Biochemistry (Moscow)

, Volume 81, Issue 10, pp 1229–1236 | Cite as

Do mitochondria have an immune system?

  • V. A. Popkov
  • L. D. Zorova
  • I. O. Korvigo
  • D. N. Silachev
  • S. S. Jankauskas
  • V. A. Babenko
  • I. B. Pevzner
  • T. I. Danilina
  • S. D. Zorov
  • E. Y. Plotnikov
  • D. B. Zorov
Hypothesis

Abstract

The question if mitochondria have some kind of immune system is not trivial. The basis for raising this question is the fact that bacteria, which are progenitors of mitochondria, do have an immune system. The CRISPR system in bacteria based on the principle of RNA interference serves as an organized mechanism for destroying alien nucleic acids, primarily those of viral origin. We have shown that mitochondria are also a target for viral attacks, probably due to a related organization of genomes in these organelles and bacteria. Bioinformatic analysis performed in this study has not given a clear answer if there is a CRISPR-like immune system in mitochondria. However, this does not preclude the possibility of mitochondrial immunity that can be difficult to decipher or that is based on some principles other than those of CRISPR.

Key words

mitochondria immune system virus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D. A., and Horvath, P. (2007) CRISPR provides acquired resistance against viruses in prokaryotes, Science, 315, 1709–1712.PubMedCrossRefGoogle Scholar
  2. 2.
    Price, W. H. (1952) Bacterial viruses, Annu. Rev. Microbiol., 6, 333–348.PubMedCrossRefGoogle Scholar
  3. 3.
    Anand, S. K., and Tikoo, S. K. (2013) Viruses as modulators of mitochondrial functions, Adv. Virol., 2013, 738–794.CrossRefGoogle Scholar
  4. 4.
    Zhdanov, V. M., Tikhonenko, T. I., Bocharov, A. F., and Naroditsky, B. A. (1971) Reproduction of tobacco mosaic virus in isolated rat liver mitochondria, DAN SSSR, 199, 944–947.Google Scholar
  5. 5.
    Zhdanov, V. M. (1972) Functioning of viral genome in isolated mitochondria, Vest. Akad. Med. Nauk, 27, 86–91.Google Scholar
  6. 6.
    Macho, A., Castedo, M., Marchetti, P., Aguilar, J. J., Decaudin, D., Zamzami, N., Girard, P. M., Uriel, J., and Kroemer, G. (1995) Mitochondrial dysfunctions in circulating T-lymphocytes from human immunodeficiency virus-1 carriers, Blood, 86, 2481–2487.PubMedGoogle Scholar
  7. 7.
    Tollefson, A. E., Ryerse, J. S., Scaria, A., Hermiston, T. W., and Wold, W. S. (1996) The E3-11.6-kDa adenovirus death protein (ADP) is required for efficient cell death: characterization of cells infected with adp mutants, Virology, 220, 152–162.PubMedCrossRefGoogle Scholar
  8. 8.
    Alandijany, T., Kammouni, W., Roy Chowdhury, S. K., Fernyhough, P., and Jackson, A. C. (2013) Mitochondrial dysfunction in rabies virus infection of neurons, J. Neurovirol., 19, 537–549.PubMedCrossRefGoogle Scholar
  9. 9.
    Kruman, I. I., Nath, A., and Mattson, M. P. (1998) HIV-1 protein Tat induces apoptosis of hippocampal neurons by a mechanism involving caspase activation, calcium overload, and oxidative stress, Exp. Neurol., 154, 276–288.PubMedCrossRefGoogle Scholar
  10. 10.
    Lassoued, S., Ben Ameur, R., Ayadi, W., Gargouri, B., Ben Mansour, R., and Attia, H. (2008) Epstein–Barr virus induces an oxidative stress during the early stages of infection in B-lymphocytes, epithelial, and lymphoblastoid cell lines, Mol. Cell. Biochem., 313, 179–186.PubMedCrossRefGoogle Scholar
  11. 11.
    Monne, M., Robinson, A. J., Boes, C., Harbour, M. E., Fearnley, I. M., and Kunji, E. R. S. (2007) The mimivirus genome encodes a mitochondrial carrier that transports dATP and dTTP, J. Virol., 81, 3181–3186.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Kim, Y.-J., Jung, J. K., Lee, S. Y., and Jang, K. L. (2010) Hepatitis B virus X protein overcomes stress-induced premature senescence by repressing p16(INK4a) expression via DNA methylation, Cancer Lett., 288, 226–235.PubMedCrossRefGoogle Scholar
  13. 13.
    Lund, K., and Ziola, B. (1985) Cell sonicates used in the analysis of how measles and herpes simplex type 1 virus infections influence Vero cell mitochondrial calcium uptake, Can. J. Biochem. Cell Biol., 63, 1194–1197.PubMedCrossRefGoogle Scholar
  14. 14.
    Foti, M., Cartier, L., Piguet, V., Lew, D. P., Carpentier, J. L., Trono, D., and Krause, K. H. (1999) The HIV Nef protein alters Ca2+ signaling in myelomonocytic cells through SH3-mediated protein–protein interactions, J. Biol. Chem., 274, 34765–34772.PubMedCrossRefGoogle Scholar
  15. 15.
    Campbell, R. V., Yang, Y., Wang, T., Rachamallu, A., Li, Y., Watowich, S. J., and Weinman, S. A. (2009) Chapter 20. Effects of hepatitis C core protein on mitochondrial electron transport and production of reactive oxygen species, Methods Enzymol., 456, 363–380.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Diaz, Y., Chemello, M. E., Pena, F., Aristimuno, O. C., Zambrano, J. L., Rojas, H., Bartoli, F., Salazar, L., Chwetzoff, S., Sapin, C., Trugnan, G., Michelangeli, F., and Ruiz, M. C. (2008) Expression of nonstructural rotavirus protein NSP4 mimics Ca2+ homeostasis changes induced by rotavirus infection in cultured cells, J. Virol., 82, 11331–11343.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Aldabe, R., Irurzun, A., and Carrasco, L. (1997) Poliovirus protein 2BC increases cytosolic free calcium concentrations, J. Virol., 71, 6214–6217.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Moise, A. R., Grant, J. R., Vitalis, T. Z., and Jefferies, W. A. (2002) Adenovirus E3-6.7K maintains calcium homeostasis and prevents apoptosis and arachidonic acid release, J. Virol., 76, 1578–1587.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Van Kuppeveld, F. J. M., De Jong, A. S., Melchers, W. J., and Willems, P. H. (2005) Enterovirus protein 2B po(u)res out the calcium: a viral strategy to survive? Trends Microbiol., 13, 41–44.PubMedCrossRefGoogle Scholar
  20. 20.
    Bozidis, P., Williamson, C. D., Wong, D. S., and ColbergPoley, A. M. (2010) Trafficking of UL37 proteins into mitochondrion-associated membranes during permissive human cytomegalovirus infection, J. Virol., 84, 7898–7903.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    McGuire, K. A., Barlan, A. U., Griffin, T. M., and Wiethoff, C. M. (2011) Adenovirus type 5 rupture of lysosomes leads to cathepsin B-dependent mitochondrial stress and production of reactive oxygen species, J. Virol., 85, 10806–10813.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Nishina, S., Hino, K., Korenaga, M., Vecchi, C., Pietrangelo, A., Mizukami, Y., Furutani, T., Sakai, A., Okuda, M., Hidaka, I., Okita, K., and Sakaida, I. (2008) Hepatitis C virus-induced reactive oxygen species raise hepatic iron level in mice by reducing hepcidin transcription, Gastroenterology, 134, 226–238.PubMedCrossRefGoogle Scholar
  23. 23.
    Gil, L., Tarinas, A., Hernandez, D., Riveron, B. V., Perez, D., Tapanes, R., Capo, V., and Perez, J. (2011) Altered oxidative stress indexes related to disease progression marker in human immunodeficiency virus infected patients with antiretroviral therapy, Biomed. Aging Pathol., 1, 8–15.CrossRefGoogle Scholar
  24. 24.
    Lassoued, S., Gargouri, B., El Feki Ael F., Attia, H., and Van Pelt, J. (2010) Transcription of the Epstein–Barr virus lytic cycle activator BZLF-1 during oxidative stress induction, Biol. Trace Elem. Res., 137, 13–22.PubMedCrossRefGoogle Scholar
  25. 25.
    Hu, L., Chen, L., Yang, G., Li, L., Sun, H., Chang, Y., Tu, Q., Wu, M., and Wang, H. (2011) HBx sensitizes cells to oxidative stress-induced apoptosis by accelerating the loss of Mcl-1 protein via caspase-3 cascade, Mol. Cancer, 10, 43.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Srisuttee, R., Koh, S. S., Park, E. H., Cho, I.-R., Min, H. J., Jhun, B. H., Yu, D.-Y., Park, S., Park, D. Y., Lee, M. O., Castrillon, D. H., Johnston, R. N., and Chung, Y.-H. (2011) Up-regulation of Foxo4 mediated by hepatitis B virus X protein confers resistance to oxidative stressinduced cell death, Int. J. Mol. Med., 28, 255–260.PubMedGoogle Scholar
  27. 27.
    Ano, Y., Sakudo, A., Kimata, T., Uraki, R., Sugiura, K., and Onodera, T. (2010) Oxidative damage to neurons caused by the induction of microglial NADPH oxidase in encephalomyocarditis virus infection, Neurosci. Lett., 469, 39–43.PubMedCrossRefGoogle Scholar
  28. 28.
    Gonzalez, M. E., and Carrasco, L. (2003) Viroporins, FEBS Lett., 552, 28–34.PubMedCrossRefGoogle Scholar
  29. 29.
    Deniaud, A., Brenner, C., and Kroemer, G. (2004) Mitochondrial membrane permeabilization by HIV-1 Vpr, Mitochondrion, 4, 223–233.PubMedCrossRefGoogle Scholar
  30. 30.
    Everett, H., Barry, M., Sun, X., Lee, S. F., Frantz, C., Berthiaume, L. G., McFadden, G., and Bleackley, R. C. (2002) The myxoma poxvirus protein, M11L, prevents apoptosis by direct interaction with the mitochondrial permeability transition pore, J. Exp. Med., 196, 1127–1139.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Gibbs, J. S., Malide, D., Hornung, F., Bennink, J. R., and Yewdell, J. W. (2003) The influenza A virus PB1-F2 protein targets the inner mitochondrial membrane via a predicted basic amphipathic helix that disrupts mitochondrial function, J. Virol., 77, 7214–7224.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Biasiotto, R., Aguiari, P., Rizzuto, R., Pinton, P., D’ Agostino, D. M., and Ciminale, V. (2010) The p13 protein of human T-cell leukemia virus type 1 (HTLV-1) modulates mitochondrial membrane potential and calcium uptake, Biochim. Biophys. Acta, 1797, 945–951.PubMedCrossRefGoogle Scholar
  33. 33.
    Nudson, W. A., Rovnak, J., Buechner, M., and Quackenbush, S. L. (2003) Walleye dermal sarcoma virus Orf C is targeted to the mitochondria, J. Gen. Virol., 84, 375–381.PubMedCrossRefGoogle Scholar
  34. 34.
    Nieva, J. L., Agirre, A., Nir, S., and Carrasco, L. (2003) Mechanisms of membrane permeabilization by picornavirus 2B viroporin, FEBS Lett., 552, 68–73.PubMedCrossRefGoogle Scholar
  35. 35.
    Matthews, D. A., and Russell, W. C. (1998) Adenovirus core protein V interacts with p32–a protein, which is associated with both the mitochondria and the nucleus, J. Gen. Virol., 79, 1677–1685.PubMedCrossRefGoogle Scholar
  36. 36.
    Kaminska, M., Shalak, V., Francin, M., and Mirande, M. (2007) Viral hijacking of mitochondrial lysyl-tRNA synthetase, J. Virol., 81, 68–73.PubMedCrossRefGoogle Scholar
  37. 37.
    Seo, J.-Y., Yaneva, R., Hinson, E. R., and Cresswell, P. (2011) Human cytomegalovirus directly induces the antiviral protein viperin to enhance infectivity, Science, 332, 1093–1097.PubMedCrossRefGoogle Scholar
  38. 38.
    Kim, S., Kim, H.-Y., Lee, S., Kim, S. W., Sohn, S., Kim, K., and Cho, H. (2007) Hepatitis B virus X protein induces perinuclear mitochondrial clustering in microtubuleand dynein-dependent manners, J. Virol., 81, 1714–1726.PubMedCrossRefGoogle Scholar
  39. 39.
    Nomura-Takigawa, Y., Nagano-Fujii, M., Deng, L., Kitazawa, S., Ishido, S., Sada, K., and Hotta, H. (2006) Non-structural protein 4A of hepatitis C virus accumulates on mitochondria and renders the cells prone to undergoing mitochondria-mediated apoptosis, J. Gen. Virol., 87, 1935–1945.PubMedCrossRefGoogle Scholar
  40. 40.
    Radovanovic, J., Todorovic, V., Boricic, I., JankovicHladni, M., and Korac, A. (1999) Comparative ultrastructural studies on mitochondrial pathology in the liver of AIDS patients: clusters of mitochondria, protuberances, minimitochondria, vacuoles, and virus-like particles, Ultrastruct. Pathol., 23, 19–24.PubMedCrossRefGoogle Scholar
  41. 41.
    Rojo, G., Chamorro, M., Salas, M. L., Vinuela, E., Cuezva, J. M., and Salas, J. (1998) Migration of mitochondria to viral assembly sites in African swine fever virusinfected cells, J. Virol., 72, 7583–7588.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Kelly, D. C. (1975) Frog virus 3 replication: electron microscope observations on the sequence of infection in chick embryo fibroblasts, J. Gen. Virol., 26, 71–86.PubMedCrossRefGoogle Scholar
  43. 43.
    Kim, Y.-J., Jung, J. K., Lee, S. Y., and Jang, K. L. (2010) Hepatitis B virus X protein overcomes stress-induced premature senescence by repressing p16INK4a expression via DNA methylation, Cancer Lett., 288, 226–235.PubMedCrossRefGoogle Scholar
  44. 44.
    Wiedmer, A., Wang, P., Zhou, J., Rennekamp, A. J., Tiranti, V., Zeviani, M., and Lieberman, P. M. (2008) Epstein–Barr virus immediate-early protein Zta co-opts mitochondrial single-stranded DNA binding protein to promote viral and inhibit mitochondrial DNA replication, J. Virol., 82, 4647–4655.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Machida, K., Cheng, K. T.-H., Lai, C.-K., Jeng, K.-S., Sung, V. M.-H., and Lai, M. M. (2006) Hepatitis C virus triggers mitochondrial permeability transition with production of reactive oxygen species, leading to DNA damage and STAT3 activation, J. Virol., 80, 7199–7207.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    De Mendoza, C., Martin-Carbonero, L., Barreiro, P., De Baar, M., Zahonero, N., Rodriguez-Novoa, S., Benito, J. M., Gonzalez-Lahoz, J., and Soriano, V. (2007) Mitochondrial DNA depletion in HIV-infected patients with chronic hepatitis C and effect of pegylated interferon plus ribavirin therapy, AIDS, 21, 583–588.PubMedCrossRefGoogle Scholar
  47. 47.
    Saffran, H. A., Pare, J. M., Corcoran, J. A., Weller, S. K., and Smiley, J. R. (2007) Herpes simplex virus eliminates host mitochondrial DNA, EMBO Rep., 8, 188–193.PubMedCrossRefGoogle Scholar
  48. 48.
    Koshiba, T. (2013) Mitochondrial-mediated antiviral immunity, Biochim. Biophys. Acta, 1833, 225–232.PubMedCrossRefGoogle Scholar
  49. 49.
    Seth, R. B., Sun, L., Ea, C.-K., and Chen, Z. J. (2005) Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3, Cell, 122, 669–682.PubMedCrossRefGoogle Scholar
  50. 50.
    Sun, Q., Sun, L., Liu, H.-H., Chen, X., Seth, R. B., Forman, J., and Chen, Z. J. (2006) The specific and essential role of MAVS in antiviral innate immune responses, Immunity, 24, 633–642.PubMedCrossRefGoogle Scholar
  51. 51.
    Li, X.-D., Sun, L., Seth, R. B., Pineda, G., and Chen, Z. J. (2005) Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity, Proc. Natl. Acad. Sci. USA, 102, 17717–17722.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Yang, Y., Liang, Y., Qu, L., Chen, Z., Yi, M., Li, K., and Lemon, S. M. (2007) Disruption of innate immunity due to mitochondrial targeting of a picornaviral protease precursor, Proc. Natl. Acad. Sci. USA, 104, 7253–7258.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Wei, C., Ni, C., Song, T., Liu, Y., Yang, X., Zheng, Z., Jia, Y., Yuan, Y., Guan, K., Xu, Y., Cheng, X., Zhang, Y., Yang, X., Wang, Y., Wen, C., Wu, Q., Shi, W., and Zhong, H. (2010) The hepatitis B virus X protein disrupts innate immunity by downregulating mitochondrial antiviral signaling protein, J. Immunol., 185, 1158–1168.PubMedCrossRefGoogle Scholar
  54. 54.
    Castanier, C., Garcin, D., Vazquez, A., and Arnoult, D. (2010) Mitochondrial dynamics regulate the RIG-Ilike receptor antiviral pathway, EMBO Rep., 11, 133–138.PubMedCrossRefGoogle Scholar
  55. 55.
    Koshiba, T., Yasukawa, K., Yanagi, Y., and Kawabata, S. (2011) Mitochondrial membrane potential is required for MAVS-mediated antiviral signaling, Sci. Signal., 4, ra7.Google Scholar
  56. 56.
    Marraffini, L. A. (2015) CRISPR-Cas immunity in prokaryotes, Nature, 526, 55–61.PubMedCrossRefGoogle Scholar
  57. 57.
    Bagasra, O., and Prilliman, K. R. (2004) RNA interference: the molecular immune system, J. Mol. Histol., 35, 545–553.PubMedGoogle Scholar
  58. 58.
    Westra, E. R., Buckling, A., and Fineran, P. C. (2014) CRISPR-Cas systems: beyond adaptive immunity, Nat. Rev. Microbiol., 12, 317–326.PubMedCrossRefGoogle Scholar
  59. 59.
    Jaag, H. M., Lu, Q., Schmitt, M. E., and Nagy, P. D. (2011) Role of RNase MRP in viral RNA degradation and RNA recombination, J. Virol., 85, 243–253.PubMedCrossRefGoogle Scholar
  60. 60.
    Xia, C., Chen, Y.-C., Gong, H., Zeng, W., Vu, G.-P., Trang, P., Lu, S., Wu, J., and Liu, F. (2013) Inhibition of hepatitis B virus gene expression and replication by ribonuclease P, Mol. Ther., 21, 995–1003.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Borralho, P. M., Rodrigues, C. M., and Steer, C. J. (2015) microRNAs in mitochondria: an unexplored niche, Adv. Exp. Med. Biol., 887, 31–51.PubMedCrossRefGoogle Scholar
  62. 62.
    Mojica, F. J., Diez-Villasenor, C., Soria, E., and Juez, G. (2000) Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria, Mol. Microbiol., 36, 244–246.CrossRefGoogle Scholar
  63. 63.
    Voinnet, O. (2001) RNA silencing as a plant immune system against viruses, Trends Genet., 17, 449–459.PubMedCrossRefGoogle Scholar
  64. 64.
    Kuzminova, A. E., Zhuravlyova, A. V., Vyssokikh, M. Yu., V., Zorova, L. D., Krasnikov, B. F., and Zorov, D. B. (1998) The permeability transition pore induced under anaerobic conditions in mitochondria energized with ATP, FEBS Lett., 434, 313–316.PubMedCrossRefGoogle Scholar
  65. 65.
    Zorova, L. D., Krasnikov, B. F., Kuzminova, A. E., Polyakova, I. A., Dobrov, E. N., and Zorov, D. B. (2000) Virus-induced permeability transition in mitochondria, FEBS Lett., 466, 305–309.PubMedCrossRefGoogle Scholar
  66. 66.
    Edgar, R. C. (2007) PILER-CR: fast and accurate identification of CRISPR repeats, BMC Bioinformatics, 8, 18.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Rice, P., Longden, I., and Bleasby, A. (2000) EMBOSS: the European Molecular Biology Open Software Suite, Trends Genet., 16, 276–277.PubMedCrossRefGoogle Scholar
  68. 68.
    Rahmani, Z., Huh, K. W., Lasher, R., and Siddiqui, A. (2000) Hepatitis B virus X protein colocalizes to mitochondria with a human voltage-dependent anion channel, HVDAC3, and alters its transmembrane potential, J. Virol., 74, 2840–2846.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Zorov, D. B. (1996) Mitochondrial transport of nucleic acids. Involvement of the benzodiazepine receptor, Biochemistry (Moscow), 61, 939–946.Google Scholar
  70. 70.
    Zorov, D. B. (1996) Mitochondrial damage as a source of diseases and aging: a strategy of how to fight these, Biochim. Biophys. Acta, 1275, 10–15.PubMedCrossRefGoogle Scholar
  71. 71.
    Simon, L. D., and Anderson, T. F. (1967) The infection of Escherichia coli by T2 and T4 bacteriophages as seen in the electron microscope. I. Attachment and penetration, Virology, 32, 279–297.PubMedCrossRefGoogle Scholar
  72. 72.
    Harrison, B. D., and Roberts, I. M. (1968) Association of tobacco rattle virus with mitochondria, J. Gen. Virol., 3, 121–124.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • V. A. Popkov
    • 1
    • 2
  • L. D. Zorova
    • 3
  • I. O. Korvigo
    • 4
  • D. N. Silachev
    • 1
  • S. S. Jankauskas
    • 1
  • V. A. Babenko
    • 1
    • 2
  • I. B. Pevzner
    • 1
  • T. I. Danilina
    • 2
  • S. D. Zorov
    • 2
  • E. Y. Plotnikov
    • 1
  • D. B. Zorov
    • 1
  1. 1.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Faculty of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscowRussia
  3. 3.International Laser Research CenterLomonosov Moscow State UniversityMoscowRussia
  4. 4.Moscow Institute of Physics and TechnologyDolgoprudnyRussia

Personalised recommendations