Biochemistry (Moscow)

, Volume 81, Issue 10, pp 1198–1204 | Cite as

Free initiation factors eIF4A and eIF4B are dispensable for translation initiation on uncapped mRNAs

  • P. A. Sakharov
  • S. Ch. AgalarovEmail author
Accelerated Publication


The formation of ribosomal 48S initiation complexes at the start AUG codon of uncapped mRNA leader sequences was studied using the methodology of primer extension inhibition (toe-printing). The experiments were performed in the system composed of purified individual components required for translation initiation. The formation of ribosomal 48S initiation complexes at the initiation codon was tested depending on the presence of the initiation factors eIF4F, eIF4A, and eIF4B. Several mRNAs containing short leader sequences lacking the extended secondary structure were studied. It was found that 48S ribosomal complexes at mRNAs with such leaders were not formed in the absence of eIF4F. In contrast, the removal of either eIF4A or eIF4B from the experimental system was found to be dispensable for the formation of the 48S complex.

Key words

translation initiation 48S ribosomal initiation complex initiation factors eIF4F eIF4A eIF4B toe-printing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jackson, R. J., Hellen, C. U. T., and Pestova, T. V. (2010) The mechanism of eukaryotic translation initiation and principles of its regulation, Nat. Rev. Mol. Cell Biol., 11, 113–127.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kozak, M. (1978) How do eukaryotic ribosomes select initiation regions in messenger RNA? Cell, 15, 1109–1123.CrossRefPubMedGoogle Scholar
  3. 3.
    Kozak, M. (1989) The scanning model for translation: an update, J. Cell. Biol., 108, 229–241.CrossRefPubMedGoogle Scholar
  4. 4.
    Kozak, M. (1980) Role of ATP in binding and migration of 40S ribosomal subunits, Cell, 22, 459–457.CrossRefPubMedGoogle Scholar
  5. 5.
    Vassilenko, K. S., Alekhina, O. M., Dmitriev, S. E., Shatsky, I. N., and Spirin, A. S. (2011) Unidirectional constant rate motion of the ribosomal scanning particle during eukaryotic translation initiation, Nucleic Acids Res., 39, 5555–5567.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Sonenberg, N. (1993) Remarks on the mechanism of ribosome binding to eukaryotic mRNAs, Gene Expr., 3, 317–323.PubMedGoogle Scholar
  7. 7.
    Haghighat, A., and Sonenberg, N. (1997) eIF4G dramatically enhances the binding of eIF4E to the mRNA 5′-cap structure, J. Biol. Chem., 272, 21677–21680.CrossRefPubMedGoogle Scholar
  8. 8.
    Pestova, T. V., and Kolupaeva, V. G. (2002) The roles of individual eukaryotic translation initiation factors in ribosomal scanning and initiation codon selection, Genes. Dev., 16, 2906–2922.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Shirokikh, N. E., and Spirin, A. S. (2008) Poly(A) leader of eukaryotic mRNA bypasses the dependence of translation on initiation factors, Proc. Natl. Acad. Sci. USA, 2105, 10738–10743.CrossRefGoogle Scholar
  10. 10.
    Dmitriev, S. E., Terenin, I. M., Dunaevsky, Y. E., Merrick, W. C., and Shatsky, I. N. (2003) Assembly of 48S translation initiation complexes from purified components with mRNAs that have some base pairing within their 5′-untranslated regions, Mol. Cell. Biol., 23, 8925–8933.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Gudkov, A. T., Ozerova, M. V., Shiryaev, V. M., and Spirin, A. S. (2005) 5′-poly(A) sequence as an effective leader for translation in eukaryotic cell-free systems, Biotechnol. Bioeng., 91, 468–473.CrossRefPubMedGoogle Scholar
  12. 12.
    Shaloiko, L. N., Granovsky, I. E., Ivashina, T. V., Ksenzenko, V. N., Shirokov, V. A., and Spirin, A. S. (2004) Effective non-viral leader for cap-independent translation in a eukaryotic cell-free system, Biotechnol. Bioeng., 88, 730–739.CrossRefPubMedGoogle Scholar
  13. 13.
    Agalarov, S. Ch., Sakharov, P. A., Fattakhova, D. Kh., Sogorin, E. A., and Spirin, A. S. (2014) Internal translation initiation and eIF4F/ATP-independent scanning of mRNA by eukaryotic ribosomal particles, Sci. Rep., 4, doi: 10.1038/srep04438.Google Scholar
  14. 14.
    Agalarov, S. C., Sogorin, E. A., Shirokikh, N. E., and Spirin, A. S. (2011) Insight into the structural organization of the omega leader of TMV RNA: the role of various regions of the sequence in the formation of a compact structure of the omega RNA, Biochem. Biophys. Res. Commun., 404, 250–253.CrossRefPubMedGoogle Scholar
  15. 15.
    Kopeina, G. S., Afonina, Z. A., Gromova, K. V., Shirokov, V. A., Vasiliev, V. D., and Spirin, A. S. (2008) Step-wise formation of eukaryotic double-row polyribosomes and circular translation of polysomal mRNA, Nucleic Acids Res., 36, 2476–2478.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Alkalaeva, E. Z., Pisarev, A. V., Frolova, L. Y., Kisselev, L. L., and Pestova, T. V. (2006) In vitro reconstitution of eukaryotic translation reveals cooperativity between release factors eRF1 and eRF3, Cell, 125, 1125–1136.CrossRefPubMedGoogle Scholar
  17. 17.
    Sakharov, P. A., Sokolov, A. S., and Agalarov, S. C. (2015) Nonhydrolyzable ATP analog 5′-adenylyl-imidodiphosphate (AMP-PNP) does not inhibit ATP-dependent scanning of leader sequence of mRNA, Biochemistry (Moscow), 80, 45–49.CrossRefGoogle Scholar
  18. 18.
    Hartz, D., McPheeters, D. S., Traut, R., and Gold, L. (1988) Extension inhibition analysis of translation initiation complexes, Methods Enzymol., 164, 419–425.CrossRefPubMedGoogle Scholar
  19. 19.
    Gould, P. S., Bird, H., and Easton, A. J. (2005) Translation toeprinting assays using fluorescently labeled primers and capillary electrophoresis, Biotechniques, 38, 397–400.CrossRefPubMedGoogle Scholar
  20. 20.
    Sleat, D. E., Gallie, D. R., Jefferson, R. A., Bevan, M. W., Turner, P. C., and Wilson, T. M. A. (1987) Characterization of the 50-leader sequence of tobacco mosaic virus RNA as general enhancer of translation in vitro, Gene, 60, 217–225.CrossRefPubMedGoogle Scholar
  21. 21.
    Kovtun, A. A., Shirokikh, N. E., Gudkov, A. T., and Spirin, A. S. (2007) The leader sequence of tobacco mosaic virus RNA devoid of Watson–Crick secondary structure possesses a cooperatively melted, compact conformation, Biochem. Biophys. Res. Commun., 358, 368–372.CrossRefPubMedGoogle Scholar
  22. 22.
    Shirokikh, N. E., Agalarov, S. C., and Spirin, A. S. (2010) Chemical and enzymatic probing of spatial structure of the omega leader of tobacco mosaic virus RNA, Biochemistry (Moscow), 75, 405–411.CrossRefGoogle Scholar
  23. 23.
    Gallie, D. R., and Walbot, V. (1992) Identification of the motifs within the tobacco virus 5′-leader responsible for enhancing translation, Nucleic Acids Res., 20, 4631–4638.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Sarabhai, A., and Brenner, S. (1967) A mutant which reinitiates the polypeptide chain after chain termination, J. Mol. Biol., 27, 145–162.CrossRefPubMedGoogle Scholar
  25. 25.
    Svitkin, Y. V., Pause, A., Haghighat, A., Pyronnet, S., Witherell, G., Belsham, G. J., and Sonenberg, N. (2001) The requirement for eukaryotic initiation factor 4A (elF4A) in translation is in direct proportion to the degree of mRNA 5′-secondary structure, RNA, 7, 382–394.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Institute of Protein ResearchRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations