46. 46.
    Germain, C., Gnjatic, S., Tamzalit, F., Knockaert, S., Remark, R., Goc, J., Lepelley, A., Becht, E., Katsahian, S., Bizouard, G., Validire, P., Damotte, D., Alifano, M., Magdeleinat, P., Cremer, I., Teillaud, J. L., Fridman, W. H., Sautes-Fridman, C., and Dieu-Nosjean, M. C. (2014) Presence of B-cells in tertiary lymphoid structures is associated with a protective immunity in patients with lung cancer, Am. J. Respir. Crit. Care Med., 189, 832–844.PubMedCrossRefGoogle Scholar
  47. 47.
    Miyasaka, M., and Tanaka, T. (2004) Lymphocyte trafficking across high endothelial venules: dogmas and enigmas, Nat. Rev. Immunol., 4, 360–370.PubMedCrossRefGoogle Scholar
  48. 48.
    Dieu-Nosjean, M.-C., Giraldo, N. A., Kaplon, H., Germain, C., Fridman, W. H., and Sautes-Fridman, C. (2016) Tertiary lymphoid structures, drivers of the antitumor responses in human cancers, Immunol. Rev., 271, 260–275.Google Scholar
  49. 49.
    Carrega, P., Loiacono, F., Di Carlo, E., Scaramuccia, A., Mora, M., Conte, R., Benelli, R., Spaggiari, G. M., Cantoni, C., Campana, S., Bonaccorsi, I., Morandi, B., Truini, M., Mingari, M. C., Moretta, L., and Ferlazzo, G. (2015) NCR+ ILC3 concentrate in human lung cancer and associate with intratumoral lymphoid structures, Nat. Commun., 6, 8280.PubMedCrossRefGoogle Scholar
  50. 50.
    Coca, S., Perez-Piqueras, J., Martinez, D., Colmenarejo, A., Saez, M. A., Vallejo, C., Martos, J. A., and Moreno, M. (1997) The prognostic significance of intratumoral natural killer cells in patients with colorectal carcinoma, Cancer, 79, 2320–2328.PubMedCrossRefGoogle Scholar
  51. 51.
    Villegas, F. R., Coca, S., Villarrubia, V. G., Jimenez, R., Chillon, M. J., Jareno, J., Zuil, M., and Callol, L. (2002) Prognostic significance of tumor infiltrating natural killer cells subset CD57 in patients with squamous cell lung cancer, Lung Cancer, 35, 23–28.PubMedCrossRefGoogle Scholar
  52. 52.
    Clark, W. H., From, L., Bernardino, E. A., and Mihm, M. C. (1969) The histogenesis and biologic behavior of primary human malignant melanomas of the skin, Cancer Res., 29, 705–727.PubMedGoogle Scholar
  53. 53.
    Elder, D. E., Guerry, D., Vanhorn, M., Hurwitz, S., Zehngebot, L., Goldman, L. I., Larossa, D., Hamilton, R., Bondi, E. E., and Clark, W. H. (1985) The role of lymph node dissection for clinical stage I malignant melanoma of intermediate thickness (1.51-3.99 mm), Cancer, 56, 413–418.PubMedCrossRefGoogle Scholar
  54. 54.
    Busam, K. J., Antonescu, C. R., Marghoob, A. A., Nehal, K. S., Sachs, D. L., Shia, J., and Berwick, M. (2001) Histologic classification of tumor-infiltrating lymphocytes in primary cutaneous malignant melanoma. A study of interobserver agreement, Am. J. Clin. Pathol., 115, 856–860.PubMedCrossRefGoogle Scholar
  55. 55.
    Schatton, T., Scolyer, R. A., Thompson, J. F., and Mihm, M. C. (2014) Tumor-infiltrating lymphocytes and their significance in melanoma prognosis, Methods Mol. Biol., 1102, 287–324.PubMedCrossRefGoogle Scholar
  56. 56.
    Tuthill, R. J., Unger, J. M., Liu, P. Y., Flaherty, L. E., and Sondak, V. K. (2002) Risk assessment in localized primary cutaneous melanoma: a Southwest Oncology Group study evaluating nine factors and a test of the Clark logistic regression prediction model, Am. J. Clin. Pathol., 118, 504511.CrossRefGoogle Scholar
  57. 57.
    Clemente, C. G., Mihm, M. C., Bufalino, R., Zurrida, S., Collini, P., and Cascinelli, N. (1996) Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma, Cancer, 77, 1303–1310.PubMedCrossRefGoogle Scholar
  58. 58.
    Mihm, M. C., Clemente, C. G., and Cascinelli, N. (1996) Tumor infiltrating lymphocytes in lymph node melanoma metastases: a histopathologic prognostic indicator and an expression of local immune response, Lab. Invest., 74, 43–47.PubMedGoogle Scholar
  59. 59.
    Cohen, P. J., Lotze, M. T., Roberts, J. R., Rosenberg, S. A., and Jaffe, E. S. (1987) The immunopathology of sequential tumor biopsies in patients treated with interleukin-2. Correlation of response with T-cell infiltration and HLADR expression, Am. J. Pathol., 129, 208–216.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Romero, P., Valmori, D., Pittet, M. J., Zippelius, A., Rimoldi, D., Levy, F., Dutoit, V., Ayyoub, M., RubioGodoy, V., Michielin, O., Guillaume, P., Batard, P., Luescher, I. F., Lejeune, F., Lienard, D., Rufer, N., Dietrich, P. Y., Speiser, D. E., and Cerottini, J. C. (2002) Antigenicity and immunogenicity of Melan-A/MART-1 derived peptides as targets for tumor reactive CTL in human melanoma, Immunol. Rev., 188, 81–96.PubMedCrossRefGoogle Scholar
  61. 61.
    Kawakami, Y., Robbins, P. F., Wang, R. F., Parkhurst, M., Kang, X., and Rosenberg, S. A. (1998) The use of melanosomal proteins in the immunotherapy of melanoma, J. Immunother., 21, 237–246.PubMedCrossRefGoogle Scholar
  62. 62.
    Kawakami, Y. (2000) New cancer therapy by immunomanipulation: development of immunotherapy for human melanoma as a model system, Cornea, 19, S2–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Chauvin, J.-M., Pagliano, O., Fourcade, J., Sun, Z., Wang, H., Sander, C., Kirkwood, J. M., Chen, T. T., Maurer, M., Korman, A. J., and Zarour, H. M. (2015) TIGIT and PD1 impair tumor antigen-specific CD8+ T-cells in melanoma patients, J. Clin. Invest., 125, 2046–2058.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Harlin, H., Kuna, T. V., Peterson, A. C., Meng, Y., and Gajewski, T. F. (2006) Tumor progression despite massive influx of activated CD8+ T-cells in a patient with malignant melanoma ascites, Cancer Immunol. Immunother., 55, 1185–1197.PubMedCrossRefGoogle Scholar
  65. 65.
    Boon, T., Coulie, P. G., Van den Eynde, B. J., and Van der Bruggen, P. (2006) Human T-cell responses against melanoma, Annu. Rev. Immunol., 24, 175–208.PubMedCrossRefGoogle Scholar
  66. 66.
    Sharma, M. D., Hou, D.-Y., Liu, Y., Koni, P. A., Metz, R., Chandler, P., Mellor, A. L., He, Y., and Munn, D. H. (2009) Indoleamine 2,3-dioxygenase controls conversion of Foxp3+ Tregs to TH17-like cells in tumor-draining lymph nodes, Blood, 113, 6102–6111.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Vukmanovic-Stejic, M., Zhang, Y., Cook, J. E., Fletcher, J. M., McQuaid, A., Masters, J. E., Rustin, M. H. A., Taams, L. S., Beverley, P. C. L., Macallan, D. C., and Akbar, A. N. (2006) Human CD4+ CD25hi Foxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo, J. Clin. Invest., 116, 2423–2433.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Lowes, M. A., Alex Bishop, G., Crotty, K., Barnetson, R. S. C., and Halliday, G. M. (1997) T-helper 1 cytokine mRNA is increased in spontaneously regressing primary melanomas, J. Invest. Dermatol., 108, 914–919.PubMedCrossRefGoogle Scholar
  69. 69.
    Conrad, C. T., Ernst, N. R., Dummer, W., Brocker, E. B., and Becker, J. C. (1999) Differential expression of transforming growth factor beta 1 and interleukin 10 in progressing and regressing areas of primary melanoma, J. Exp. Clin. Cancer Res., 18, 225–232.PubMedGoogle Scholar
  70. 70.
    Somasundaram, R., Robbins, P., Moonka, D., Loh, E., Marincola, F., Patel, A., Guerry, D., and Herlyn, D. (2000) CD4+, HLA class I-restricted, cytolytic T-lymphocyte clone against primary malignant melanoma cells, Int. J. Cancer, 85, 253–259.PubMedGoogle Scholar
  71. 71.
    Dudley, M. E., Wunderlich, J. R., Robbins, P. F., Yang, J. C., Hwu, P., Schwartzentruber, D. J., Topalian, S. L., Sherry, R., Restifo, N. P., Hubicki, A. M., Robinson, M. R., Raffeld, M., Duray, P., Seipp, C. A., Rogers-Freezer, L., Morton, K. E., Mavroukakis, S. A., White, D. E., and Rosenberg, S. A. (2002) Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes, Science, 298, 850–854.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Hunder, N. N., Wallen, H., Cao, J., Hendricks, D. W., Reilly, J. Z., Rodmyre, R., Jungbluth, A., Gnjatic, S., Thompson, J. A., and Yee, C. (2008) Treatment of metastatic melanoma with autologous CD4+ T-cells against NYESO-1, N. Engl. J. Med., 358, 2698–2703.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Ladanyi, A., Kiss, J., Mohos, A., Somlai, B., Liszkay, G., Gilde, K., Fejos, Z., Gaudi, I., Dobos, J., and Timar, J. (2011) Prognostic impact of B-cell density in cutaneous melanoma, Cancer Immunol. Immunother., 60, 1729–1738.PubMedCrossRefGoogle Scholar
  74. 74.
    Jager, E., Nagata, Y., Gnjatic, S., Wada, H., Stockert, E., Karbach, J., Dunbar, P. R., Lee, S. Y., Jungbluth, A., Jager, D., Arand, M., Ritter, G., Cerundolo, V., Dupont, B., Chen, Y.-T., Old, L. J., and Knuth, A. (2000) Monitoring CD8 T-cell responses to NY-ESO-1: correlation of humoral and cellular immune responses, Proc. Natl. Acad. Sci. USA, 97, 4760–4765.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Ferlay, J., Shin, H.-R., Bray, F., Forman, D., Mathers, C., and Parkin, D. M. (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008, Int. J. Cancer, 127, 2893–2917.PubMedCrossRefGoogle Scholar
  76. 76.
    Loi, S., Michiels, S., Salgado, R., Sirtaine, N., Jose, V., Fumagalli, D., Kellokumpu-Lehtinen, P.-L., Bono, P., Kataja, V., Desmedt, C., Piccart, M. J., Loibl, S., Denkert, C., Smyth, M. J., Joensuu, H., and Sotiriou, C. (2014) Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: results from the FinHER trial, Ann. Oncol., 25, 1544–1550.PubMedCrossRefGoogle Scholar
  77. 77.
    Adams, S., Gray, R. J., Demaria, S., Goldstein, L., Perez, E. A., Shulman, L. N., Martino, S., Wang, M., Jones, V. E., Saphner, T. J., Wolff, A. C., Wood, W. C., Davidson, N. E., Sledge, G. W., Sparano, J. A., and Badve, S. S. (2014) Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199, J. Clin. Oncol., 32, 2959–2966.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Loi, S., Sirtaine, N., Piette, F., Salgado, R., Viale, G., Van Eenoo, F., Rouas, G., Francis, P., Crown, J. P. A., Hitre, E., De Azambuja, E., Quinaux, E., Di Leo, A., Michiels, S., Piccart, M. J., and Sotiriou, C. (2013) Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in nodepositive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98, J. Clin. Oncol., 31, 860–867.PubMedCrossRefGoogle Scholar
  79. 79.
    Loi, S., Michiels, S., Salgado, R., Sirtaine, N., Jose, V., Fumagalli, D., Brown, D., Kellokumpu-Lehtinen, P.-L., Bono, P., Kataja, V., Desmedt, C., Piccart-Gebhart, M. J., Loibl, S., Untch, M., Denkert, C., Smyth, M. J., Joensuu, H., and Sotiriou, C. (2013) Abstract S1-05: tumor infiltrating lymphocytes (TILs) indicate trastuzumab benefit in early-stage HER2-positive breast cancer (HER2+BC), Cancer Res., 73, S1–05.Google Scholar
  80. 80.
    Seo, A. N., Lee, H. J., Kim, E. J., Kim, H. J., Jang, M. H., Lee, H. E., Kim, Y. J., Kim, J. H., and Park, S. Y. (2013) Tumorinfiltrating CD8+ lymphocytes as an independent predictive factor for pathological complete response to primary systemic therapy in breast cancer, Br. J. Cancer, 109, 2705–2713.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Brown, J. R., Wimberly, H., Lannin, D. R., Nixon, C., Rimm, D. L., and Bossuyt, V. (2014) Multiplexed quantitative analysis of CD3, CD8, and CD20 predicts response to neoadjuvant chemotherapy in breast cancer, Clin. Cancer Res., 20, 5995–6005.PubMedGoogle Scholar
  82. 82.
    Lee, H. J., Seo, J.-Y., Ahn, J.-H., Ahn, S.-H., and Gong, G. (2013) Tumor-associated lymphocytes predict response to neoadjuvant chemotherapy in breast cancer patients, J. Breast Cancer, 16, 32–39.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Ma, C., Zhang, Q., Ye, J., Wang, F., Zhang, Y., Wevers, E., Schwartz, T., Hunborg, P., Varvares, M. A., Hoft, D. F., Hsueh, E. C., and Peng, G. (2012) Tumor-infiltrating d T lymphocytes predict clinical outcome in human breast cancer, J. Immunol., 189, 5029–5036.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Gu-Trantien, C., Loi, S., Garaud, S., Equeter, C., Libin, M., De Wind, A., Ravoet, M., Le Buanec, H., Sibille, C., Manfouo-Foutsop, G., Veys, I., Haibe-Kains, B., Singhal, S. K., Michiels, S., Rothe, F., Saldago, R., Duvillier, H., Ignatiadis, M., Desmedt, C., Bron, D., Larsimont, D., Piccart, M., Sotiriou, C., and Willard-Gallo, K. (2013) CD4+ follicular helper T-cell infiltration predicts breast cancer survival, J. Clin. Invest., 123, 2873–2892.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Gjerstorff, M. F., Benoit, V. M., Laenkholm, A.-V., Nielsen, O., Johansen, L. E., and Ditzel, H. J. (2006) Identification of genes with altered expression in medullary breast cancer vs. ductal breast cancer and normal breast epithelia, Int. J. Oncol., 28, 1327–1335.PubMedGoogle Scholar
  86. 86.
    Pedersen, L., Zedeler, K., Holck, S., Schiodt, T., and Mouridsen, H. T. (1995) Medullary carcinoma of the breast. Prevalence and prognostic importance of classical risk factors in breast cancer, Eur. J. Cancer, 31A, 2289–2295.PubMedCrossRefGoogle Scholar
  87. 87.
    Yakirevich, E., Maroun, L., Cohen, O., Izhak, O. B., Rennert, G., and Resnick, M. B. (2000) Apoptosis, proliferation, and Fas (APO-1, CD95)/Fas ligand expression in medullary carcinoma of the breast, J. Pathol., 192, 166–173.PubMedGoogle Scholar
  88. 88.
    Jensen, V., Jensen, M. L., Kiaer, H., Andersen, J., and Melsen, F. (1997) MIB-1 expression in breast carcinomas with medullary features. An immunohistological study including correlations with p53 and bcl-2, Virchow’s Arch., 431, 125–130.CrossRefGoogle Scholar
  89. 89.
    Bacus, S. S., Zelnick, C. R., Chin, D. M., Yarden, Y., Kaminsky, D. B., Bennington, J., Wen, D., Marcus, J. N., and Page, D. L. (1994) Medullary carcinoma is associated with expression of intercellular adhesion molecule-1. Implication to its morphology and its clinical behavior, Am. J. Pathol., 145, 1337–1348.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Ridolfi, R. L., Rosen, P. P., Port, A., Kinne, D., and Mike, V. (1977) Medullary carcinoma of the breast. A clinicopathologic study with 10-year follow-up, Cancer, 40, 1365–1385.PubMedCrossRefGoogle Scholar
  91. 91.
    Hansen, M. H., Nielsen, H. V., and Ditzel, H. J. (2002) Translocation of an intracellular antigen to the surface of medullary breast cancer cells early in apoptosis allows for an antigen-driven antibody response elicited by tumorinfiltrating B-cells, J. Immunol., 169, 2701–2711.PubMedCrossRefGoogle Scholar
  92. 92.
    Kotlan, B., Simsa, P., Teillaud, J.-L., Fridman, W. H., Toth, J., McKnight, M., and Glassy, M. C. (2005) Novel ganglioside antigen identified by B cells in human medullary breast carcinomas: the proof of principle concerning the tumor-infiltrating B-lymphocytes, J. Immunol., 175, 2278–2285.PubMedCrossRefGoogle Scholar
  93. 93.
    Hansen, M. H., Nielsen, H., and Ditzel, H. J. (2001) The tumor-infiltrating B cell response in medullary breast cancer is oligoclonal and directed against the autoantigen actin exposed on the surface of apoptotic cancer cells, Proc. Natl. Acad. Sci. USA, 98, 12659–12664.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Matsubayashi, S., Kawai, K., Matsumoto, Y., Mukuta, T., Morita, T., Hirai, K., Matsuzuka, F., Kakudoh, K., Kuma, K., and Tamai, H. (1995) The correlation between papillary thyroid carcinoma and lymphocytic infiltration in the thyroid gland, J. Clin. Endocrinol. Metab., 80, 3421–3424.PubMedGoogle Scholar
  95. 95.
    Gupta, S., Patel, A., Folstad, A., Fenton, C., Dinauer, C. A., Tuttle, R. M., Conran, R., and Francis, G. L. (2001) Infiltration of differentiated thyroid carcinoma by proliferating lymphocytes is associated with improved disease-free survival for children and young adults, J. Clin. Endocrinol. Metab., 86, 1346–1354.PubMedGoogle Scholar
  96. 96.
    Fiumara, A., Belfiore, A., Russo, G., Salomone, E., Santonocito, G. M., Ippolito, O., Vigneri, R., and Gangemi, P. (1997) In situ evidence of neoplastic cell phagocytosis by macrophages in papillary thyroid cancer, J. Clin. Endocrinol. Metab., 82, 1615–1620.PubMedGoogle Scholar
  97. 97.
    Bagnasco, M., Venuti, D., Paolieri, F., Torre, G., Ferrini, S., and Canonica, G. W. (1989) Phenotypic and functional analysis at the clonal level of infiltrating T-lymphocytes in papillary carcinoma of the thyroid: prevalence of cytolytic T-cells with natural killer-like or lymphokine-activated killer activity, J. Clin. Endocrinol. Metab., 69, 832–836.PubMedCrossRefGoogle Scholar
  98. 98.
    Salmaso, C., Olive, D., Pesce, G., and Bagnasco, M. (2002) Costimulatory molecules and autoimmune thyroid diseases, Autoimmunity, 35, 159–167.PubMedCrossRefGoogle Scholar
  99. 99.
    Shah, R., Banks, K., Patel, A., Dogra, S., Terrell, R., Powers, P. A., Fenton, C., Dinauer, C. A., Tuttle, R. M., and Francis, G. L. (2002) Intense expression of the b7-2 antigen presentation coactivator is an unfavorable prognostic indicator for differentiated thyroid carcinoma of children and adolescents, J. Clin. Endocrinol. Metab., 87, 4391–4397.PubMedCrossRefGoogle Scholar
  100. 100.
    Wilders-Truschnig, M. M., Kabel, P. J., Drexhage, H. A., Beham, A., Leb, G., Eber, O., Hebenstreit, J., Loidolt, D., Dohr, G., and Lanzer, G. (1989) Intrathyroidal dendritic cells, epitheloid cells, and giant cells in iodine deficient goiter, Am. J. Pathol., 135, 219–225.PubMedGoogle Scholar
  101. 101.
    Pinzon-Charry, A., Maxwell, T., and Lopez, J. A. (2005) Dendritic cell dysfunction in cancer: a mechanism for immunosuppression, Immunol. Cell Biol., 83, 451–461.PubMedCrossRefGoogle Scholar
  102. 102.
    Kusmartsev, S., Nefedova, Y., Yoder, D., and Gabrilovich, D. I. (2004) Antigen-specific inhibition of CD8+ T-cell response by immature myeloid cells in cancer is mediated by reactive oxygen species, J. Immunol., 172, 989–999.PubMedCrossRefGoogle Scholar
  103. 103.
    Dailey, M. E. (1955) Relation of thyroid neoplasms to hashimoto disease of the thyroid gland, Arch. Surg., 70, 291.CrossRefGoogle Scholar
  104. 104.
    Kashima, K., Yokoyama, S., Noguchi, S., Murakami, N., Yamashita, H., Watanabe, S., Uchino, S., Toda, M., Sasaki, A., Daa, T., and Nakayama, I. (1998) Chronic thyroiditis as a favorable prognostic factor in papillary thyroid carcinoma, Thyroid, 8, 197–202.PubMedCrossRefGoogle Scholar
  105. 105.
    Souza, S. L., Montalli Da Assumpcao, L. V., and Ward, L. S. (2003) Impact of previous thyroid autoimmune diseases on prognosis of patients with well-differentiated thyroid cancer, Thyroid, 13, 491–495.PubMedCrossRefGoogle Scholar
  106. 106.
    Loh, K. C., Greenspan, F. S., Dong, F., Miller, T. R., and Yeo, P. P. (1999) Influence of lymphocytic thyroiditis on the prognostic outcome of patients with papillary thyroid carcinoma, J. Clin. Endocrinol. Metab., 84, 458–463.PubMedCrossRefGoogle Scholar
  107. 107.
    Okayasu, I., Fujiwara, M., Hara, Y., Tanaka, Y., and Rose, N. R. (1995) Association of chronic lymphocytic thyroiditis and thyroid papillary carcinoma. A study of surgical cases among Japanese, and white and African Americans, Cancer, 76, 2312–2318.PubMedGoogle Scholar
  108. 108.
    Arif, S., Blanes, A., and Diaz-Cano, S. J. (2002) Hashimoto’s thyroiditis shares features with early papillary thyroid carcinoma, Histopathology, 41, 357–362.PubMedCrossRefGoogle Scholar
  109. 109.
    Mechler, C., Bounacer, A., Suarez, H., Saint Frison, M., Magois, C., Aillet, G., and Gaulier, A. (2001) Papillary thyroid carcinoma: 6 cases from 2 families with associated lymphocytic thyroiditis harbouring RET/PTC rearrangements, Br. J. Cancer, 85, 1831–1837.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Apel, R. L., Asa, S. L., and LiVolsi, V. A. (1995) Papillary Hurthle cell carcinoma with lymphocytic stroma. “Warthin-like tumor” of the thyroid, Am. J. Surg. Pathol., 19, 810–814.PubMedCrossRefGoogle Scholar
  111. 111.
    Dolcetti, R., Viel, A., Doglioni, C., Russo, A., Guidoboni, M., Capozzi, E., Vecchiato, N., Macri, E., Fornasarig, M., and Boiocchi, M. (1999) High prevalence of activated intraepithelial cytotoxic T-lymphocytes and increased neoplastic cell apoptosis in colorectal carcinomas with microsatellite instability, Am. J. Pathol., 154, 1805–1813.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Kim, H., Jen, J., Vogelstein, B., and Hamilton, S. R. (1994) Clinical and pathological characteristics of sporadic colorectal carcinomas with DNA replication errors in microsatellite sequences, Am. J. Pathol., 145, 148–156.PubMedPubMedCentralGoogle Scholar
  113. 113.
    Risio, M., Reato, G., Di Celle, P. F., Fizzotti, M., Rossini, F. P., and Foa, R. (1996) Microsatellite instability is associated with the histological features of the tumor in nonfamilial colorectal cancer, Cancer Res., 56, 5470–5474.PubMedGoogle Scholar
  114. 114.
    Phillips, S. M., Banerjea, A., Feakins, R., Li, S. R., Bustin, S. A., and Dorudi, S. (2004) Tumour-infiltrating lymphocytes in colorectal cancer with microsatellite instability are activated and cytotoxic, Br. J. Surg., 91, 469–475.PubMedCrossRefGoogle Scholar
  115. 115.
    Linnebacher, M., Gebert, J., Rudy, W., Woerner, S., Yuan, Y. P., Bork, P., and Von Knebel Doeberitz, M. (2001) Frameshift peptide-derived T-cell epitopes: a source of novel tumor-specific antigens, Int. J. Cancer, 93, 6–11.PubMedCrossRefGoogle Scholar
  116. 116.
    Linnebacher, M., Wienck, A., Boeck, I., and Klar, E. (2010) Identification of an MSI-H tumor-specific cytotoxic T-cell epitope generated by the (–1) frame of U79260(FTO), J. Biomed. Biotechnol., 2010, 841451.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Schwitalle, Y., Kloor, M., Eiermann, S., Linnebacher, M., Kienle, P., Knaebel, H. P., Tariverdian, M., Benner, A., and Von Knebel Doeberitz, M. (2008) Immune response against frameshift-induced neopeptides in HNPCC patients and healthy HNPCC mutation carriers, Gastroenterology, 134, 988–997.PubMedCrossRefGoogle Scholar
  118. 118.
    Bauer, K., Nelius, N., Reuschenbach, M., Koch, M., Weitz, J., Steinert, G., Kopitz, J., Beckhove, P., Tariverdian, M., Von Knebel Doeberitz, M., and Kloor, M. (2013) T-cell responses against microsatellite instability-induced frameshift peptides and influence of regulatory T-cells in colorectal cancer, Cancer Immunol. Immunother., 62, 27–37.PubMedCrossRefGoogle Scholar
  119. 119.
    Ishikawa, T., Fujita, T., Suzuki, Y., Okabe, S., Yuasa, Y., Iwai, T., and Kawakami, Y. (2003) Tumor-specific immunological recognition of frameshift-mutated peptides in colon cancer with microsatellite instability, Cancer Res., 63, 5564–5572.PubMedGoogle Scholar
  120. 120.
    Reuschenbach, M., Kloor, M., Morak, M., Wentzensen, N., Germann, A., Garbe, Y., Tariverdian, M., Findeisen, P., Neumaier, M., Holinski-Feder, E., and Von Knebel Doeberitz, M. (2010) Serum antibodies against frameshift peptides in microsatellite unstable colorectal cancer patients with Lynch syndrome, Fam. Cancer, 9, 173–179.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Llosa, N. J., Cruise, M., Tam, A., Wicks, E. C., Hechenbleikner, E. M., Taube, J. M., Blosser, R. L., Fan, H., Wang, H., Luber, B. S., Zhang, M., Papadopoulos, N., Kinzler, K. W., Vogelstein, B., Sears, C. L., Anders, R. A., Pardoll, D. M., and Housseau, F. (2015) The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints, Cancer Discov., 5, 43–51.PubMedCrossRefGoogle Scholar
  122. 122.
    Xiao, Y., and Freeman, G. J. (2015) The microsatellite instable subset of colorectal cancer is a particularly good candidate for checkpoint blockade immunotherapy, Cancer Discov., 5, 16–18.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Kroemer, G., Galluzzi, L., Zitvogel, L., and Fridman, W. H. (2015) Colorectal cancer: the first neoplasia found to be under immunosurveillance and the last one to respond to immunotherapy? Oncoimmunology, 4, e1058597.Google Scholar
  124. 124.
    Le, D. T., Uram, J. N., Wang, H., Bartlett, B. R., Kemberling, H., Eyring, A. D., Skora, A. D., Luber, B. S., Azad, N. S., Laheru, D., Biedrzycki, B., Donehower, R. C., Zaheer, A., Fisher, G. A., Crocenzi, T. S., Lee, J. J., Duffy, S. M., Goldberg, R. M., de la Chapelle, A., Koshiji, M., Bhaijee, F., Huebner, T., Hruban, R. H., Wood, L. D., Cuka, N., Pardoll, D. M., Papadopoulos, N., Kinzler, K. W., Zhou, S., Cornish, T. C., Taube, J. M., Anders, R. A., Eshleman, J. R., Vogelstein, B., and Diaz, L. A. (2015) PD-1 blockade in tumors with mismatch-repair deficiency, N. Engl. J. Med., 372, 2509–2520.Google Scholar
  125. 125.
    Galon, J., Costes, A., Sanchez-Cabo, F., Kirilovsky, A., Mlecnik, B., Lagorce-Pages, C., Tosolini, M., Camus, M., Berger, A., Wind, P., Zinzindohoue, F., Bruneval, P., Cugnenc, P. H., Trajanoski, Z., Fridman, W. H., and Pages, F. (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome, Science, 313, 1960–1964.Google Scholar
  126. 126.
    Mlecnik, B., Tosolini, M., Kirilovsky, A., Berger, A., Bindea, G., Meatchi, T., Bruneval, P., Trajanoski, Z., Fridman, W.-H., Pages, F., and Galon, J. (2011) Histopathologic-based prognostic factors of colorectal cancers are associated with the state of the local immune reaction, J. Clin. Oncol., 29, 610–618.PubMedCrossRefGoogle Scholar
  127. 127.
    Pages, F., Kirilovsky, A., Mlecnik, B., Asslaber, M., Tosolini, M., Bindea, G., Lagorce, C., Wind, P., Marliot, F., Bruneval, P., Zatloukal, K., Trajanoski, Z., Berger, A., Fridman, W. H., and Galon, J. (2009) In situ cytotoxic and memory T-cells predict outcome in patients with earlystage colorectal cancer, J. Clin. Oncol., 27, 5944–5951.PubMedCrossRefGoogle Scholar
  128. 128.
    Anitei, M.-G., Zeitoun, G., Mlecnik, B., Marliot, F., Haicheur, N., Todosi, A.-M., Kirilovsky, A., Lagorce, C., Bindea, G., Ferariu, D., Danciu, M., Bruneval, P., Scripcariu, V., Chevallier, J. M., Zinzindohoue, F., Berger, A., Galon, J., and Pages, F. (2014) Prognostic and predictive values of the immunoscore in patients with rectal cancer, Clin. Cancer Res., 20, 1891–1899.PubMedCrossRefGoogle Scholar
  129. 129.
    Galon, J., Pages, F., Marincola, F. M., Angell, H. K., Thurin, M., Lugli, A., Zlobec, I., Berger, A., Bifulco, C., Botti, G., Tatangelo, F., Britten, C. M., Kreiter, S., Chouchane, L., Delrio, P., Arndt, H., Asslaber, M., Maio, M., Masucci, G. V., Mihm, M., Vidal-Vanaclocha, F., Allison, J. P., Gnjatic, S., Hakansson, L., Huber, C., Singh-Jasuja, H., Ottensmeier, C., Zwierzina, H., Laghi, L., Grizzi, F., Ohashi, P. S., Shaw, P. A., Clarke, B. A., Wouters, B. G., Kawakami, Y., Hazama, S., Okuno, K., Wang, E., O’Donnell-Tormey, J., Lagorce, C., Pawelec, G., Nishimura, M. I., Hawkins, R., Lapointe, R., Lundqvist, A., Khleif, S. N., Ogino, S., Gibbs, P., Waring, P., Sato, N., Torigoe, T., Itoh, K., Patel, P. S., Shukla, S. N., Palmqvist, R., Nagtegaal, I. D., Wang, Y., D’Arrigo, C., Kopetz, S., Sinicrope, F. A., Trinchieri, G., Gajewski, T. F., Ascierto, P. A., and Fox, B. A. (2012) Cancer classification using the Immunoscore: a worldwide task force, J. Transl. Med., 10, 205.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Mlecnik, B., Bindea, G., Angell, H. K., Maby, P., Angelova, M., Tougeron, D., Church, S. E., Lafontaine, L., Fischer, M., Fredriksen, T., Sasso, M., Bilocq, A. M., Kirilovsky, A., Obenauf, A. C., Hamieh, M., Berger, A., Bruneval, P., Tuech, J. J., Sabourin, J. C., Le Pessot, F., Mauillon, J., Rafii, A., Laurent-Puig, P., Speicher, M. R., Trajanoski, Z., Michel, P., Sesboue, R., Frebourg, T., Pages, F., Valge-Archer, V., Latouche, J. B., and Galon, J. (2016) Integrative analyses of colorectal cancer show immunoscore is a stronger predictor of patient survival than microsatellite instability, Immunity, 44, 698–711.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  2. 2.Biological FacultyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations