Advertisement

Biochemistry (Moscow)

, Volume 81, Issue 10, pp 1182–1187 | Cite as

Participation of two carbonic anhydrases of the alpha family in photosynthetic reactions in Arabidopsis thaliana

  • E. M. Zhurikova
  • L. K. Ignatova
  • N. N. Rudenko
  • V. A. Mudrik
  • D. V. Vetoshkina
  • B. N. IvanovEmail author
Article

Abstract

The expression of genes of two carbonic anhydrases (CA) belonging to the a-family, α-CA2 and α-CA4 (according to the nomenclature in N. Fabre et al. (2007) Plant Cell Environ., 30, 617-629), was studied in arabidopsis (Arabidopsis thaliana, var. Columbia) leaves. The expression of the At2g28210 gene coding α-CA2 decreased under increase in plant illumination, while the expression of the At4g20990 gene coding α-CA4 increased. Under conditions close to optimal for photosynthesis, in plants with gene At2g28210 knockout, the effective quantum yield of photosystem 2 and the light-induced accumulation of hydrogen peroxide in leaves were lower than in wild type plants, while the coefficient of non-photochemical quenching of leaf chlorophyll a fluorescence and the rate of CO2 assimilation in leaves were higher. In plants with At4g20990 gene knockout, the same characteristics changed in opposite ways relative to wild type. Possible mechanisms of the participation of αa-CA2 and α-CA4 in photosynthetic reactions are discussed, taking into account that protons can be either consumed or released in the reactions they catalyze.

Key words

photosynthesis carbonic anhydrase arabidopsis gene expression mutants 

Abbreviations

CA

carbonic anhydrase

Chl

chlorophyll

PAR

photosynthetically active radiation

PETC

photosynthetic electron-transport chain

PS1

photosystem 1

PS2

photosystem 2

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hewett-Emmett, D., and Tashian, R. E. (1996) Functional diversity, conservation, and convergence in the evolution of the α-, γ-, and γ-carbonic anhydrase gene families, Mol. Phylogenet. Evol., 5, 50–77.CrossRefPubMedGoogle Scholar
  2. 2.
    Fabre, N., Reiter, I. M., Becuwe-Linka, N., Genty, B., and Rumeau, D. (2007) Characterization and expression analysis of genes encoding a and β carbonic anhydrases in Arabidopsis, Plant Cell Environ., 30, 617–629.CrossRefPubMedGoogle Scholar
  3. 3.
    Sunderhaus, S., Dudkina, N. V., Jansch, L., Klodmann, J., Heinemeyer, J., Perales, M., Zabaleta, E., Boekema, E. J., and Braun, H.-P. (2006) Carbonic anhydrase subunits form a matrix-exposed domain attached to the membrane arm of mitochondrial complex I in plants, J. Biol. Chem., 281, 6482–6488.CrossRefPubMedGoogle Scholar
  4. 4.
    Fedorchuk, T., Rudenko, N., Ignatova, L., and Ivanov, B. (2014) The presence of soluble carbonic anhydrase in the thylakoid lumen of chloroplasts from Arabidopsis leaves, J. Plant Physiol., 171, 903–906.CrossRefPubMedGoogle Scholar
  5. 5.
    Villarejo, A., Buren, S., Larsson, S., Dejardin, A., Monne, M., Rudhe, Ch., Karlsson, J., Jansson, S., Lerouge, P., Rolland, N., von Heijne, G., Grebe, M., Bako, L., and Samuelsson, G. (2005) Evidence for a protein transported through the secretory pathway en route to the higher plant chloroplast, Nat. Cell Biol., 7, 1224–1231.CrossRefPubMedGoogle Scholar
  6. 6.
    Friso, G., Giacomelli, L., Ytterberg, A. J., Peltier, J.-B., Rudella, A., Sun, Q., and Van Wijka, K. J. (2004) In-depth analysis of the thylakoid membrane proteome of Arabidopsis thaliana chloroplasts: new proteins, new functions, and a plastid proteome database, Plant Cell, 16, 478–499.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Moroney, J. V., Ma, Y., Frey, W. D., Fusilier, K. A., Pham, T. T., Simms, T. A., DiMario, R. J., Jing, J., and Mukherjee, B. (2011) The carbonic anhydrase isoforms of Chlamydomonas reinhardtii: intracellular location, expression, and physiological roles, Photosynth. Res., 109, 133–149.CrossRefPubMedGoogle Scholar
  8. 8.
    Ivanov, B. N., Ignatova, L. K., and Romanova, A. K. (2007) Diversity in forms and functions of carbonic anhydrase in terrestrial higher plants, Russ. J. Plant Physiol., 54, 143–162.CrossRefGoogle Scholar
  9. 9.
    Rudenko, N. N., Ignatova, L. K., Fedorchuk, T. P., and Ivanov, B. N. (2015) Carbonic anhydrases in photosynthetic cells of higher plants, Biochemistry (Moscow), 80, 674–687.CrossRefGoogle Scholar
  10. 10.
    Majeau, N., Arnoldo, M. A., and Coleman, J. R. (1994) Modification of carbonic anhydrase activity by antisense and over-expression constructs in transgenic tobacco, Plant Mol. Biol., 25, 377–385.CrossRefPubMedGoogle Scholar
  11. 11.
    Price, G. D., Von Caemmerer, S., Evans, J. R., Yu, J.-W., Lloyd, J., Oja, V., Kell, P., Harrison, K., Gallagher, A., and Badger, M. R. (1994) Specific reduction of chloroplast carbonic anhydrase activity by antisense RNA in transgenic tobacco plants has a minor effect on photosynthetic CO2 assimilation, Planta, 193, 331–340.CrossRefGoogle Scholar
  12. 12.
    Zhurikova, E. M., Ignatova, L. K., Semenova, G. A., Rudenko, N. N., Mudrik, V. A., and Ivanov, B. N. (2015) Effect of knockout of a-carbonic anhydrase 4 gene on photosynthetic characteristics and starch accumulation in leaves of Arabidopsis thaliana, Russ. J. Plant Physiol., 62, 564–569.CrossRefGoogle Scholar
  13. 13.
    Quick, W. P., and Stitt, M. (1989) An examination of factors contributing to non-photochemical quenching of chlorophyll fluorescence in barley leaves, Biochim. Biophys. Acta, 977, 287–296.CrossRefGoogle Scholar
  14. 14.
    Nilkens, M., Kress, E., Lambrev, P., Miloslavina, Y., Muller, M., Holzwarth, A. R., and Jahns, P. (2010) Identification of a slowly inducible zeaxanthin-dependent component of non-photochemical quenching of chlorophyll fluorescence generated under steady-state conditions in Arabidopsis, Biochim. Biophys. Acta, 1797, 466–475.CrossRefPubMedGoogle Scholar
  15. 15.
    Ivanov, B. N., Khorobrykh, S. A., Kozuleva, M. A., and Borisova-Mubarakshina, M. M. (2014) The role of oxygen and its reactive forms in photosynthesis, in Contemporary Problems of Photosynthesis (Allakhverdiev, S. I., Rubin, A. B., and Shauvalov, V. A., eds.) Izhevsk Institute of Computer Science, Moscow-Izhevsk, pp. 407–460.Google Scholar
  16. 16.
    Ruban, A. V. (2016) Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage, Plant Physiol., 170, 1903–1916.CrossRefPubMedGoogle Scholar
  17. 17.
    Lu, Y. K., and Stemler, A. J. (2002) Extrinsic photosystem II carbonic anhydrase in maize mesophyll chloroplasts, Plant Physiol., 128, 643–649.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Khristin, M. S., Ignatova, L. K., Rudenko, N. N., Ivanov, B. N., and Klimov, V. V. (2004) Photosystem II associated carbonic anhydrase activity in higher plants is situated in core complex, FEBS Lett., 577, 305–308.CrossRefPubMedGoogle Scholar
  19. 19.
    Ignatova, L. K., Rudenko, N. N., Khristin, M. S., and Ivanov, B. N. (2006) Heterogeneous nature of carbonic anhydrase activity in thylakoid membranes, Biochemistry (Moscow), 71, 525–632.CrossRefGoogle Scholar
  20. 20.
    Rudenko, N. N., Ignatova, L. K., and Ivanov, B. N. (2007) Multiple sources of carbonic anhydrase activity in pea thylakoids: soluble and membrane bound forms, Photosynth. Res., 91, 81–89.CrossRefPubMedGoogle Scholar
  21. 21.
    Villarejo, A., Shutova, T., Moskvin, O., Forssen, M., Klimov, V. V., and Samuelsson, G. (2002) A photosystem II-associated carbonic anhydrase regulates the efficiency of photosynthetic oxygen evolution, EMBO J., 21, 1930–1938.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Shutova, T., Kenneweg, H., Buchta, J., Nikitina, J., Terentyev, V., Chernyshov, S., Andersson, B., Allakhverdiev, S. I., Klimov, V. V., Dau, H., Junge, W., and Samuelsson, G. (2008) The photosystem II-associated Cah3 in Chlamydomonas enhances the O2 evolution rate by proton removal, EMBO J., 27, 782–791.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Koroidov, S., Shevela, D., Shutova, T., Samuelsson, G., and Messinger, J. (2014) Mobile hydrogen carbonate acts as proton acceptor in photosynthetic water oxidation, Proc. Natl. Acad. Sci. USA, 111, 6299–6304.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Stemler, A. (1977) The binding of bicarbonate to washed chloroplast grana, Biochim. Biophys. Acta, 460, 511–522.CrossRefPubMedGoogle Scholar
  25. 25.
    Shmeleva, V. L., Ivanov, B. N., and Red’ko, T. P. (1982) Electron transport and photophosphorylation, coupled with photoreduction of oxygen by chloroplasts of peas, grown under different conditions of illumination, Biochemistry (Moscow), 47, 1104–1107.Google Scholar
  26. 26.
    Naydov, I. A., Mubarakshina, M. M., and Ivanov, B. N. (2012) Formation kinetics and H2O2 distribution in chloroplasts and protoplasts of photosynthetic leaf cells of higher plants under illumination, Biochemistry (Moscow), 77, 143–151.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • E. M. Zhurikova
    • 1
  • L. K. Ignatova
    • 1
  • N. N. Rudenko
    • 1
  • V. A. Mudrik
    • 1
  • D. V. Vetoshkina
    • 1
  • B. N. Ivanov
    • 1
    Email author
  1. 1.Institute of Basic Biological ProblemsRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations